1
|
Liao DA, Moll FW, Nieder A. Bridging the fields of cognition and birdsong with corvids. Curr Opin Neurobiol 2025; 90:102965. [PMID: 39754886 DOI: 10.1016/j.conb.2024.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025]
Abstract
Corvids, readily adaptable across social and ecological contexts, successfully inhabit almost the entire world. They are seen as highly intelligent birds, and current research examines their cognitive abilities. Despite being songbirds with a complete 'song system', corvids have historically received less attention in studies of song production, learning, and perception compared to non-corvid songbirds. However, recent neurobiological studies have demonstrated that songbird vocal production and its neuronal representations are regularly influenced by environmental and cognitive factors. This opinion article discusses the literature on 'corvid song' before introducing other flexible vocal behaviors of corvids in both the wild and controlled laboratory studies. We suggest corvids with their flexible vocal control as promising model species to study the links between brain networks for cognition and vocalization. Studying corvid vocal flexibility and associated cognitive processes in both ecological and lab settings offers complementary insights, crucial for bridging the fields of cognition and birdsong.
Collapse
Affiliation(s)
- Diana A Liao
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | - Felix W Moll
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| |
Collapse
|
2
|
Zai AT, Rodrigues DI, Stepien AE, Lorenz C, Giret N, Adam I, Hahnloser RHR. Familiarity of an environment prevents song suppression in isolated zebra finches. PLoS One 2025; 20:e0307126. [PMID: 39787086 PMCID: PMC11717181 DOI: 10.1371/journal.pone.0307126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the wide use of zebra finches as an animal model to study vocal learning and production, little is known about impacts on their welfare caused by routine experimental manipulations such as changing their social context. Here we conduct a post-hoc analysis of singing rate, an indicator of positive welfare, to gain insights into stress caused by social isolation, a common experimental manipulation. We find that isolation in an unfamiliar environment reduces singing rate for several days, indicating the presence of an acute stressor. However, we find no such decrease when social isolation is caused by either removal of a social companion or by transfer to a familiar environment. Furthermore, during repeated brief periods of isolation, singing rate remains high when isolation is induced by removal of social companions, but it fails to recover from a suppressed state when isolation is induced by recurrent transfer to an unknown environment. These findings suggest that stress from social isolation is negligible compared to stress caused by environmental changes and that frequent short visits of an unfamiliar environment are detrimental rather than beneficial. Together, these insights can serve to refine experimental studies and design paradigms maximizing the birds' wellbeing and vocal output.
Collapse
Affiliation(s)
- Anja T. Zai
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Diana I. Rodrigues
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Corinna Lorenz
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, France
| | - Iris Adam
- Department of Biology, University of Southern Denmark, Denmark
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Mizuno A, Lagisz M, Pollo P, Yang Y, Soma M, Nakagawa S. A systematic review and meta-analysis of eyespot anti-predator mechanisms. eLife 2024; 13:RP96338. [PMID: 39665815 PMCID: PMC11637465 DOI: 10.7554/elife.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Eyespot patterns have evolved in many prey species. These patterns were traditionally explained by the eye mimicry hypothesis, which proposes that eyespots resembling vertebrate eyes function as predator avoidance. However, it is possible that eyespots do not mimic eyes: according to the conspicuousness hypothesis, eyespots are just one form of vivid signals where only conspicuousness matters. They might work simply through neophobia or unfamiliarity, without necessarily implying aposematism or the unprofitability to potential predators. To test these hypotheses and explore factors influencing predators' responses, we conducted a meta-analysis with 33 empirical papers that focused on bird responses to both real lepidopterans and artificial targets with conspicuous patterns (i.e. eyespots and non-eyespots). Supporting the latter hypothesis, the results showed no clear difference in predator avoidance efficacy between eyespots and non-eyespots. When comparing geometric pattern characteristics, bigger pattern sizes and smaller numbers of patterns were more effective in preventing avian predation. This finding indicates that single concentric patterns have stronger deterring effects than paired ones. Taken together, our study supports the conspicuousness hypothesis more than the eye mimicry hypothesis. Due to the number and species coverage of published studies so far, the generalisability of our conclusion may be limited. The findings highlight that pattern conspicuousness is key to eliciting avian avoidance responses, shedding a different light on this classic example of signal evolution.
