1
|
Yang T, Liu YL, Guo HL, Peng XF, Zhang B, Wang D, Yao HF, Zhang JF, Wang XY, Chen PC, Xu DP. Unveiling an anoikis-related risk model and the role of RAD9A in colon cancer. Int Immunopharmacol 2024; 140:112874. [PMID: 39116498 DOI: 10.1016/j.intimp.2024.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Colorectal cancer (CRC), specifically colon adenocarcinoma, is the third most prevalent and the second most lethal form of cancer. Anoikis is found to be specialized form of programmed cell death (PCD), which plays a pivotal role in tumor progression. This study aimed to investigate the role of the anoikis related genes (ARGs) in colon cancer. METHODS Consensus unsupervised clustering, differential expression analysis, tumor mutational burden analysis, and analysis of immune cell infiltration were utilized in the study. For the analysis of RNA sequences and clinical data of COAD patients, data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were obtained. A prognostic scoring system for overall survival (OS) prediction was developed using Cox regression and LASSO regression analysis. Furthermore, loss-of-function assay was utilized to explore the role of RAD9A played in the progression of colon cancer. RESULTS The prognostic value of a risk score composed of NTRK2, EPHA2, RAD9A, CDC25C, and SNAI1 genes was significant. Furthermore, these findings suggested potential mechanisms that may influence prognosis, supporting the development of individualized treatment plans and management of patient outcomes. Further experiments confirmed that RAD9A could promote proliferation and metastasis of colon cancer cells. These effects may be achieved by affecting the phosphorylation of AKT. CONCLUSION Differences in survival time and the tumor immune microenvironment (TIME) were observed between two gene clusters associated with ARGs. In addition, a prognostic risk model was established and confirmed as an independent risk factor. Furthermore, our data indicated that RAD9A promoted tumorigenicityby activating AKT in colon cancer.
Collapse
Affiliation(s)
- Ting Yang
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Yan-Li Liu
- Department of Gastroenterology, Jiading District Central Hospital Affiliated Shanghai University of Medicine &Health Sciences, Shanghai 201800, PR China
| | - Hai-Long Guo
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Xiao-Fei Peng
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Bo Zhang
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Dong Wang
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Hong-Fei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jun-Feng Zhang
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Xiao-Yun Wang
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China.
| | - Peng-Cheng Chen
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China.
| | - Da-Peng Xu
- Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China.
| |
Collapse
|
2
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
3
|
Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed Pharmacother 2023; 158:114145. [PMID: 36586242 DOI: 10.1016/j.biopha.2022.114145] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The use of plant secondary metabolites has gained considerable attention among clinicians in the prevention and treatment of cancer. A secondary metabolite isolated mainly from the roots and rhizomes of Podophyllum species (Berberidaceae) is aryltetralin lignan - podophyllotoxin (PTOX). The purpose of this review is to discuss the therapeutic properties of PTOX as an important anticancer compound of natural origin. The relevant information regarding the antitumor mechanisms of podophyllotoxin and its derivatives were collected and analyzed from scientific databases. The results of the analysis showed PTOX exhibits potent cytotoxic activity; however, it cannot be used in its pure form due to its toxicity and generation of many side effects. Therefore, it practically remains clinically unusable. Currently, high effort is focused on attempts to synthesize analogs of PTOX that have better properties for therapeutic use e.g. etoposide (VP-16), teniposide, etopophos. PTOX derivatives are used as anticancer drugs which are showing additional immunosuppressive, antiviral, antioxidant, hypolipemic, and anti-inflammatory effects. In this review, attention is paid to the high potential of the usefulness of in vitro cultures of P. peltatum which can be a valuable source of lignans, including PTOX. In conclusion, the preclinical pharmacological studies in vitro and in vivo confirm the anticancer and chemotherapeutic potential of PTOX and its derivatives. In the future, clinical studies on human subjects are needed to certify the antitumor effects and the anticancer mechanisms to be certified and analyzed in more detail and to validate the experimental pharmacological preclinical studies.
