1
|
Lin W, Yan Y, Huang Q, Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biologics 2024; 18:61-78. [PMID: 38318098 PMCID: PMC10839028 DOI: 10.2147/btt.s436629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
The p53 tumor suppressor protein plays an important role in physiological and pathological processes. MDM2 and its homolog MDMX are the most important negative regulators of p53. Many studies have shown that MDMX promotes the growth of cancer cells by influencing the regulation of the downstream target gene of tumor suppressor p53. Studies have found that inhibiting the MDMX-p53 interaction can effectively restore the tumor suppressor activity of p53. MDMX has growth-promoting activities without p53 or in the presence of mutant p53. Therefore, it is extremely important to study the function of MDMX in tumorigenesis, progression and prognosis. This article mainly reviews the current research progress and mechanism on MDMX function, summarizes known MDMX inhibitors and provides new ideas for the development of more specific and effective MDMX inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Wu Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
2
|
MDM4: What do we know about the association between its polymorphisms and cancer? MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:61. [PMID: 36566308 DOI: 10.1007/s12032-022-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Collapse
|
3
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
4
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
5
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
6
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
7
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Assi R, Gur HD, Loghavi S, Konoplev SN, Konopleva M, Daver N, Tashakori M, Kadia T, Routbort M, Salem A, Kanagal-Shamanna R, Quesada A, Jabbour EJ, Kornblau SM, Medeiros LJ, Kantarjian H, Khoury JD. P53 protein overexpression in de novo acute myeloid leukemia patients with normal diploid karyotype correlates with FLT3 internal tandem duplication and worse relapse-free survival. Am J Hematol 2018; 93:1376-1383. [PMID: 30117185 DOI: 10.1002/ajh.25255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/30/2022]
Abstract
Although ~50% of acute myeloid leukemia (AML) patients have a normal diploid karyotype by conventional cytogenetics at diagnosis, this patient subset has a variable disease course and outcome. Aberrant overexpression of the p53 protein is usually associated with TP53 alterations and a complex karyotype, but the prevalence and impact of p53 overexpression in AML with diploid cytogenetics is unknown. We examined 100 newly diagnosed AML patients to evaluate the impact of p53 expression status quantified in bone marrow core biopsy samples using immunohistochemistry and computer-assisted image analysis. A total of 24 patients had p53 overexpression defined as 3+ staining intensity in ≥5% of cells; this finding correlated with lower platelet counts (P = .002), absence of CD34 expression in blasts (P = .009), higher bone marrow blast counts (P = .04), and a higher frequency of FLT3 internal tandem duplication (P = .007). Overexpression of p53 independently predicted for shorter leukemia-free survival in patients who underwent allogeneic stem cell transplantation by univariate (P = .021) and multivariate analyses (P = .004). There was no correlation between MDM2 and p53 protein expression in this cohort. We conclude that p53 expression evaluated by immunohistochemistry in bone marrow biopsy specimens at the time of AML diagnosis may indicate distinct clinical characteristics in patients with normal diploid cytogenetics and is a potentially valuable tool that can enhance risk-stratification.
Collapse
Affiliation(s)
- Rita Assi
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Hatice D. Gur
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Sanam Loghavi
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Sergej N. Konoplev
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Marina Konopleva
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Naval Daver
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Mehrnoosh Tashakori
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Tapan Kadia
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Mark Routbort
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Alireza Salem
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Andres Quesada
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Elias J. Jabbour
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Steven M. Kornblau
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - L. Jeffrey Medeiros
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Hagop Kantarjian
- Departments of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Joseph D. Khoury
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
9
|
Pant V, Larsson CA, Aryal N, Xiong S, You MJ, Quintas-Cardama A, Lozano G. Tumorigenesis promotes Mdm4-S overexpression. Oncotarget 2018; 8:25837-25847. [PMID: 28460439 PMCID: PMC5432220 DOI: 10.18632/oncotarget.15552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
Disruption of the p53 tumor suppressor pathway is a primary cause of tumorigenesis. In addition to mutation of the p53 gene itself, overexpression of major negative regulators of p53, MDM2 and MDM4, also act as drivers for tumor development. Recent studies suggest that expression of splice variants of Mdm2 and Mdm4 may be similarly involved in tumor development. In particular, multiple studies show that expression of a splice variant of MDM4, MDM4-S correlates with tumor aggressiveness and can be used as a prognostic marker in different tumor types. However, in the absence of prospective studies, it is not clear whether expression of MDM4-S in itself is oncogenic or is simply an outcome of tumorigenesis. Here we have examined the role of Mdm4-S in tumor development in a transgenic mouse model. Our results suggest that splicing of Mdm4 does not promote tumor development and does not cooperate with other oncogenic insults to alter tumor latency or aggressiveness. We conclude that Mdm4-S overexpression is a consequence of splicing defects in tumor cells rather than a cause of tumor evolution.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Connie A Larsson
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Neeraj Aryal
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Shunbin Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - M James You
- Department of Hematopathology, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | - Guillermina Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
10
|
Valianatos G, Valcikova B, Growkova K, Verlande A, Mlcochova J, Radova L, Stetkova M, Vyhnakova M, Slaby O, Uldrijan S. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein. PLoS One 2017; 12:e0185801. [PMID: 28973015 PMCID: PMC5626491 DOI: 10.1371/journal.pone.0185801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/19/2017] [Indexed: 01/28/2023] Open
Abstract
MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing MdmX oncoprotein and that p53 activation might contribute to the previously reported activity of enoxacin towards human cancer cells.