Collapse
Affiliation(s)
- Ayumi Mizuno
- Department of Biology, Faculty of Science, Hokkaido UniversitySapporoJapan
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
- Department of Biological Sciences, Faculty of Science, The University of AlbertaEdmontonCanada
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
| | - Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
| | - Masayo Soma
- Department of Biology, Faculty of Science, Hokkaido UniversitySapporoJapan
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
- Department of Biological Sciences, Faculty of Science, The University of AlbertaEdmontonCanada
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| |
Collapse
|
4
|
Haakenson CM, Balthazart J, VanRyzin JW, Marquardt AE, Ashton SE, McCarthy MM, Ball GF. Neurochemical Characterization of Dopaminoceptive Cells in Song Control Nuclei of Canaries and Their Activation During Song Production: A Multiplex Fluorescent In Situ Hybridization Study. J Comp Neurol 2024; 532:e25675. [PMID: 39387367 PMCID: PMC11548801 DOI: 10.1002/cne.25675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Highly sensitive in situ hybridization procedures (RNAScope) were used to quantify the expression of three dopamine receptors (Drd1, Drd2, and Drd3) in two song control nuclei (HVC and the Area X of the basal ganglia) that are known to receive dopaminergic inputs and in the periaqueductal gray (PAG) of male and female canaries. Both sexes were treated with testosterone to ensure they would sing actively. We also determined the excitatory versus inhibitory phenotype of the cells expressing these receptors as well as their activation following a period of song production. The three receptor types were identified in each brain area, with the exception of Drd3 in Area X. The density of cells expressing each receptor varied as a function of receptor type and brain area. Surprisingly few sex differences were detected; they do not seem to explain the sex differences in testosterone-induced song. Overall, the density of Drd-positive cells was much lower in PAG than in the two song control nuclei. In HVC, the majority of cells expressing the three receptor subtypes were VGlut2-positive, whereas colocalization with Vglut2 occurred in few cells in Area X and in an intermediate proportion of cells in PAG. The number of inhibitory cells expressing dopamine receptors was limited. Most dopaminoceptive cells in Area X did not express either excitatory or inhibitory markers. Finally, cellular activation during singing behavior, as measured by the expression of Egr1, was observed in cells expressing each of the three dopamine receptor subtypes, except Drd3 in the PAG.
Collapse
Affiliation(s)
- Chelsea M. Haakenson
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Jonathan W. VanRyzin
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Ashley E. Marquardt
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Sydney E. Ashton
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M. McCarthy
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Gregory F. Ball
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742
- Department of Psychology, University of Maryland, College Park, MD 20742
| |
Collapse
|
5
|
Rose EM, Haakenson CM, Patel A, Gaind S, Shank BD, Ball GF. Song system neuroanatomy, and immediate early gene expression in a finch species with extensive male and female song. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:735-749. [PMID: 37436439 DOI: 10.1007/s00359-023-01651-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Birdsong is a relatively well-studied behavior, both due to its importance as a model for vocal production learning and as an intriguing complex social behavior. Until the last few decades, work on birdsong focused almost exclusively on males. However, it is now widely accepted that female song not only exists, but is fairly common throughout the oscine passerines. Despite this, and the large number of researchers who have begun exploring female song in the field, researchers in the lab have been slow to adopt model species with female song. Studying female song in the lab is critical for our understanding of sex-specific factors in the physiology controlling this fascinating behavior. Additionally, as a model for vocal production learning in humans, understanding the mechanistic and neuroendocrine control of female song is clearly important. In this study, we examined the red-cheeked cordon bleu (RCCB), an Estrildid finch species with extensive female song. Specifically, we found that there were no significant sex differences in circulating levels of testosterone and progesterone, nor in song production rate. There were no significant differences in cell densities in the three nuclei of the song control system we examined. Additionally, the volume of the robust nucleus of the arcopallium was not significantly different and we report the smallest sex difference in HVC yet published in a songbird. Finally, we demonstrated similar levels of motor driven immediate early gene expression in both males and females after song production.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA.