Collapse
|
4
|
Jeon KH, Park S, Shin JH, Jung AR, Hwang SY, Seo SH, Jo H, Na Y, Kwon Y. Synthesis and evaluation of 7-(3-aminopropyloxy)-substituted flavone analogue as a topoisomerase IIα catalytic inhibitor and its sensitizing effect to enzalutamide in castration-resistant prostate cancer cells. Eur J Med Chem 2023; 246:114999. [PMID: 36493620 DOI: 10.1016/j.ejmech.2022.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Prostate cancer patients primarily receive androgen receptor (AR)-targeted drugs as a primary treatment option because prostate cancer is associated with highly activated AR signaling. AR amplification made prostate cancer cells viable under treatment of AR-targeted therapy, leading to castration resistance. AR amplification was more common in enzalutamide-resistant patients. As a strategy to overcome castration resistance and to improve the efficacy of enzalutamide, second-generation nonsteroidal antiandrogen drugs for castration-resistant prostate cancer (CRPC) including topoisomerase II (topo II) poisons such as etoposide and mitoxantrone, have been administered in combination with enzalutamide. In the present study, it was confirmed that amplification of topo IIα, but not I and IIβ, was directly and proportionally associated with poor clinical outcome of Prostate cancer. Among a novel series of newly designed and synthesized 7-(3-aminopropyloxy)-substituted flavone analogues, compound 6, the most potent derivative, was further characterized and identified as a topo IIα catalytic inhibitor that intercalates into DNA and binds to the DNA minor groove with better efficacy and less genotoxicity than etoposide, a topo II poison. Compound 6 showed remarkable efficacy in inhibiting AR-negative CRPC cell growth and sensitizing activity to enzalutamide in AR-positive CRPC cells, thus confirming the potential of topo IIα catalytic inhibitor to overcome resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Ah-Reum Jung
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seung Hee Seo
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Fan HY, Zhu ZL, Xian HC, Wang HF, Chen BJ, Tang YJ, Tang YL, Liang XH. Insight Into the Molecular Mechanism of Podophyllotoxin Derivatives as Anticancer Drugs. Front Cell Dev Biol 2021; 9:709075. [PMID: 34447752 PMCID: PMC8383743 DOI: 10.3389/fcell.2021.709075] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/22/2021] [Indexed: 02/05/2023] Open
Abstract
Podophyllotoxin (PTOX) is a biologically active compound derived from the podophyllum plant, and both it and its derivatives possess excellent antitumor activity. The PTOX derivatives etoposide (VP-16) and teniposide (VM-26) have been approved by the U.S. Food and Drug Administration (FDA) for cancer treatment, but are far from perfect. Hence, numerous PTOX derivatives have been developed to address the major limitations of PTOX, such as systemic toxicity, drug resistance, and low bioavailability. Regarding their anticancer mechanism, extensive studies have revealed that PTOX derivatives can induce cell cycle G2/M arrest and DNA/RNA breaks by targeting tubulin and topoisomerase II, respectively. However, few studies are dedicated to exploring the interactions between PTOX derivatives and downstream cancer-related signaling pathways, which is reasonably important for gaining insight into the role of PTOX. This review provides a comprehensive analysis of the role of PTOX derivatives in the biological behavior of tumors and potential molecular signaling pathways, aiming to help researchers design and develop better PTOX derivatives.
