1
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
4
|
Cui B, Fan X, Zhou D, He L, Li Y, Li D, Lin H. CSF1R methylation is a key regulatory mechanism of tumor-associated macrophages in hepatocellular carcinoma. Oncol Lett 2020; 20:1835-1845. [PMID: 32724427 PMCID: PMC7377184 DOI: 10.3892/ol.2020.11726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are important in tumor microenvironments and are closely associated with cancer occurrence, metastasis and progression. Colony stimulating factor 1 receptor (CSF1R) serves a crucial role in TAM formation. Whether CSF1R expression is regulated by DNA methylation in hepatocellular carcinoma (HCC) has not been fully elucidated. In the current study, HCC and adjacent non-cancerous tissue (ANT) samples were collected from 160 patients with HCC. CSF1R methylation levels were analyzed using a Mass ARRAY Analyzer to establish the potential impact of CSF1R methylation alternations on HCC clinicopathological characteristics. The mean methylation level of the CSF1R promoter (chr 5:149492491-149492958) was demonstrated to be significantly higher in ANTs compared with HCC tissues (65.3±7.5% vs. 57.3±14.4%, respectively; P<0.0001). CSF1R also exhibited decreased expression in HCC tissues compared with ANTs (P=0.0026). However, CSF1R expression was negatively correlated with CSF1R methylation levels in ANTs (r>0.4; P<0.0001). Further analysis indicated that patients with diabetes exhibited lower methylation levels in ANTs compared with HCC tissues (P=0.0062). Furthermore, CSF1R hypomethylation in ANTs was associated with a larger number of tumors (P=0.0332), larger tumor size (P=0.0494) and higher tumor grade (P=0.0244). Therefore, methylation alternation of the CSF1R promoter region analyzed in the present study was a key regulatory mechanism on CSF1R expression and ANT hypomethylation indicated poor clinicopathological characteristics of HCC. CSF1R may be a potential immunological therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Cui
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
5
|
Correction. Cancer Sci 2020; 111:1863. [PMID: 32412182 PMCID: PMC7226190 DOI: 10.1111/cas.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Takahashi M, Fujii G, Hamoya T, Kurokawa Y, Matsuzawa Y, Miki K, Komiya M, Narita T, Mutoh M. Activation of NF-E2 p45-related factor-2 transcription and inhibition of intestinal tumor development by AHCC, a standardized extract of cultured Lentinula edodes mycelia. J Clin Biochem Nutr 2019; 65:203-208. [PMID: 31777421 PMCID: PMC6877408 DOI: 10.3164/jcbn.19-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/20/2019] [Indexed: 01/04/2023] Open
Abstract
It has been reported that activation of NF-E2 p45-related factor-2 (NRF2), a transcription factor, induces a variety of antioxidant enzymes, and plays an important role in preventing carcinogenesis. AHCC is a standardized extract of cultured Lentinula edodes mycelia and it has been demonstrated to improve cancer. However, the effects of AHCC on NRF2 have not been examined, and the effects on intestinal adenoma development are not yet fully understood. We first investigated the effects of AHCC (1–5 mg/ml) on NRF2 activity in human colon cancer cell lines by a luciferase reporter gene assay, and found NRF2 transcriptional activities were increased ~12.6-fold. In addition, AHCC dose-dependently increased HO-1 and NQO-1 mRNA levels, and decreased interleukine-6 mRNA levels. Next, we administered 1,000 ppm AHCC for 8 weeks in the diet of Apc mutant Min mice, and found that AHCC significantly reduced the total number of intestinal polyps to 57.7% and to 67.6% of the control value in male and female Min mice, respectively, with suppression of interleukine-6 in the polyp part. These data suggest that AHCC possesses an ability to suppress cellular oxidative stress through activation of NRF2, thereby lowering intestinal polyp development in Min mice.