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Aliyah Patel
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Shivika Gaind
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Gaviraghi Mussoi J, MacQueen RA, Stanley MC, Cain KE. Experimentally elevated corticosterone increases song output and complexity in common mynas. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:733-742. [PMID: 38651561 DOI: 10.1002/jez.2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Vocalization is an important communication tool that can reflect many aspects of an individual's internal and external condition. This is especially true for birds. Previous research has shown that bird calls and songs change in response to a variety of potential stressors, although the extent and direction of the changes depend on the nature of the stressor and the environment. Circulating glucocorticoids, such as corticosterone, often increase in response to stressors and mediate some of the observed changes via alterations of the individual's physiological state. Acute elevations of corticosterone often occur as a physiological response to short-term stressors; however, the effects of this elevation on adult vocalizations have not been well documented. Here, we experimentally elevated corticosterone at two different levels using a noninvasive method and examined the effects on the vocal communication of male and female adult common mynas (Acridotheres tristis). Corticosterone elevation temporarily increased song output and some measures of song complexity, while call output decreased. These effects were dosage dependent (higher corticosterone levels had a stronger effect), most evident 40 min after ingestion, and some vocal changes were sex-specific. Future studies should investigate whether the changes in vocal performance due to elevated glucocorticoids have consequences for the birds' behavior, reproductive success, and survival.
Collapse
Affiliation(s)
- Juliane Gaviraghi Mussoi
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebecca A MacQueen
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret C Stanley
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- Waipapa Taumata Rau, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Loning H, Griffith SC, Naguib M. The ecology of zebra finch song and its implications for vocal communication in multi-level societies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230191. [PMID: 38768203 PMCID: PMC11391294 DOI: 10.1098/rstb.2023.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic signalling is crucial in affecting movements and in social interactions. In species with dynamic social structures, such as multi-level societies, acoustic signals can provide a key mechanism allowing individuals to identify and find or avoid each other and to exchange information. Yet, if the spacing between individuals regularly exceeds the maximum signalling range, the relation between movements and signals becomes more complex. As the best-studied songbird in captivity, the zebra finch (Taeniopygia castanotis) is a species with individually distinct songs that are audible over just a few metres and a widely ranging dynamic multi-level social organization in the wild, raising questions on the actual role of its song in social cohesion and coordination. Here, we provide an overview of birdsong in social organizations (networks) and use the ecology of the zebra finch and male song to discuss how singing can facilitate social cohesion and coordination in species where the signal range is very short. We raise the question of the extent to which zebra finches are a representative species to understand the function of song in communication, and we broaden current views on the function of birdsong and its individual signature. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Wageningen University & Research , 6708 WD, The Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
- School of Biological, Earth & Environmental Sciences, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Wageningen University & Research , 6708 WD, The Netherlands
| |
Collapse
|
8
|
Magnaterra AK, Rose EM, Ball GF, Dooling RJ. Hearing and vocalizations in a small songbird, the red-cheeked cordon bleu (Uraeginthus bengalus) (L). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2724-2727. [PMID: 38656337 PMCID: PMC11136516 DOI: 10.1121/10.0025764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
The auditory sensitivity of a small songbird, the red-cheeked cordon bleu, was measured using the standard methods of animal psychophysics. Hearing in cordon bleus is similar to other small passerines with best hearing in the frequency region from 2 to 4 kHz and sensitivity declining at the rate of about 10 dB/octave below 2 kHz and about 35 dB/octave as frequency increases from 4 to 9 kHz. While critical ratios are similar to other songbirds, the long-term average power spectrum of cordon bleu song falls above the frequency of best hearing in this species.
Collapse
Affiliation(s)
- Anna K Magnaterra
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Evangeline M Rose
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Gregory F Ball
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, Maryland 20742, USA
| | - Robert J Dooling
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, Maryland 20742, USA
| |
Collapse
|
9
|
Rose EM, Scofield AJ, Wenstrom AM, Stennette KA, Shank BD, Ball GF. Male and female red-cheeked cordon bleus sing similar yet individualistic songs. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1909-1915. [PMID: 38456733 PMCID: PMC10924675 DOI: 10.1121/10.0025236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Birdsong is an excellent system for studying complex vocal signaling in both males and females. Historically, most research in captivity has focused only on male song. This has left a gap in our understanding of the environmental, neuroendocrine, and mechanistic control of female song. Here, we report the overall acoustic features, repertoire, and stereotypy of both male and female Red-Cheeked Cordon Bleus (Uraeginthus bengalus) (RCCBs) songs in the lab. We found few sex differences in the acoustic structure, song repertoire, and song stereotypy of RCCBs. Both sexes had similar song entropy, peak frequency, and duration. Additionally, individuals of both sexes sang only a single song type each and had similar levels of song and syllable stereotypy. However, we did find that female RCCBs had higher song bandwidth but lower syllable repertoires. Finally, and most strikingly, we found highly individualistic songs in RCCBs. Each individual produced a stereotyped and unique song with no birds sharing song types and very few syllable types being shared between birds of either sex. We propose that RCCBs represent a promising species for future investigations of the acoustic sex differences in song in a lab environment, and also for understanding the evolutionary driving forces behind individualistic songs.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Avery J Scofield
