1
|
Shim J, Kim Y, Bak J, Shin S, Lee K, Hwang YH, Kong HY, Han JS. Preclinical evaluation of NG101, a potential AAV gene therapy for wet age-related macular degeneration. Mol Ther Methods Clin Dev 2024; 32:101366. [PMID: 39634790 PMCID: PMC11615598 DOI: 10.1016/j.omtm.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in individuals over the age of 55. Approximately 10%-15% of AMD patients develop choroidal neovascularization (CNV), leading to wet AMD (wAMD), which accounts for nearly 90% of AMD-related blindness. Inhibition of vascular endothelial growth factor (VEGF) is the standard treatment for wAMD. However, the frequent administration of the current treatment imposes a significant burden on wAMD patients. Therefore, there is an unmet need for treatments that require less-frequent administration. Here, we present findings on the safety and efficacy of NG101, a recombinant adeno-associated virus (rAAV) vector encoding aflibercept, an anti-VEGF agent, for wAMD therapy. A single subretinal injection of NG101 effectively reduced CNV lesion leakage and size at doses as low as 1 × 106 in mouse and 3 × 109 viral genomes per eye in cynomolgus monkeys. In cynomolgus monkeys, NG101-derived aflibercept expression in ocular tissues persisted for 1 year post-injection, indicating sustained therapeutic potential. Biodistribution analysis revealed that NG101 was primarily localized in ocular tissues. Only mild and transient ocular inflammatory responses were observed. Overall, these findings suggest that NG101, with its efficacy at low doses and sustained expression, is a promising therapeutic candidate for wAMD.
Collapse
Affiliation(s)
- Juwon Shim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Youyoung Kim
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Jeongyun Bak
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Sunhwa Shin
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | - Kyungwon Lee
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| | | | | | - Joo Seok Han
- Neuracle Genetics Inc., Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Ross M, Sade K, Obolensky A, Averbukh E, Desrosiers M, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Characterization of anti-AAV2 neutralizing antibody levels in sheep prior to and following intravitreal AAV2.7m8 injection. Gene Ther 2024; 31:580-586. [PMID: 39472677 DOI: 10.1038/s41434-024-00495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Gene augmentation therapy is a promising treatment for incurable, blinding inherited retinal diseases, and intravitreal delivery is being studied as a safe alternative to subretinal injections. Adeno-Associated Viruses (AAV) are commonly-used vectors for ocular gene augmentation therapy. Naturally occurring pre-operative exposure and infection with AAV could result in presence of neutralizing antibodies (NAB's) in patients' serum, and may affect the safety and efficacy of treatment. Our aim was to characterize the humoral response against AAV pre- and post-intravitreal delivery of AAV2.7m8 vectors in a naturally-occurring sheep model of CNGA3 achromatopsia. Serial serum neutralization assays were performed to screen sheep for pre-exiting anti-AAV2 NAB's, and to assess the effect of intravitreal AAV2.7m8 injection on post-operative NAB titers and intraocular inflammation in sheep. The effect of viral dose and transgene type were also assessed. Serological screening revealed pre-operative seropositivity in 21.4% of animals, with age being a risk factor for the presence of anti-AAV2 NAB's. NAB titers increased following intravitreal AAV administration in the majority of sheep. There was no significant difference in the degree of post-operative serum neutralization between pre-operatively seronegative sheep and those with pre-existing antibodies. However, only sheep with pre-existing antibodies presented with signs of post-operative inflammation. We conclude that pre-existing anti-AAV2 NAB's do not affect the level of post-operative NAB titers; however, they increase the risk of post-operative ocular inflammation. Our results could have implications for the management of AAV-mediated ocular gene therapies, a technology being increasingly studied and used in patients.
Collapse
Affiliation(s)
- Maya Ross
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Kareen Sade
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Alexander Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Hay Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Elisha Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Ford JL, Karatza E, Mody H, Nagaraja Shastri P, Khajeh Pour S, Yang TY, Swanson M, Chao D, Devineni D. Clinical Pharmacology Perspective on Development of Adeno-Associated Virus Vector-Based Retina Gene Therapy. Clin Pharmacol Ther 2024; 115:1212-1232. [PMID: 38450707 DOI: 10.1002/cpt.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Adeno-associated virus (AAV) vector-based gene therapy is an innovative modality being increasingly investigated to treat diseases by modifying or replacing defective genes or expressing therapeutic entities. With its unique anatomic and physiological characteristics, the eye constitutes a very attractive target for gene therapy. Specifically, the ocular space is easily accessible and is generally considered "immune-privileged" with a low risk of systemic side effects following local drug administration. As retina cells have limited cellular turnover, a one-time gene delivery has the potential to provide long-term transgene expression. Despite the initial success with voretigene neparvovec (Luxturna), the first approved retina gene therapy, there are still challenges to be overcome for successful clinical development of these products and scientific questions to be answered. The current review paper aims to integrate published experience learned thus far for AAV-based retina gene therapy related to preclinical to clinical translation; first-in-human dose selection; relevant bioanalytical assays and strategies; clinical development considerations including trial design, biodistribution and vector shedding, immunogenicity, transgene expression, and pediatric populations; opportunities for model-informed drug development; and regulatory perspectives. The information presented herein is intended to serve as a guide to inform the clinical development strategy for retina gene therapy with a focus on clinical pharmacology.