Collapse
Affiliation(s)
- Maiko Takahashi
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Gen Fujii
- Central Radioisotope Division, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takahiro Hamoya
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yurie Kurokawa
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yui Matsuzawa
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kohei Miki
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masami Komiya
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takumi Narita
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Michihiro Mutoh
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.,Division of Carcinogenesis and Cancer Prevention, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
7
|
Takahashi M, Hori M, Ishigamori R, Mutoh M, Imai T, Nakagama H. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci 2018; 109:3013-3023. [PMID: 30099827 PMCID: PMC6172058 DOI: 10.1111/cas.13766] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and aging are associated with pancreatic cancer risk, but the mechanisms of pancreatic cancer development caused by these factors are not clearly understood. Syrian golden hamsters are susceptible to N‐nitrosobis(2‐oxopropyl)amine (BOP)‐induced pancreatic carcinogenesis. Aging, BOP treatment and/or a high‐fat diet cause severe and scattered fatty infiltration (FI) of the pancreas with abnormal adipokine production and promote pancreatic ductal adenocarcinoma (PDAC) development. The KK‐Ay mouse, a T2DM model, also develops severe and scattered FI of the pancreas. Treatment with BOP induced significantly higher cell proliferation in the pancreatic ducts of KK‐Ay mice, but not in those of ICR and C57BL/6J mice, both of which are characterized by an absence of scattered FI. Thus, we hypothesized that severely scattered FI may be involved in the susceptibility to PDAC development. Indeed, severe pancreatic FI, or fatty pancreas, is observed in humans and is associated with age, body mass index (BMI) and DM, which are risk factors for pancreatic cancer. We analyzed the degree of FI in the non‐cancerous parts of PDAC and non‐PDAC patients who had undergone pancreatoduodenectomy by histopathology and demonstrated that the degree of pancreatic FI in PDAC cases is significantly higher than that in non‐PDAC controls. Moreover, the association with PDAC is positive, even after adjusting for BMI and the prevalence of DM. Accumulating evidence suggests that pancreatic FI is involved in PDAC development in animals and humans, and further investigations to clarify the genetic and environmental factors that cause pancreatic FI are warranted.
Collapse
Affiliation(s)
- Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Rikako Ishigamori
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|
8
|
Hori M, Mutoh M, Ishigamori R, Imai T, Takahashi M. Activated Ductal Proliferation Induced by N-Nitroso bis (2-oxopropyl)amine in Fat-infiltrated Pancreas of KK- Ay Mice. In Vivo 2018; 32:499-505. [PMID: 29695552 PMCID: PMC6000783 DOI: 10.21873/invivo.11267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Our aim was to investigate whether tissue with fatty infiltration within the lobes of the pancreas (scattered FI) is sensitive to carcinogen-induced pancreatic ductal proliferation. MATERIALS AND METHODS Seven-week-old female C57BL/6J, C57BL/6J-Ay, KK-Ay, and ICR mice were subcutaneously treated with N-nitrosobis(2-oxopropyl) amine at a dose of 80 mg/kg body weight, and the differences in damage-induced cell proliferation and their biochemical data were compared 2 days after. RESULTS Scattered FI in the pancreas was obvious only in KK-Ay mice, which have high serum lipid, leptin and insulin levels, and cell proliferation both in pancreatic and common bile ducts was enhanced only in KK-Ay mice by the carcinogen treatment. CONCLUSION Scattered FI in the pancreas per se can be an important factor for carcinogenesis. The genetic background causing scattered FI of the pancreas should be further investigated.