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
| | - Autumn M Wenstrom
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
| | - Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin D Shank
- Department of Physics, Hope College, Holland, Michigan 49423, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Parks BMB, McVea K, Phillmore LS. Vernal growth of vocal control nucleus Area X, but not HVC, precedes gonadal recrudescence in wild black-capped chickadees (Poecile atricapillus). J Neuroendocrinol 2024:e13375. [PMID: 38379225 DOI: 10.1111/jne.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
In temperate-zone songbirds, the neuroanatomical changes which occur in advance of breeding, including the growth of nuclei of the vocal control system, are believed to occur downstream of gonadal recrudescence. However, evidence from wild birds is mixed. Here, we captured black-capped chickadees from the wild in early spring (March-April), summer (August-September), and winter (December-January); in addition to measuring the volumes of two vocal control nuclei (Area X and HVC), we also quantified two indicators of reproductive state (gonads and circulating gonadal steroids). Most birds captured in early spring had regressed gonads and low levels of circulating gonadal steroids, indicating these birds were not yet in full breeding condition. However, these early spring birds still had a significantly larger Area X than winter birds, while HVC did not differ in size across groups. Using data from a previously published seasonal study of black-capped chickadees (Phillmore et al., Developmental Neurobiology, 2015;75:203-216), we then compared Area X and HVC volumes from our early spring group to a breeding group of chickadees captured 3-4 weeks later in the spring. While Area X volume did not differ between the studies, breeding males in Phillmore et al. (2015) had a significantly larger HVC. Taken together, this suggests that the vernal growth of Area X occurs ahead of HVC in black-capped chickadees, and that the overall vernal changes in the vocal control system occur at least partially in advance of the breeding-associated upregulation of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Broderick M B Parks
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kyle McVea
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Leslie S Phillmore
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Bamford JS, Vigl J, Hämäläinen M, Saarikallio SH. Love songs and serenades: a theoretical review of music and romantic relationships. Front Psychol 2024; 15:1302548. [PMID: 38420176 PMCID: PMC10899422 DOI: 10.3389/fpsyg.2024.1302548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
In this theoretical review, we examine how the roles of music in mate choice and social bonding are expressed in romantic relationships. Darwin's Descent of Man originally proposed the idea that musicality might have evolved as a sexually selected trait. This proposition, coupled with the portrayal of popular musicians as sex symbols and the prevalence of love-themed lyrics in music, suggests a possible link between music and attraction. However, recent scientific exploration of the evolutionary functions of music has predominantly focused on theories of social bonding and group signaling, with limited research addressing the sexual selection hypothesis. We identify two distinct types of music-making for these different functions: music for attraction, which would be virtuosic in nature to display physical and cognitive fitness to potential mates; and music for connection, which would facilitate synchrony between partners and likely engage the same reward mechanisms seen in the general synchrony-bonding effect, enhancing perceived interpersonal intimacy as a facet of love. Linking these two musical functions to social psychological theories of relationship development and the components of love, we present a model that outlines the potential roles of music in romantic relationships, from initial attraction to ongoing relationship maintenance. In addition to synthesizing the existing literature, our model serves as a roadmap for empirical research aimed at rigorously investigating the possible functions of music for romantic relationships.
Collapse
Affiliation(s)
- Joshua S Bamford
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä, Jyväskylä, Finland
- Institute of Human Sciences, University of Oxford, Oxford, United Kingdom
| | - Julia Vigl
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Matias Hämäläinen
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä, Jyväskylä, Finland
| | - Suvi Helinä Saarikallio
- Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
12
|
Massa MG, Aghi K, Hill MJ. Deconstructing sex: Strategies for undoing binary thinking in neuroendocrinology and behavior. Horm Behav 2023; 156:105441. [PMID: 37862978 DOI: 10.1016/j.yhbeh.2023.105441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
The scientific community widely recognizes that "sex" is a complex category composed of multiple physiologies. Yet in practice, basic scientific research often treats "sex" as a single, internally consistent, and often binary variable. This practice occludes important physiological factors and processes, and thus limits the scientific value of our findings. In human-oriented biomedical research, the use of simplistic (and often binary) models of sex ignores the existence of intersex, trans, non-binary, and gender non-conforming people and contributes to a medical paradigm that neglects their needs and interests. More broadly, our collective reliance on these models legitimizes a false paradigm of human biology that undergirds harmful medical practices and anti-trans political movements. Herein, we continue the conversations begun at the SBN 2022 Symposium on Hormones and Trans Health, providing guiding questions to help scientists deconstruct and rethink the use of "sex" across the stages of the scientific method. We offer these as a step toward a scientific paradigm that more accurately recognizes and represents sexed physiologies as multiple, interacting, variable, and unbounded by gendered preconceptions. We hope this paper will serve as a useful resource for scientists who seek a new paradigm for researching and understanding sexed physiologies that improves our science, widens the applicability of our findings, and deters the misuse of our research against marginalized groups.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, United States of America.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - M J Hill
- Department of Sociology, University of California Los Angeles, Los Angeles, CA, United States of America.