Collapse
Affiliation(s)
- Georgios Valianatos
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Barbora Valcikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Growkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Amandine Verlande
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jitka Mlcochova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Monika Stetkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Vyhnakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
11
|
Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol 2017; 10:133. [PMID: 28673313 PMCID: PMC5496368 DOI: 10.1186/s13045-017-0500-5] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
The two murine double minute (MDM) family members MDM2 and MDMX are at the center of an intense clinical assessment as molecular target for the management of cancer. Indeed, the two proteins act as regulators of P53, a well-known key controller of the cell cycle regulation and cell proliferation that, when altered, plays a direct role on cancer development and progression. Several evidence demonstrated that functional aberrations of P53 in tumors are in most cases the consequence of alterations on the MDM2 and MDMX regulatory proteins, in particular in patients with hematological malignancies where TP53 shows a relatively low frequency of mutation while MDM2 and MDMX are frequently found amplified/overexpressed. The pharmacological targeting of these two P53-regulators in order to restore or increase P53 expression and activity represents therefore a strategy for cancer therapy. From the discovery of the Nutlins in 2004, several compounds have been developed and reported with the ability of targeting the P53-MDM2/X axis by inhibiting MDM2 and/or MDMX. From natural compounds up to small molecules and stapled peptides, these MDM2/X pharmacological inhibitors have been extensively studied, revealing different biological features and different rate of efficacy when tested in in vitro and in vivo experimental tumor models. The data/evidence coming from the preclinical experimentation have allowed the identification of the most promising molecules and the setting of clinical studies for their evaluation as monotherapy or in therapeutic combination with conventional chemotherapy or with innovative therapeutic protocols in different tumor settings. Preliminary results have been recently published reporting data about safety, tolerability, potential side effects, and efficacy of such therapeutic approaches. In this light, the aim of this review is to give an updated overview about the state of the art of the clinical evaluation of MDM2/X inhibitor compounds with a special attention to hematological malignancies and to the potential for the management of pediatric cancers.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|
12
|
Xu C, Zhu J, Fu W, Liang Z, Song S, Zhao Y, Lyu L, Zhang A, He J, Duan P. MDM4 rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget 2016; 7:71718-71726. [PMID: 27687591 PMCID: PMC5342115 DOI: 10.18632/oncotarget.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mouse double minute 4 (MDM4) is a p53-interacting oncoprotein that plays an important role in the p53 tumor suppressor pathway. The common rs4245739 A > C polymorphism creates a miR-191 binding site in the MDM4 gene transcript. Numerous studies have investigated the association between this MDM4 polymorphism and cancer risk, but have failed to reach a definitive conclusion. To address this issue, we conducted a meta-analysis by selecting eligible studies from MEDLINE, EMBASE, and Chinese Biomedical databases. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. We also performed genotype-based mRNA expression analysis using data from 270 individuals retrieved from public datasets. A total of 15 studies with 19796 cases and 49681 controls were included in the final meta-analysis. The pooled results revealed that the MDM4 rs4245739C allele is associated with a decreased cancer risk in the heterozygous (AC vs. AA: OR = 0.82, 95% CI = 0.73-0.93), dominant (AC/CC vs. AA: OR = 0.82, 95% CI = 0.72-0.93), and allele contrast models (C vs. A: OR = 0.84, 95% CI = 0.76-0.94). The association was more prominent in Asians and population-based studies. We also found that the rs4245739C allele was associated with decreased MDM4 mRNA expression, especially for Caucasians. Thus the MDM4 rs4245739 A > C polymorphism appears to be associated with decreased cancer risk. These findings would be strengthened by new studies with larger sample sizes and encompassing additional ethnicities.