Collapse
Affiliation(s)
- Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Rikako Ishigamori
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
9
|
Tanaka T, Kawabata K, Sugie S. 4-Nitroquinoline 1-Oxide-Induced Tongue and Esophagus Carcinogenesis in Obese and Diabetic TSOD Mice. World J Oncol 2017; 8:97-104. [PMID: 29147443 PMCID: PMC5650005 DOI: 10.14740/wjon1038w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background Obesity and diabetes mellitus are associated with lifestyle-related carcinogenesis. They are also risk factors of esophageal adenocarcinoma, but there are only a few reports on association between obesity/diabetes and development of squamous cell carcinoma in the oral cavity and esophagus. In this study, we therefore aimed to determine whether obesity and diabetes affect oral and esophageal carcinogenesis using model mice of obesity and diabetes, the Tsumura Suzuki obese diabetes (TSOD) and Tsumura Suzuki non-obesity (TSNO) control mice, which were treated with 4-nitroquinoline 1-oxide (4-NQO) to produce tongue and esophageal carcinomas. Methods We used 28 each of the male TSOD and TSNO mice of 8 weeks of age. They were divided into the 4-NQO-treated group (n = 20) and untreated group (n = 8). 4-NQO was administered to mice in drinking water at a dose level of 20 ppm for 8 weeks. The untreated group was given distilled water without 4-NQO. At 28 experimental weeks, histopathological examination was performed on all organs including tongue and esophagus. We performed analysis of histopathology of all organs which included buccal capsule (a tongue)/esophagus after an experiment start in 28 weeks. Fasting plasma glucose (FPG) and lipid parameters including total cholesterol (T-Cho), triglyceride (TG), high-density lipoprotein (HDL)-cholesterol and low-density lipoprotein (LDL)-cholesterol were measured and all these parameters were compared between the two genotypes. Also, mRNA expression of eight cytokines including interleukin (IL)-1β, IL-6, IL-17, interferon (IFN)-γ, keratinocyte-derived cytokine (KC), macrophage inflammatory protein (MIP)-1α, MIP-2, and tumor necrosis factor (TNF)-α in the esophageal mucosa was assayed. Results 4-NQO treatment produced proliferative squamous cell lesions (dysplasia, papilloma and carcinoma) in the tongue and esophagus of both the TSOD and TSNO mice. The incidence and multiplicity of tongue tumors were 30% and 0.45 ± 0.83 in the TSOD mice and 30% and 0.40 ± 0.68 in the TSNO mice. The incidence and multiplicity of esophageal tumors were 70% and 2.25 ± 2.29 in the TSOD mice and 30% and 0.60 ± 1.14 (P < 0.01) in the TSNO mice. Conclusion Our findings indicate that the obese and diabetic TSOD mice were susceptible to 4-NQO-induced esophageal carcinogenesis, suggesting risk factors of obese and diabetes for esophageal squamous cell carcinoma. Additionally, the TSOD mice were useful as esophagus carcinogenic model. Our study first reported that 4-NQO induced esophageal cancer in mice.
Collapse
Affiliation(s)
- Takuji Tanaka
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu City, Gifu 500-8513, Japan.,Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Gifu 501-1194, Japan
| | - Kunihiro Kawabata
- Palliative Care Center, Tokai Central Hospital, 4-6-2 Sohara-Higashijima-cho, Kakamigahara 504-8601, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Murakami Memorial Hospital, Asahi University, School of Dentistry, 3-23 Hashimoto-cho, Gifu City, Gifu 500-8523, Japan
| |
Collapse
|
10
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation. PLoS One 2014; 9:e100562. [DOI: https:/doi.org/10.1371/journal.pone.0100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
11
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One 2014; 9:e100562. [PMID: 24971882 PMCID: PMC4074064 DOI: 10.1371/journal.pone.0100562] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/29/2014] [Indexed: 12/18/2022] Open
Abstract
Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv–v): metformin (100 or 200 mg/kg) and (vi–vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.
Collapse
MESH Headings
- 1,2-Dimethylhydrazine/toxicity
- Animals
- Antigens, CD34/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/toxicity
- Cell Proliferation/drug effects
- Colon/drug effects
- Colon/metabolism
- Colon/pathology
- Colonic Neoplasms/chemically induced
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/mortality
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat
- Drug Therapy, Combination
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin-Like Growth Factor I/analysis
- Male
- Metformin/pharmacology
- Metformin/therapeutic use
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Organoplatinum Compounds/therapeutic use
- Organoplatinum Compounds/toxicity
- Oxaliplatin
- Receptor, IGF Type 1/metabolism
- Survival Rate
- Vascular Endothelial Growth Factor A/blood
Collapse
Affiliation(s)
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- * E-mail:
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation. PLoS One 2014. [DOI: https://doi.org/10.1371/journal.pone.0100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Varshney S, Shankar K, Beg M, Balaramnavar VM, Mishra SK, Jagdale P, Srivastava S, Chhonker YS, Lakshmi V, Chaudhari BP, Bhatta RS, Saxena AK, Gaikwad AN. Rohitukine inhibits in vitro adipogenesis arresting mitotic clonal expansion and improves dyslipidemia in vivo. J Lipid Res 2014; 55:1019-32. [PMID: 24646949 DOI: 10.1194/jlr.m039925] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 12/18/2022] Open
Abstract
We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity.