Collapse
Affiliation(s)
- Hua-yang Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Zhuo-li Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hong-chun Xian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hao-fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Bing-jun Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
6
|
Yang W, Yang L, Li F, Zhao Y, Liao X, Gao C, Yang J, Yang B. pH-sensitive β-cyclodextrin derivatives for the controlled release of Podophyllotoxin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: An update (2010-2020). Eur J Med Chem 2020; 208:112830. [PMID: 32992133 DOI: 10.1016/j.ejmech.2020.112830] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Podophyllotoxins and epipodophyllotoxins, possess excellent activity against both drug-sensitive and drug-resistant even multidrug-resistant cancer cells via inhibition of tubulin polymerization. Several podophyllotoxin/epipodophyllotoxin derivatives such as etoposide and teniposide have already been applied for cancer therapy, revealing their potential as putative anticancer drugs. Hybridization of podophyllotoxin/epipodophyllotoxin moiety with other anticancer pharmacophores is a promising strategy to develop novel drug candidates so as to overcome drug resistance and improve the specificity, and numerous of podophyllotoxin/epipodophyllotoxin hybrids exhibit excellent in vitro antiproliferative and in vivo anticancer potency. This review emphasizes the recent development of podophyllotoxin/epipodophyllotoxin hybrids with potential application for cancer therapy covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design as well as structure-activity relationships were also summarized.
Collapse
|
8
|
Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 2020; 12:149-172. [PMID: 32104547 PMCID: PMC7031145 DOI: 10.4251/wjgo.v12.i2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Caffeine is a purine alkaloid and is widely consumed in coffee, soda, tea, chocolate and energy drinks. To date, a growing number of studies have indicated that caffeine is associated with many diseases including colorectal cancer. Caffeine exerts its biological activity through binding to adenosine receptors, inhibiting phosphodiesterases, sensitizing calcium channels, antagonizing gamma-aminobutyric acid receptors and stimulating adrenal hormones. Some studies have indicated that caffeine can interact with signaling pathways such as transforming growth factor β, phosphoinositide-3-kinase/AKT/mammalian target of rapamycin and mitogen-activated protein kinase pathways through which caffeine can play an important role in colorectal cancer pathogenesis, metastasis and prognosis. Moreover, caffeine can act as a general antioxidant that protects cells from oxidative stress and also as a regulatory factor of the cell cycle that modulates the DNA repair system. Additionally, as for intestinal homeostasis, through the interaction with receptors and cytokines, caffeine can modulate the immune system mediating its effects on T lymphocytes, B lymphocytes, natural killer cells and macrophages. Furthermore, caffeine can not only directly inhibit species in the gut microbiome, such as Escherichia coli and Candida albicans but also can indirectly exert inhibition by increasing the effects of other antimicrobial drugs. This review summarizes the association between colorectal cancer and caffeine that is being currently studied.
Collapse
Affiliation(s)
- Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
9
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Wang S, Zhang Y, Chen M, Wang Y, Feng Y, Xu Z, Zhang D, Sun Y, Fu Z. Association of genetic variants in ATR-CHEK1 and ATM-CHEK2 pathway genes with risk of colorectal cancer in a Chinese population. Oncotarget 2018; 9:26616-26624. [PMID: 29928473 PMCID: PMC6003554 DOI: 10.18632/oncotarget.24299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The ATR-CHEK1 and ATM-CHEK2 pathway have been confirmed to be related with the DNA damage response (DDR). Many studies have reported that genetic variants in ATR/CHEK1 and ATM/CHEK2 are associated with cancer risk. However, the association between genetic variants in ATR-CHEK1, ATM-CHEK2 pathway genes and colorectal cancer susceptibility is still unknown. In this study, we aim to explore whether these variants are correlated with the risk of colorectal cancer in a Chinese population. METHODS A hospital-based case-control study, including 1,121 cases and 1,056 controls was conducted to evaluate the association between eight selected single nucleotide polymorphisms (SNPs) (rs35514263 in ATR; rs492510, rs558351 in CHKE1; rs189037 in ATM; rs2236141, rs5762748, rs2236142 and rs9620817 in CHEK2) in ATR-CHEK1 and ATM-CHEK2 pathways and the risk of colorectal cancer in a Chinese population by using TaqMan method. RESULTS Individuals with rs189037 A allele were found to have a significantly increased risk of colorectal cancer, compared to those carrying G allele [odds ratio(OR) = 1.23, 95% confidence interval (CI) = 1.02-1.47 in dominant model and OR= 1.14, 95%CI= 1.01-1.29 in additive model]. And this risk is more pronounced in elder people (>69), rectum, early stage and poorly grade. In addition, bioinformatic analysis showed that rs189037 may change the secondary structure. CONCLUSIONS Our results provide the evidence that rs189037 in ATM may increase the susceptibility of colorectal cancer in a Chinese population.