Collapse
Affiliation(s)
| | - Eleni Karatza
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Hardik Mody
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Sana Khajeh Pour
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Michael Swanson
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Daniel Chao
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | |
Collapse
|
4
|
Ay C, Reinisch A. Gene therapy: principles, challenges and use in clinical practice. Wien Klin Wochenschr 2024:10.1007/s00508-024-02368-8. [PMID: 38713227 DOI: 10.1007/s00508-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Gene therapy is an emerging topic in medicine. The first products have already been licensed in the European Union for the treatment of immune deficiency, spinal muscular atrophy, hemophilia, retinal dystrophy, a rare neurotransmitter disorder and some hematological cancers, while many more are being assessed in preclinical and clinical trials. OBJECTIVE The purpose of this review is to provide an overview of the core principles of gene therapy along with information on challenges and risks. Benefits, adverse effects and potential risks are illustrated based on the examples of hemophilia and spinal muscular atrophy. RESULTS At present, in-vitro and in-vivo gene addition or gene augmentation is the most commonly established type of gene therapy. More recently, more sophisticated and precise approaches such as in situ gene editing have moved into focus. However, all types of gene therapy require long-term observation of treated patients to ensure safety, efficacy, predictability and durability. Important safety concerns include immune reactions to the vector, the foreign DNA or the new protein resulting from gene therapy, and a remaining low cancer risk based on insertional mutagenesis. Ethical and regulatory issues need to be addressed, and new reimbursement models are called for to ease the financial burden that this new treatment poses for the health care system. CONCLUSION Gene therapy holds great promise for considerable improvement or even cure of genetic diseases with serious clinical consequences. However, a number of questions and issues need to be clarified to ensure broad accessibility of safe and efficacious products.
Collapse
Affiliation(s)
- Cihan Ay
- Department of Medicine I, Clinical Division of Haematology and Haemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology & Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria.
| |
Collapse
|
5
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
6
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
7
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
9
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Liang Y, Lan T, Gan Q, Liang H. Successful transduction of target gene mediated by adeno-associated virus 2 into lens epithelial cells in rats. J Virol Methods 2023; 321:114792. [PMID: 37591371 DOI: 10.1016/j.jviromet.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The Adeno-Associated Virus (AAV) has emerged as a promising candidate for delivery of genetic material, exhibiting significant potential in various clinical applications. Although multiple AAV serotypes have been shown to transduce ocular tissues, there have been few studies of AAV transduction of lens epithelial cells (LECs) in the ocular. In this study, we compared the efficiency of intravitreal injection of six AAV serotypes (AAV2, AAV5, AAV6, AAV8, AAV9, and AAVDJ) to transduce lens and retina in rats, The expression and localization of the reporter gene ZsGreen in the lens and retina were examined using immunofluorescence staining, and the relative expression of ZsGreen mRNA was detected using RT-qPCR. Our results demonstrated that AAV2 had the highest efficiency in transducing LECs. All six AAV serotypes could transduce the retina. To validate this observation, we further constructed an AAV2 vector with exogenous gene senescence marker protein 30 (SMP30) and performed intravitreal injection to successfully overexpress SMP30 in LECs of rats. our results provide a basis for the use of AAV vector-mediated gene therapy for lens diseases.
Collapse
Affiliation(s)
- Yongshun Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tian Lan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qingqiao Gan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hao Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
11
|
Whitehead M, Sage A, Burgoyne T, Osborne A, Yu-Wai-Man P, Martin KR. Immunobiology of a rationally-designed AAV2 capsid following intravitreal delivery in mice. Gene Ther 2023; 30:723-735. [PMID: 37386155 PMCID: PMC10506909 DOI: 10.1038/s41434-023-00409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Adeno-associated virus serotype 2 (AAV2) is a viral vector that can be used to deliver therapeutic genes to diseased cells in the retina. One strategy for altering AAV2 vectors involves the mutation of phosphodegron residues, which are thought to be phosphorylated/ubiquitinated in the cytosol, facilitating degradation of the vector and the inhibition of transduction. As such, mutation of phosphodegron residues have been correlated with increased transduction of target cells, however, an assessment of the immunobiology of wild-type and phosphodegron mutant AAV2 vectors following intravitreal (IVT) delivery to immunocompetent animals is lacking in the current literature. In this study, we show that IVT of a triple phosphodegron mutant AAV2 capsid is associated with higher levels of humoral immune activation, infiltration of CD4 and CD8 T-cells into the retina, generation of splenic germinal centre reactions, activation of conventional dendritic cell subsets, and elevated retinal gliosis compared to wild-type AAV2 capsids. However, we did not detect significant changes in electroretinography arising after vector administration. We also demonstrate that the triple AAV2 mutant capsid is less susceptible to neutralisation by soluble heparan sulphate and anti-AAV2 neutralising antibodies, highlighting a possible utility for the vector in terms of circumventing pre-existing humoral immunity. In summary, the present study highlights novel aspects of rationally-designed vector immunobiology, which may be relevant to their application in preclinical and clinical settings.