Collapse
Affiliation(s)
- Salil Varshney
- Division of Pharmacology, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Kripa Shankar
- Division of Pharmacology, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Muheeb Beg
- Division of Pharmacology, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Vishal M Balaramnavar
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Sunil Kumar Mishra
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Pankaj Jagdale
- Regulatory Toxicology Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Shishir Srivastava
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Yashpal S Chhonker
- Pharmacokinetics and Metabolism Division, Council of Scientific & Industrial Research-Central Drug Research Institute, 10/1, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Vijai Lakshmi
- Department of Biochemistry, King George's Medical University, Chowk Area, Lucknow, Uttar Pradesh 226003, India
| | - Bhushan P Chaudhari
- Regulatory Toxicology Group, Council of Scientific & Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Rabi Shankar Bhatta
- Pharmacokinetics and Metabolism Division, Council of Scientific & Industrial Research-Central Drug Research Institute, 10/1, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Anil Kumar Saxena
- Medicinal and Process Chemistry Division, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, Council of Scientific & Industrial Research-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
14
|
Ito K, Ishigamori R, Mutoh M, Ohta T, Imai T, Takahashi M. Ay allele promotes azoxymethane-induced colorectal carcinogenesis by macrophage migration in hyperlipidemic/diabetic KK mice. Cancer Sci 2013; 104:835-43. [PMID: 23551905 PMCID: PMC7657178 DOI: 10.1111/cas.12162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 01/17/2023] Open
Abstract
The incidence of colorectal cancer has been increasing and is associated with obesity and diabetes. We have found that type 2 diabetes model KK-Ay/TaJcl (KK-Ay) mice develop tumors within a short period after treatment with azoxymethane (AOM). However, factors that contribute to the promotion of carcinogenesis have not been clarified. Therefore, we looked at the genetic background of KK-Ay, including two genetic characteristics of KK/TaJcl (KK) mice and C57BL/6J-Ham-Ay/+ (Ay) mice, compared with other non-obese and non-diabetic mouse strains C57BL/6J and ICR, and induced colorectal premalignant lesions, aberrant crypt foci (ACF), and tumors using AOM (150 μg/mouse/week for 4 weeks and 200 μg/mouse/week for 6 weeks, respectively). The mice with a diabetes feature, KK-Ay and KK, developed significantly more ACF, 67 and 61 per mouse, respectively, whereas ICR, Ay, and C57BL/6J mice developed 42, 24, and 18 ACF/mouse, respectively, at 17 weeks of age. Serum insulin and triglyceride levels in KK-Ay and KK mice were quite high compared with other non-diabetic mouse strains. Interestingly, KK-Ay mice developed more colorectal tumors (2.7 ± 2.3 tumor/mouse) than KK mice (1.2 ± 1.1 tumor/mouse) at 25 weeks of age, in spite of similar diabetic conditions. The colon cancers that developed in both KK-Ay and KK mice showed similar activation of β-catenin signaling. However, mRNA levels of inflammatory factors related to the activation of macrophages were significantly higher in colorectal cancer of KK-Ay mice than in KK. These data indicate that factors such as insulin resistance and dyslipidemia observed in obese and diabetic patients could be involved in susceptibility to colorectal carcinogenesis. In addition, increase of tumor-associated macrophages may play important roles in the stages of promotion of colorectal cancer.
Collapse
Affiliation(s)
- Kumiko Ito
- Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|