Collapse
Affiliation(s)
- Shijia Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziwei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongsheng Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Wu W, Hu Z, Wang F, Gu H, Jiang X, Xu J, Zhan X, Zheng D, Zhang Z. Mxi1-0 regulates the growth of human umbilical vein endothelial cells through extracellular signal-regulated kinase 1/2 (ERK1/2) and interleukin-8 (IL-8)-dependent pathways. PLoS One 2017; 12:e0178831. [PMID: 28575053 PMCID: PMC5456372 DOI: 10.1371/journal.pone.0178831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/28/2023] Open
Abstract
Mxi1 plays an important role in the regulation of cell proliferation. Mxi1-0, a Mxi1 isoform, has a different N-terminal amino acid sequence, intracellular location and expression profile from Mxi1. However, the precise role of Mxi1-0 in cell proliferation and the molecular mechanism underlying its function remain poorly understood. Here, we showed that Mxi1-0 suppression decreased the proliferation of human umbilical vein endothelial cells (HUVECs) along with cell accumulation in the G2/M phase. Mxi1-0 suppression also significantly decreased the expression and secretion of interleukin (IL-8). Neutralizing IL-8 in conditioned medium (CM) from Mxi1-0-overexpressed HUVECs significantly eliminated CM-induced proliferation of HUVECs. In addition, Mxi1-0 suppression significantly decreased the activity of MAP kinase ERK1/2. Treatment of HUVECs with U0126, an ERK1/2 signaling inhibitor, attenuated autocrine production of IL-8 induced by Mxi1-0 overexpression. On the other hand, Mxi1-0 overexpression-induced IL-8 increased the level of phosphorylated ERK1/2 in HUVECs, and such increasing was diminished in cells incubated with CM, which neutralized with anti-IL-8 antibody. Taken together, our results suggest that Mxi1-0 regulates the growth of HUVECs via the IL-8 and ERK1/2 pathways, which apparently reciprocally activate each other.
Collapse
Affiliation(s)
- Weiling Wu
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Hu
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Feng Wang
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Hao Gu
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
| | - Xiuqin Jiang
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jinjin Xu
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xi Zhan
- Center for Vascular and inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Datong Zheng
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
- * E-mail:
| | - Zhengdong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
| |
Collapse
|
12
|
Chalcone flavokawain B induces autophagic-cell death via reactive oxygen species-mediated signaling pathways in human gastric carcinoma and suppresses tumor growth in nude mice. Arch Toxicol 2017; 91:3341-3364. [DOI: 10.1007/s00204-017-1967-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
|
13
|
Zhang D, Zhang B, Zhou LX, Zhao J, Yan YY, Li YL, Zeng JM, Wang LL, Yang B, Lin NM. Deacetylisovaltratum disrupts microtubule dynamics and causes G 2/M-phase arrest in human gastric cancer cells in vitro. Acta Pharmacol Sin 2016; 37:1597-1605. [PMID: 27665846 PMCID: PMC5260834 DOI: 10.1038/aps.2016.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022] Open
Abstract
Aim: Deacetylisovaltratum (DI) is isolated from the traditional Chinese herbal medicine Patrinia heterophylla Bunge, which exhibits anti-cancer activity. Here, we investigated the effects of DI on human gastric carcinoma cell lines in vitro and elucidated its anti-cancer mechanisms. Methods: Human gastric carcinoma AGS and HGC-27 cell lines were treated with DI, and cell viability was detected with MTT assay. Cell cycle stages, apoptosis and mitochondrial membrane potential were measured using flow cytometry. Protein levels were analyzed by Western blotting. Tubulin polymerization assays and immunofluorescence were used to characterize the tubulin polymerization process. Results: DI inhibited the cell viability of AGS and HGC-27 cells in a dose- and time-dependent manner with IC50 values of 12.0 and 28.8 μmol/L, respectively, at 24 h of treatment. Treatment with DI (10–100 μmol/L) dose-dependently promoted tubulin polymerization, and induced significant G2/M cell cycle arrest in AGS and HGC-27 cells. Moreover, DI treatment disrupted mitochondrial membrane potential and induced caspase-dependent apoptosis in AGS and HGC-27 cells. Conclusion: DI induces G2/M-phase arrest by disrupting tubulin polymerization in human gastric cancer cells, which highlights its potent anti-cancer activity and potential application in gastric cancer therapy.