| |
Collapse
|
13
|
Dos Santos EB, Ball GF, Logue DM, Cornil CA, Balthazart J. Sex differences in song syntax and syllable diversity in testosterone-induced songs of adult male and female canaries. Biol Sex Differ 2023; 14:49. [PMID: 37528473 PMCID: PMC10394978 DOI: 10.1186/s13293-023-00533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is, however, not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. METHODS Songs were recorded from three groups of castrated male and three groups of photoregressed female canaries that had received Silastic™ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. RESULTS Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable-type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes, however, produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). CONCLUSIONS Under the influence of T, canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses to identify the many dimensions of a behavior that can differ between males and females.
Collapse
Affiliation(s)
- Ednei B Dos Santos
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium
| | - Gregory F Ball
- Program in Neuroscience and Cognitive Science; Department of Psychology, University of Maryland, College Park, MD, USA
| | - David M Logue
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate (Bat. B36), Sart Tilman, 4000, Liège 1, Belgium.
| |
Collapse
|
14
|
Dos Santos EB, Ball GF, Logue DM, Cornil CA, Balthazart J. Testosterone treatment reveals marked sex differences in song diversity and syllable syntax in adult canaries. RESEARCH SQUARE 2023:rs.3.rs-2755085. [PMID: 37090598 PMCID: PMC10120784 DOI: 10.21203/rs.3.rs-2755085/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background. Behavioral sex differences are widespread in the animal world. These differences can be qualitative (i.e., behavior present in one sex but not the other, a true sex dimorphism) or quantitative (behavior is present at a higher rate or quality in one sex compared to the other). Singing in oscine songbirds is associated with both types of differences. In canaries, female rarely sing spontaneously but they can be induced to do so by treatments with steroids. Song in these females is however not fully masculinized and exhibits relatively subtle differences in quality as compared with male song. We analyzed here sex differences in syllable content and syllable use between singing male and female canaries. Methods. Songs were recorded from 3 groups of castrated male and 3 groups of photoregressed female canaries that had received Silasticâ"¢ implants filled with testosterone (T), with T plus estradiol (E2), or left empty (control). After 6 weeks of hormone treatment, 30 songs were recorded from each of the 47 subjects. Songs were segmented and each syllable was annotated. Various metrics of syllable diversity were extracted and network analysis was employed to characterize syllable sequences. Results. Male and female songs were characterized by marked sex differences related to syllable use. Compared to females, males had a larger syllable type repertoire and their songs contained more syllable types. Network analysis of syllable sequences showed that males follow more fixed patterns of syllable transitions than females. Both sexes however produced song of the same duration containing the same number of syllables produced at similar rates (numbers per second). Conclusions. Under the influence of T canaries of both sexes are able to produce generally similar vocalizations that nevertheless differ in specific ways. The development of song during ontogeny appears to be a very sophisticated process that is presumably based on genetic and endocrine mechanisms but also on specific learning processes. These data highlight the importance of detailed behavioral analyses in order to identify the many dimensions of a behavior that can differ between males and females.