Collapse
Affiliation(s)
- Michael Whitehead
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK.
| | - Andrew Sage
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Tom Burgoyne
- UCL Institute of Ophthalmology, London, UK
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew Osborne
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Keith R Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Pan H, Liu YF, Luo Y, Chen L, Shen B, Song S, Liu M, Wang Z, Wu W, Li M, Zhang Y. Goats with low levels of AAV antibody may serve as candidates for large animal gene therapy. Exp Eye Res 2023; 233:109514. [PMID: 37207869 DOI: 10.1016/j.exer.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
AAV vector-mediated gene therapy has been proposed as a feasible strategy for several eye diseases. However, AAV antibodies in the serum prior to treatment hinder the transduction efficiency and thus the therapeutic effect. Therefore, it is necessary to evaluate AAV antibodies in the serum before gene therapy. As large animals, goats are more closely related to humans than rodents and more economically available than nonhuman primates. Here, we first evaluated the AAV2 antibody serum level in rhesus monkeys before AAV injection. Then, we optimized a cell-based neutralizing antibody assay for detecting AAV antibodies in the serum of Saanen goats and evaluated the consistency of the cell-based neutralizing antibody assay and ELISA for goat serum antibody evaluation. The cell-based neutralizing antibody assay showed that the percentage of macaques with low antibody levels was 42.86%; however, there were no macaques with low antibody levels when the serum was evaluated by ELISA. The proportion of goats with low antibody levels was 56.67% according to the neutralizing antibody assay and 33. 33% according to the ELISA, and McNemar's test showed that the results of the two assays were not significantly different (P = 0.754), but that their consistency is poor (Kappa = 0.286, P = 0.114). Moreover, longitudinal evaluation of serum antibodies before and after intravitreal injection of AAV2 in goats revealed that the level of AAV antibodies increased and transduction inhibition subsequently increased, as reported in humans, indicating that transduction inhibition should be taken into account at different stages of gene therapy. In summary, starting with an evaluation of monkey serum antibodies, we optimized a detection method of goat serum antibodies, providing an alternative large animal model for gene therapy, and our serum antibody measurement method may be applied to other large animals.
Collapse
Affiliation(s)
- Huirong Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu-Fen Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuting Luo
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingyan Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shihan Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyue Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhuowei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Mengyun Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Shaoxing People's Hospital, Shaoxing, 312000, China.
| | - Yikui Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
13
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
15
|
Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, Harris CL. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev 2023; 313:402-419. [PMID: 36369963 PMCID: PMC10099504 DOI: 10.1111/imr.13149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.
Collapse
|
16
|
Nieuwenhuis B, Osborne A. Intravitreal Injection of AAV for the Transduction of Mouse Retinal Ganglion Cells. Methods Mol Biol 2023; 2708:155-174. [PMID: 37558970 DOI: 10.1007/978-1-0716-3409-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The injection of therapies into the eye is common practice, both clinically and pre-clinically. The most straightforward delivery route is via an intravitreal injection, which introduces the treatment into the largest cavity at the posterior of the eye. This technique is frequently used to deliver gene therapies, including those containing recombinant adeno-associated viral vectors (AAVs), to the back of the eye to enable inner retinal targeting. This chapter provides detailed methodology on how to successfully perform an intravitreal injection in mice. The chapter covers vector preparation considerations, advice on how to minimize vector loss in the injection device, and ways to reduce vector reflux from the eye when administering a therapy. Finally, a protocol is provided on common retinal histology processing techniques to assess vector-mediated expression in retinal ganglion cells. It is hoped that this chapter will enable researchers to carry out effective and consistent intravitreal injections that transduce the inner retinal surface while avoiding common pitfalls.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
17
|
Chen BS, Yu-Wai-Man P, Newman NJ. Developments in the Treatment of Leber Hereditary Optic Neuropathy. Curr Neurol Neurosci Rep 2022; 22:881-892. [PMID: 36414808 PMCID: PMC9750907 DOI: 10.1007/s11910-022-01246-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
PURPOSEOF REVIEW To outline the current landscape of treatments for Leber hereditary optic neuropathy (LHON) along the therapeutic delivery pipeline, exploring the mechanisms of action and evidence for these therapeutic approaches. RECENT FINDINGS Treatments for LHON can be broadly classified as either mutation-specific or mutation-independent. Mutation-specific therapies aim to correct the underlying mutation through the use of a gene-editing platform or replace the faulty mitochondrial DNA-encoded protein by delivering the wild-type gene using a suitable vector. Recent gene therapy clinical trials assessing the efficacy of allotopically expressed MT-ND4 for the treatment of LHON due to the m.11778G > A mutation in MT-ND4 have shown positive results when treated within 12 months of symptom onset. Mutation-independent therapies can have various downstream targets that aim to improve mitochondrial respiration, reduce mitochondrial stress, inhibit or delay retinal ganglion cell apoptosis, and/or promote retinal ganglion cell survival. Idebenone, a synthetic hydrosoluble analogue of co-enzyme Q10 (ubiquinone), is the only approved treatment for LHON. Mutation-independent approaches to gene therapy under pre-clinical investigation for other neurodegenerative disorders may have the potential to benefit patients with LHON. Although approved treatments are presently limited, innovations in gene therapy and editing are driving the expansion of the therapeutic delivery pipeline for LHON.