Collapse
|
14
|
Chen C, Wang CC, Wang Z, Geng WY, Xu H, Song XM, Luo DQ. Cytotoxic activity of a synthetic deoxypodophyllotoxin derivative with an opened D-ring. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:486-494. [PMID: 27123550 DOI: 10.1080/10286020.2015.1131679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Podophyllotoxin and its synthetic derivatives are valuable medicinal agents that have antitumor, insecticidal, and antifungal properties. We previously synthesized a deoxypodophyllotoxin derivative with an opened D-ring (DPD) exhibiting potent insecticidal activity. This article was firstly performed to identify the cytotoxicity of DPD toward human cancer cell lines (SGC7901, HeLa, and A549) and normal cell line (HEK293T) using MTT assay. DPD showed potent cytotoxicity against human cancer lines (HeLa and A549) and less cytotoxicity against normal cell lines HEK293T. DPD could also induce the cell cycle arrest at G2/M phase in HeLa cells and significantly increase the phosphorylation (Tyr 15) of CDC2 leading to inactivation of CDC2. The effects of DPD on cellular microtubule networks were detected using immunofluorescence technique in HeLa cells. The immunofluorescence results showed DPD influenced the arrangement and organization of cellular microtubule networks in HeLa cells. Microtubules are long, hollow cylinders made up of polymerized tubulin dimers. Total microtubules were separated after DPD treatment. Western blot results showed that the free polymerized tubulin dimers were obviously increased after DPD treatment. DPD may be a good drug candidate with the therapeutic potential to human cancer by affecting microtubule polymerization.
Collapse
Affiliation(s)
- Chuan Chen
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Cui-Cui Wang
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Zhong Wang
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Wen-Yue Geng
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Hui Xu
- b Laboratory of Pharmaceutical Design & Synthesis , College of Sciences, Northwest A&F University , Yangling , China
| | - Xiao-Mei Song
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| | - Du-Qiang Luo
- a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , College of Life Science, Hebei University , Baoding , China
| |
Collapse
|
15
|
Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD, Shao ZM. Transcriptome Analysis of Triple-Negative Breast Cancer Reveals an Integrated mRNA-lncRNA Signature with Predictive and Prognostic Value. Cancer Res 2016; 76:2105-14. [PMID: 26921339 DOI: 10.1158/0008-5472.can-15-3284] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
While recognized as a generally aggressive disease, triple-negative breast cancer (TNBC) is highly diverse in different patients with variable outcomes. In this prospective observational study, we aimed to develop an RNA signature of TNBC patients to improve risk stratification and optimize the choice of adjuvant therapy. Transcriptome microarrays for 33 paired TNBC and adjacent normal breast tissue revealed tumor-specific mRNAs and long noncoding RNAs (lncRNA) that were associated with recurrence-free survival. Using the Cox regression model, we developed an integrated mRNA-lncRNA signature based on the mRNA species for FCGR1A, RSAD2, CHRDL1, and the lncRNA species for HIF1A-AS2 and AK124454 The prognostic and predictive accuracy of this signature was evaluated in a training set of 137 TNBC patients and then validated in a second independent set of 138 TNBC patients. In addition, we enrolled 82 TNBC patients who underwent taxane-based neoadjuvant chemotherapy (NCT) to further verify the predictive value of the signature. In both the training and validation sets, the integrated signature had better prognostic value than clinicopathologic parameters. We also confirmed the interaction between the administration of taxane-based NCT and different risk groups. In the NCT cohort, patients in the low-risk group were more likely to achieve pathologic complete remission after taxane-based NCT (P = 0.014). Functionally, we showed that HIF1A-AS2 and AK124454 promoted cell proliferation and invasion in TNBC cells and contributed there to paclitaxel resistance. Overall, our results established an integrated mRNA-lncRNA signature as a reliable tool to predict tumor recurrence and the benefit of taxane chemotherapy in TNBC, warranting further investigation in larger populations to help frame individualized treatments for TNBC patients. Cancer Res; 76(8); 2105-14. ©2016 AACR.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-En Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem Biophys Res Commun 2016; 471:75-81. [PMID: 26845351 DOI: 10.1016/j.bbrc.2016.01.176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 11/24/2022]