Collapse
|
15
|
Loning H, Verkade L, Griffith SC, Naguib M. The social role of song in wild zebra finches. Curr Biol 2023; 33:372-380.e3. [PMID: 36543166 DOI: 10.1016/j.cub.2022.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Male songbirds sing to establish territories and to attract mates.1,2 However, increasing reports of singing in non-reproductive contexts3 and by females4,5 show that song use is more diverse than previously considered. Therefore, alternative functions of song, such as social cohesion3 and synchronization of breeding, by and large, were overlooked even in such well-studied species such as the zebra finch (Taeniopygia guttata). In these social songbirds, only the males sing, and pairs breed synchronously in loose colonies,6,7 following aseasonal rain events in their arid habitat.8,9 As males are not territorial, and pairs form long-term monogamous bonds early in life, conventional theory predicts that zebra finches should not sing much at all; however, they do and their song is the focus of hundreds of lab-based studies.10,11,12,13,14,15,16,17,18,19,20,21,22 We hypothesize that zebra finch song functions to maintain social cohesion and to synchronize breeding. Here, we test this idea using data from 5 years of field studies, including observational transects, focal and year-round audio recordings, and a large-scale playback experiment. We show that zebra finches frequently sing while in groups, that breeding status influences song output at the nest and at aggregations, that they sing year round, and that they predominantly sing when with their partner, suggesting that the song remains important after pair formation. Our playback reveals that song actively features in social aggregations as it attracts conspecifics. Together, these results demonstrate that birdsong has important functions beyond territoriality and mate choice, illustrating its importance in coordination and cohesion of social units within larger societies.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, the Netherlands.
| | - Laura Verkade
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, 205A Culloden Road Marsfield, Sydney, NSW 2109, Australia; School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
16
|
Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022; 16:976789. [PMID: 36466364 PMCID: PMC9712726 DOI: 10.3389/fncir.2022.976789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vocal communication is used across extant vertebrates, is evolutionarily ancient, and been maintained, in many lineages. Here I review the neural circuit architectures that support intraspecific acoustic signaling in representative anuran, mammalian and avian species as well as two invertebrates, fruit flies and Hawaiian crickets. I focus on hindbrain motor control motifs and their ties to respiratory circuits, expression of receptors for gonadal steroids in motor, sensory, and limbic neurons as well as divergent modalities that evoke vocal responses. Hindbrain and limbic participants in acoustic communication are highly conserved, while forebrain participants have diverged between anurans and mammals, as well as songbirds and rodents. I discuss the roles of natural and sexual selection in driving speciation, as well as exaptation of circuit elements with ancestral roles in respiration, for producing sounds and driving rhythmic vocal features. Recent technical advances in whole brain fMRI across species will enable real time imaging of acoustic signaling partners, tying auditory perception to vocal production.
Collapse
|
17
|
Price JJ, Willson MT, Pare RW. Loss of complex female song but not duetting in the ancestors of Carolina wrens. Ethology 2022. [DOI: 10.1111/eth.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- J. Jordan Price
- Department of Biology St. Mary's College of Maryland St. Mary's City Maryland USA
| | - Mira T. Willson
- Department of Biology St. Mary's College of Maryland St. Mary's City Maryland USA
| | - Rustin W. Pare
- Department of Biology St. Mary's College of Maryland St. Mary's City Maryland USA
| |
Collapse
|
18
|
Leitão AV, Mulder RA, Hall ML. Song functions for joint territory defence and within-pair communication in female and male lovely fairy-wrens. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
19
|
Cognitive control of song production by humpback whales. Anim Cogn 2022; 25:1133-1149. [PMID: 36058997 DOI: 10.1007/s10071-022-01675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
Singing humpback whales are highly versatile vocalizers, producing complex sequences of sounds that they vary throughout adulthood. Past analyses of humpback whale song have emphasized yearly variations in structural features of songs made collectively by singers within a population with comparatively little attention given to the ways that individual singers vary consecutive songs. As a result, many researchers describe singing by humpback whales as a process in which singers produce sequences of repeating sound patterns. Here, we show that such characterizations misrepresent the degree to which humpback whales flexibly and dynamically control the production of sounds and sound patterns within song sessions. Singers recorded off the coast of Hawaii continuously morphed units along multiple acoustic dimensions, with the degree and direction of morphing varying across parallel streams of successive units. Individual singers also produced multiple phrase variants (structurally similar, but acoustically distinctive sequences) within song sessions. The precision with which individual singers maintained some acoustic properties of phrases and morphing trajectories while flexibly changing others suggests that singing humpback whales actively select and adjust acoustic elements of their songs in real time rather than simply repeating stereotyped sound patterns within song sessions.