Collapse
Affiliation(s)
- Chaoyi Xu
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jinhong Zhu
- 3 Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- 2 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zongwen Liang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shujie Song
- 4 Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuan Zhao
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Lihua Lyu
- 4 Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Anqi Zhang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- 2 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ping Duan
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
13
|
Gene Expression Profiling and Pathway Network Analysis Predicts a Novel Antitumor Function for a Botanical-Derived Drug, PG2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:917345. [PMID: 25972907 PMCID: PMC4417974 DOI: 10.1155/2015/917345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/16/2015] [Accepted: 03/11/2015] [Indexed: 12/20/2022]
Abstract
PG2 is a botanical drug that is mostly composed of Astragalus polysaccharides (APS). Its role in hematopoiesis and relieving cancer-related fatigue has recently been clinically investigated in cancer patients. However, systematic analyses of its functions are still limited. The aim of this study was to use microarray-based expression profiling to evaluate the quality and consistency of PG2 from three different product batches and to study biological mechanisms of PG2. An integrative molecular analysis approach has been designed to examine significant PG2-induced signatures in HL-60 leukemia cells. A quantitative analysis of gene expression signatures was conducted for PG2 by hierarchical clustering of correlation coefficients. The results showed that PG2 product batches were consistent and of high quality. These batches were also functionally equivalent to each other with regard to how they modulated the immune and hematopoietic systems. Within the PG2 signature, there were five genes associated with doxorubicin: IL-8, MDM4, BCL2, PRODH2, and BIRC5. Moreover, the combination of PG2 and doxorubicin had a synergistic effect on induced cell death in HL-60 cells. Together with the bioinformatics-based approach, gene expression profiling provided a quantitative measurement for the quality and consistency of herbal medicines and revealed new roles (e.g., immune modulation) for PG2 in cancer treatment.
Collapse
|
14
|
Li L, Tan Y, Chen X, Xu Z, Yang S, Ren F, Guo H, Wang X, Chen Y, Li G, Wang H. MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS One 2014; 9:e113088. [PMID: 25405759 PMCID: PMC4236138 DOI: 10.1371/journal.pone.0113088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia patients with complex karyotype (CK-AML) account for approximately 10–15% of adult AML cases, and are often associated with a poor prognosis. Except for about 70% of CK-AML patients with biallelic inactivation of TP53, the leukemogenic mechanism in the nearly 30% of CK-AML patients with wild-type TP53 has remained elusive. In this study, 15 cases with complex karyotype and wild-type TP53 were screened out of 140 de novo AML patients and the expression levels of MDM4, a main negative regulator of p53-signaling pathway, were detected. We ruled out mutations in genes associated with a poor prognosis of CK-AML, including RUNX1 or FLT3-ITD. The mRNA expression levels of the full-length of MDM4 (MDM4FL) and short isoform MDM4 (MDM4S) were elevated in CK-AML relative to normal karyotype AML (NK-AML) patients. We also explored the impact of MDM4 overexpression on the cell cycle, cell proliferation and the spindle checkpoint of HepG2 cells, which is a human cancer cell line with normal MDM4 and TP53 expression. The mitotic index and the expression of p21, BubR1 and Securin were all reduced following Nocodazole treatment. Moreover, karyotype analysis showed that MDM4 overexpression might lead to aneuploidy or polyploidy. These results suggest that MDM4 overexpression is related to CK-AML with wild-type TP53 and might play a pathogenic role by inhibiting p53-signal pathway.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
- Department of biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiuhua Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zhifang Xu
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Siyao Yang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Fanggang Ren
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Haixiu Guo
- Department of biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaojuan Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yi Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Guoxia Li
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
- * E-mail:
| |
Collapse
|
15
|
Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology. Front Genet 2014; 5:99. [PMID: 24795757 PMCID: PMC4005961 DOI: 10.3389/fgene.2014.00099] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022] Open
Abstract
Specific microRNAs have emerged as key players in disease biology by playing crucial role in disease development and progression. This review draws attention to one such microRNA, miR-191 that has been recently reported to be abnormally expressed in several cancers (>20) and various other diseases like diabetes-type 2, Crohn' s, pulmonary hypertension, and Alzheimer' s. It regulates important cellular processes such as cell proliferation, differentiation, apoptosis, and migration by targeting important transcription factors, chromatin remodelers, and cell cycle associated genes. Several studies have demonstrated it to be an excellent biomarker for cancer diagnosis and prognosis leading to two patents already in its kitty. In this first review we summarize the current knowledge of the regulation, functions and targets of miR-191 and discuss its potential as a promising disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Neha Nagpal
- RNA-II Lab, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi, India
| | - Ritu Kulshreshtha
- RNA-II Lab, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi, India
| |
Collapse
|
16
|
Eischen CM, Lozano G. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat 2014; 35:728-37. [PMID: 24488925 DOI: 10.1002/humu.22524] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
The potent transcriptional activity of p53 (Trp53, TP53) must be kept in check for normal cell growth and survival. Tumors, which drastically deviate from these parameters, have evolved multiple mechanisms to inactivate TP53, the most prevalent of which is the emergence of TP53 missense mutations, some of which have gain-of-function activities. Another important mechanism by which tumors bypass TP53 functions is via increased levels of two TP53 inhibitors, MDM2, and MDM4. Studies in humans and in mice reveal the complexity of TP53 regulation and the exquisite sensitivity of this pathway to small changes in regulation. Here, we summarize the factors that impinge on TP53 activity and thus cell death/arrest or tumor development.