Abstract
Glioblastoma (GBM) is an invariably fatal brain tumor in which a small subpopulation of self-renewable glioma stem cells (GSCs) contributes to tumor propagation and relapse. Targeting GSCs could therefore have a significant clinical impact for GBM. Telomestatin is a naturally-occurring compound that preferentially impairs GSC growth by perturbing transcription and inducing a DNA damage response. Telomestatin stabilizes G-quadruplexes (G4s), which are guanine-rich four-strand nucleic acid structures observed in vitro and in vivo. However, the mechanism underlying the GSC-selective nature of the DNA damage response remains unknown. Here we demonstrate that GSCs are more susceptible to telomestatin-induced telomere dysfunction and replication stress when compared with GSC-derived non-stem glioma cells (NSGCs). Telomestatin induced dissociation of the telomere-capping protein TRF2 from telomeres, leading to telomeric DNA damage in GSCs-but not in NSGCs. BIBR1532, a telomerase catalytic inhibitor, did not preferentially inhibit GSC growth, suggesting that telomestatin promotes telomere dysfunction in a telomerase-independent manner. GSCs and NSGCs had comparable levels of G4s in their nuclei, and both responded to telomestatin with phosphorylation of RPA2 at Ser33-a hallmark of replication stress. However, activation of the checkpoint kinase Chk1, induction of a DNA damage response, and subsequent growth inhibition occurred only in telomestatin-treated GSCs. These observations suggest that telomestatin impairs GSC growth through removal of TRF2 from telomeres and potent activation of the replication stress response pathway. Therefore, a novel G4-directed therapeutic strategy could specifically target cancer stem cells in GBM.
Collapse
|
17
|
Shankaraiah N, Kumar NP, Amula SB, Nekkanti S, Jeengar MK, Naidu V, Reddy TS, Kamal A. One-pot synthesis of podophyllotoxin–thiourea congeners by employing NH2SO3H/NaI: Anticancer activity, DNA topoisomerase-II inhibition, and apoptosis inducing agents. Bioorg Med Chem Lett 2015; 25:4239-44. [DOI: 10.1016/j.bmcl.2015.07.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
|
18
|
Wu CC, Huang KF, Yang TY, Li YL, Wen CL, Hsu SL, Chen TH. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS One 2015; 10:e0132052. [PMID: 26147394 PMCID: PMC4492957 DOI: 10.1371/journal.pone.0132052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
Koelreuteria henryi Dummer, an endemic plant of Taiwan, has been used as a folk medicine for the treatment of hepatitis, enteritis, cough, pharyngitis, allergy, hypertension, hyperlipidemia, and cancer. Austrobailignan-1, a natural lignan derivative isolated from Koelreuteria henryi Dummer, has anti-oxidative and anti-cancer properties. However, the effects of austrobailignan-1 on human cancer cells have not been studied yet. Here, we showed that austrobailignan-1 inhibited cell growth of human non-small cell lung cancer A549 and H1299 cell lines in both dose- and time-dependent manners, the IC50 value (48 h) of austrobailignan-1 were 41 and 22 nM, respectively. Data from flow cytometric analysis indicated that treatment with austrobailignan-1 for 24 h retarded the cell cycle at the G2/M phase. The molecular event of austrobailignan-1-mediated G2/M phase arrest was associated with the increase of p21Waf1/Cip1 and p27Kip1 expression, and decrease of Cdc25C expression. Moreover, treatment with 100 nM austrobailignan-1 for 48 h resulted in a pronounced release of cytochrome c followed by the activation of caspase-2, -3, and -9, and consequently induced apoptosis. These events were accompanied by the increase of PUMA and Bax, and the decrease of Mcl-1 and Bcl-2. Furthermore, our study also showed that austrobailignan-1 was a topoisomerase 1 inhibitor, as evidenced by a relaxation assay and induction of a DNA damage response signaling pathway, including ATM, and Chk1, Chk2, γH2AX phosphorylated activation. Overall, our results suggest that austrobailignan-1 is a novel DNA damaging agent and displays a topoisomerase I inhibitory activity, causes DNA strand breaks, and consequently induces DNA damage response signaling for cell cycle G2/M arrest and apoptosis in a p53 independent manner.