Collapse
Affiliation(s)
- Benson S Chen
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
18
|
Abstract
Gene transfer using adeno-associated viral (AAV) vectors has made tremendous progress in the last decade and has achieved cures of debilitating diseases such as hemophilia A and B. Nevertheless, progress is still being hampered by immune responses against the AAV capsid antigens or the transgene products. Immunosuppression designed to blunt T cell responses has shown success in some patients but failed in others especially if they received very high AAV vectors doses. Although it was initially thought that AAV vectors induce only marginal innate responses below the threshold of systemic symptoms recent trials have shown that complement activation can results in serious adverse events. Dorsal root ganglia toxicity has also been identified as a complication of high vector doses as has severe hepatotoxicity. Most of the critical complications occur in patients who are treated with very high vector doses indicating that the use of more efficient AAV vectors to allow for dose sparing or giving smaller doses repeatedly, the latter in conjunction with antibody or B cell depleting measures, should be explored.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- Ertl Laboratory, Vaccine Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
19
|
Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108757. [PMID: 35396884 DOI: 10.1002/adma.202108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.
Collapse
Affiliation(s)
- Shiva Soltani Dehnavi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- ANU College of Engineering & Computer Science, Canberra, ACT, 2601, Australia
| | - Zahra Eivazi Zadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Richard J Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
20
|
Toral MA, Charlesworth CT, Ng B, Chemudupati T, Homma S, Nakauchi H, Bassuk AG, Porteus MH, Mahajan VB. Investigation of Cas9 antibodies in the human eye. Nat Commun 2022; 13:1053. [PMID: 35217666 PMCID: PMC8881612 DOI: 10.1038/s41467-022-28674-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Preexisting immunity against Cas9 proteins in humans represents a safety risk for CRISPR–Cas9 technologies. However, it is unclear to what extent preexisting Cas9 immunity is relevant to the eye as it is targeted for early in vivo CRISPR–Cas9 clinical trials. While the eye lacks T-cells, it contains antibodies, cytokines, and resident immune cells. Although precise mechanisms are unclear, intraocular inflammation remains a major cause of vision loss. Here, we used immunoglobulin isotyping and ELISA platforms to profile antibodies in serum and vitreous fluid biopsies from human adult subjects and Cas9-immunized mice. We observed high prevalence of preexisting Cas9-reactive antibodies in serum but not in the eye. However, we detected intraocular antibodies reactive to S. pyogenes-derived Cas9 after S. pyogenes intraocular infection. Our data suggest that serum antibody concentration may determine whether specific intraocular antibodies develop, but preexisting immunity to Cas9 may represent a lower risk in human eyes than systemically. Pre-existing antibodies against Cas9 proteins represent a potential issue for gene therapies, including those targeting the eye. Here the authors assess the presence of intraocular antibodies, and show that Cas9 antibodies were prevalent in human serum but not the eye, unless prior bacterial infection occurred.
Collapse
Affiliation(s)
- Marcus A Toral
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Scientist Training Program and Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Benjamin Ng
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Sciences Division, University of Oxford, Oxford, UK
| | - Teja Chemudupati
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Shota Homma
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Palo Alto, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Alexander G Bassuk
- Departments of Pediatrics and Neurology and The Iowa Neuroscience Institute (INI), University of Iowa, Iowa City, IA, USA
| | | | - Vinit B Mahajan
- Molecular Surgery Program, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA. .,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, Palo Alto, CA, USA.
| |
Collapse
|