Collapse
Affiliation(s)
- Christine M Eischen
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee
| | | |
Collapse
|
17
|
Abstract
MDM2 and MDMX are homologous proteins that bind to p53 and regulate its activity. Both contain three folded domains and ~70% intrinsically disordered regions. Previous detailed structural and biophysical studies have concentrated on the isolated folded domains. The N-terminal domains of both exhibit high affinity for the disordered N-terminal of p53 (p53TAD) and inhibit its transactivation function. Here, we have studied full-length MDMX and found a ~100-fold weaker affinity for p53TAD than does its isolated N-terminal domain. We found from NMR spectroscopy and binding studies that MDMX (but not MDM2) contains a conserved, disordered self-inhibitory element that competes intramolecularly for binding with p53TAD. This motif, which we call the WWW element, is centered around residues Trp200 and Trp201. Deletion or mutation of the element increased binding affinity of MDMX to that of the isolated N-terminal domain level. The self-inhibition of MDMX implies a regulatory, allosteric mechanism of its activity. MDMX rests in a latent state in which its binding activity with p53TAD is masked by autoinhibition. Activation of MDMX would require binding to a regulatory protein. The inhibitory function of the WWW element may explain the oncogenic effects of an alternative splicing variant of MDMX that does not contain the WWW element and is found in some aggressive cancers.
Collapse
|
18
|
Wang C, Wang X. The role of TP53 network in the pathogenesis of chronic lymphocytic leukemia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1223-9. [PMID: 23826404 PMCID: PMC3693188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/11/2013] [Indexed: 06/02/2023]
Abstract
TP53 is one of the most important prognostic factors in chronic lymphocytic leukemia (CLL). Modulation of microRNAs by TP53 in CLL pathogenesis has been a hotspot. Besides, it has an intimate association with other cytogenetics and plays an important part in drug resistance of CLL. All above indicate an embedded TP53-centered network in CLL pathogenesis and prognosis. In this review, we focus on the TP53-centered network and its roles in the pathogenesis of CLL.
Collapse
MESH Headings
- Animals
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MicroRNAs/metabolism
- Mutation
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Cheng Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityNo. 324 Jingwu Road, Jinan, Shandong 250021, P. R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital affiliated to Shandong UniversityJinan, Shandong 250012, P. R. China
- Department of Diagnostics, Shandong University School of MedicineJinan, Shandong 250012, P. R. China
| |
Collapse
|
19
|
Liu L, Fan L, Fang C, Zou ZJ, Yang S, Zhang LN, Li JY, Xu W. S-MDM4 mRNA overexpression indicates a poor prognosis and marks a potential therapeutic target in chronic lymphocytic leukemia. Cancer Sci 2012; 103:2056-63. [PMID: 22937789 DOI: 10.1111/cas.12008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
The purpose of the present study was to investigate the prognostic significance of murine double minute 4 (MDM4) in chronic lymphocytic leukemia (CLL) and to characterize the role of MDM4 in the p53 pathway. Full-length MDM4 (FL-MDM4), a splicing variant of MDM4 (S-MDM4) and murine double minute 2 (MDM2) mRNA expressions were detected by quantitative PCR in 140 Chinese patients with CLL, and primary CLL cells were treated in vitro with either fludarabine or Nutlin-3 to explore the interaction between p53 status and MDM4 or MDM2 expression. A marked increase of FL-MDM4 and S-MDM4 expressions were observed in the CLL patients with p53 aberrations (deletion and/or mutation) (P = 0.024, P < 0.001). A high level of S-MDM4 mRNA expression was associated with short treatment free survival (TFS) (P = 0.004). FL-MDM4 expression was significantly decreased after fludarabine treatment (P = 0.001) but increased after Nutlin-3 treatment (P = 0.008) of primary CLL cells without p53 aberrations. Both S-MDM4 and MDM2 expressions were significantly increased after fludarabine treatment of CLL cells without p53 aberrations (P = 0.013 and P = 0.030). MDM2 overexpression also occurred in CLL cells with p53 wild type after Nutlin-3 treatment (P = 0.018). FL-MDM4 and S-MDM4 overexpression are indicators of p53 aberrations in CLL patients, suggesting that those patients have a poor prognosis. FL-MDM4 inhibitory effects on p53 can be removed by MDM2-p53 and saved by Nutlin-3.
Collapse
Affiliation(s)
- Ling Liu
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|