Collapse
Affiliation(s)
- Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Keh-Feng Huang
- Department of Applied Chemistry, Providence University, Taichung, Taiwan, ROC
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ya-Ling Li
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chi-Luan Wen
- Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Propagation Technology Section, Taichung, Taiwan, ROC
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Tzu-Hsiu Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, Tainan, Taiwan, ROC
- * E-mail:
| |
Collapse
|
19
|
Probing the Binding of 4β-(Benzoyl-thioureido)-4-deoxypodophyllotoxin to Human Serum Albumin by Molecular Spectroscopy. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Liao YJ, Bai HY, Li ZH, Zou J, Chen JW, Zheng F, Zhang JX, Mai SJ, Zeng MS, Sun HD, Pu JX, Xie D. Longikaurin A, a natural ent-kaurane, induces G2/M phase arrest via downregulation of Skp2 and apoptosis induction through ROS/JNK/c-Jun pathway in hepatocellular carcinoma cells. Cell Death Dis 2014; 5:e1137. [PMID: 24651440 PMCID: PMC3973226 DOI: 10.1038/cddis.2014.66] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and is also highly resistant to conventional chemotherapy treatments. In this study, we report that Longikaurin A (LK-A), an ent-kaurane diterpenoid isolated from the plant Isodon ternifolius, induced cell cycle arrest and apoptosis in human HCC cell lines. LK-A also suppressed tumor growth in SMMC-7721 xenograft models, without inducing any notable major organ-related toxicity. LK-A treatment led to reduced expression of the proto-oncogene S phase kinase-associated protein 2 (Skp2) in SMMC-7721 cells. Lower Skp2 levels correlated with increased expression of p21 and p-cdc2 (Try15), and a corresponding decrease in protein levels of Cyclin B1 and cdc2. Overexpression of Skp2 significantly inhibited LK-A-induced cell cycle arrest in SMMC-7721 cells, suggesting that LK-A may target Skp2 to arrest cells at the G2/M phase. LK-A also induced reactive oxygen species (ROS) production and apoptosis in SMMC-7721 cells. LK-A induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase and P38 MAP kinase. Treatment with, the JNK inhibitor SP600125 prevented LK-A-induced apoptosis in SMMC-7721 cells. Moreover, the antioxidant N-acetylcysteine prevented phosphorylation of both JNK and c-Jun. Taken together, these data indicate that LK-A induces cell cycle arrest and apoptosis in cancer cells by dampening Skp2 expression, and thereby activating the ROS/JNK/c-Jun signaling pathways. LK-A is therefore a potential lead compound for development of antitumor drugs targeting HCC.