Collapse
|
20
|
Xing J, Sainburg T, Taylor H, Gentner TQ. Syntactic modulation of rhythm in Australian pied butcherbird song. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220704. [PMID: 36177196 PMCID: PMC9515642 DOI: 10.1098/rsos.220704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 05/04/2023]
Abstract
The acoustic structure of birdsong is spectrally and temporally complex. Temporal complexity is often investigated in a syntactic framework focusing on the statistical features of symbolic song sequences. Alternatively, temporal patterns can be investigated in a rhythmic framework that focuses on the relative timing between song elements. Here, we investigate the merits of combining both frameworks by integrating syntactic and rhythmic analyses of Australian pied butcherbird (Cracticus nigrogularis) songs, which exhibit organized syntax and diverse rhythms. We show that rhythms of the pied butcherbird song bouts in our sample are categorically organized and predictable by the song's first-order sequential syntax. These song rhythms remain categorically distributed and strongly associated with the first-order sequential syntax even after controlling for variance in note length, suggesting that the silent intervals between notes induce a rhythmic structure on note sequences. We discuss the implication of syntactic-rhythmic relations as a relevant feature of song complexity with respect to signals such as human speech and music, and advocate for a broader conception of song complexity that takes into account syntax, rhythm, and their interaction with other acoustic and perceptual features.
Collapse
Affiliation(s)
- Jeffrey Xing
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Tim Sainburg
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Hollis Taylor
- Sydney Conservatorium of Music, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Q. Gentner
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Xing J, Sainburg T, Taylor H, Gentner TQ. Syntactic modulation of rhythm in Australian pied butcherbird song. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220704. [PMID: 36177196 DOI: 10.6084/m9.figshare.c.6197494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 05/21/2023]
Abstract
The acoustic structure of birdsong is spectrally and temporally complex. Temporal complexity is often investigated in a syntactic framework focusing on the statistical features of symbolic song sequences. Alternatively, temporal patterns can be investigated in a rhythmic framework that focuses on the relative timing between song elements. Here, we investigate the merits of combining both frameworks by integrating syntactic and rhythmic analyses of Australian pied butcherbird (Cracticus nigrogularis) songs, which exhibit organized syntax and diverse rhythms. We show that rhythms of the pied butcherbird song bouts in our sample are categorically organized and predictable by the song's first-order sequential syntax. These song rhythms remain categorically distributed and strongly associated with the first-order sequential syntax even after controlling for variance in note length, suggesting that the silent intervals between notes induce a rhythmic structure on note sequences. We discuss the implication of syntactic-rhythmic relations as a relevant feature of song complexity with respect to signals such as human speech and music, and advocate for a broader conception of song complexity that takes into account syntax, rhythm, and their interaction with other acoustic and perceptual features.
Collapse
Affiliation(s)
- Jeffrey Xing
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Tim Sainburg
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Hollis Taylor
- Sydney Conservatorium of Music, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Q Gentner
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Prior NH, Bentz EJ, Ophir AG. Reciprocal processes of sensory perception and social bonding: an integrated social-sensory framework of social behavior. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12781. [PMID: 34905293 PMCID: PMC9744507 DOI: 10.1111/gbb.12781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Organisms filter the complexity of natural stimuli through their individual sensory and perceptual systems. Such perceptual filtering is particularly important for social stimuli. A shared "social umwelt" allows individuals to respond appropriately to the expected diversity of cues and signals during social interactions. In this way, the behavioral and neurobiological mechanisms of sociality and social bonding cannot be disentangled from perceptual mechanisms and sensory processing. While a degree of embeddedness between social and sensory processes is clear, our dominant theoretical frameworks favor treating the social and sensory processes as distinct. An integrated social-sensory framework has the potential to greatly expand our understanding of the mechanisms underlying individual variation in social bonding and sociality more broadly. Here we leverage what is known about sensory processing and pair bonding in two common study systems with significant species differences in their umwelt (rodent chemosensation and avian acoustic communication). We primarily highlight that (1) communication is essential for pair bond formation and maintenance, (2) the neural circuits underlying perception, communication and social bonding are integrated, and (3) candidate neuromodulatory mechanisms that regulate pair bonding also impact communication and perception. Finally, we propose approaches and frameworks that more fully integrate sensory processing, communication, and social bonding across levels of analysis: behavioral, neurobiological, and genomic. This perspective raises two key questions: (1) how is social bonding shaped by differences in sensory processing?, and (2) to what extent is sensory processing and the saliency of signals shaped by social interactions and emerging relationships?
Collapse
Affiliation(s)
- Nora H. Prior
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Ehren J. Bentz
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|