Collapse
Affiliation(s)
- Y-J Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - H-Y Bai
- 1] Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Z-H Li
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - J Zou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - J-W Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - F Zheng
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - J-X Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - S-J Mai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M-S Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - H-D Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - J-X Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - D Xie
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
21
|
Bo S, Hui H, Li W, Hui L, Hong X, Lin D, Dai WX, Wu YH, Ai XH, Hao J, Qi S. Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells. Food Chem Toxicol 2014; 68:61-70. [PMID: 24650757 DOI: 10.1016/j.fct.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/19/2014] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
Diallyl disulfide (DADS) has been shown to cause G2/M phase cell cycle arrest in several human cancers. Here we demonstrate a mechanism by which DADS induces G2/M phase arrest in BGC823 human gastric cancer cells via Chk1. From cell cycle gene array results, we next confirmed that cyclin B1 expression was decreased by DADS, while the expression of p21, GADD45α and p53 were increased. Despite the lack of change in Chk1 gene expression in response to DADS according to the array analysis, intriguingly overexpression of Chk1, but not Chk2, exhibited increased accumulation in G2/M phase. Moreover, overexpression of Chk1 promoted the effect of DADS-induced G2/M arrest. Augmented phosphorylation of Chk1 by DADS was observed in Chk1-transfected cells, followed by downregulation of Cdc25C and cyclin B1 proteins. In contrast, phosphorylated Chk2 showed no obvious change in Chk2-transfected cells after DADS treatment. Furthermore, knockdown of Chk1 by siRNA partially abrogated DADS-induced downregulation of Cdc25C and cyclin B1 proteins and G2/M arrest. In contrast, knockdown of Chk2 did not show these effects. Therefore, these data indicate that DADS may specifically modulate Chk1 phosphorylation, and DADS-induced G2/M phase arrest in BGC823 cells could result in part from Chk1-mediated inhibition of the Cdc25C/cyclin B1 pathway.
Collapse
Affiliation(s)
- Su Bo
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China; Key Laboratory for Pharmacoproteomics of Hunan Provincial University, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - He Hui
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Wang Li
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Ling Hui
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Xia Hong
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Dong Lin
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Xiang Dai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - You-Hua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hong Ai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jiang Hao
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Su Qi
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
22
|
Wu Z, Zhao Y, Zhang Y, Zhu L. HY-2, a novel DNA topoisomerase II inhibitor, induces G2/M cell cycle arrest in HCT-116 cells. J Chemother 2013; 26:342-7. [PMID: 24188177 DOI: 10.1179/1973947813y.0000000153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
4beta-(Benzoylthioureido)-4'-demethyl-4-desoxypodophyllotoxin (HY-2), a synthetic aroylthiourea analog of podophyllotoxin, was identified as a novel DNA topoisomerase II inhibitor. It exhibited significant antiproliferative effect on seven cancer cell lines and induced HCT-116 cells apoptosis. DNA flow cytometric analysis revealed that HY-2 induced cell cycle arrest at G2/M phase. Western blot analysis indicated that phosphorylation of cdc2 protein was decreased after HY-2 treatment, which might be the main cause for G2/M phase arrest.
Collapse
|
23
|
Zhao Y, Wu Z, Zhang Y, Zhu L. HY-1 induces G(2)/M cell cycle arrest in human colon cancer cells through the ATR-Chk1-Cdc25C and Weel pathways. Cancer Sci 2013; 104:1062-6. [PMID: 23600770 DOI: 10.1111/cas.12182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/03/2013] [Accepted: 04/14/2013] [Indexed: 12/18/2022] Open
Abstract
The novel aroylthiourea analogue of podophyllotoxin HY-1 (4β-[benzoyl-thioureido]-4-deoxypodophyllotoxin) was synthesized in our laboratory with the aim of developing multitargeted DNA topoisomerase II inhibitors. The compound showed significant antiproliferative effects on seven cancer cell lines and induced G2 /M phase arrest in HCT116 cells. Moreover, HY-1 showed a potent inhibitory effect on topoisomerase II-mediated kinetoplast DNA decatenation in a dose-dependent manner. Our results showed that cdc2 phosphorylation and decreased cdc2 kinase acitivity through the ATR-Chk1-Cdc25C and Weel pathways were the central mechanisms for G2 /M phase arrest in human colon cancer cells.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nautical Medicine, Nantong University, Nantong, China
| | | | | | | |
Collapse
|