1
|
Chatterjee B, Bose S, Singh R, Dixit AK, Puia L, Srivastava AK. MiRNA-3163 limits ovarian cancer stem-like cells via targeting SOX-2 transcription factor. Noncoding RNA Res 2024; 9:1308-1314. [PMID: 39050795 PMCID: PMC11268165 DOI: 10.1016/j.ncrna.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer stem cells (CSCs) are pivotal in both cancer progression and the acquisition of drug resistance. MicroRNAs (miRNAs) play a crucial role in modulating CSC properties and are being explored as potential targets for therapeutic interventions. MiR-3163 is primarily known for its tumor suppressive properties in various human malignancies, with lower expression reported across different cancer types. However, its role in regulating the ovarian CSC phenotype and the underlying mechanism remain largely unknown. Here, we report a remarkable downregulation of miR-3163 in ovarian cancer stem-like cells (CSLCs). Enforced expression of miR-3163 in ovarian adherent and CSLCs, significantly disrupts the stemness phenotype. Moreover, downregulation of miR-3163 expression in ovarian cancer cells (OV2008 and OVCAR-3) inhibits the stem-like cells characterized by CD44+CD117+ expression. Sphere formation assay results reveal that overexpression of miR-3163 in ovarian cancer cells significantly inhibits spheroid formation ability, confirming the regulatory properties of miR-3163 on ovarian CSLCs. Mechanistic investigation reveals that miR-3163 depletes ovarian CSLCs via targeting SOX-2. Furthermore, we establish SOX-2 as a direct target of miR-3163 through dual-luciferase assay. Taken together, our study demonstrates that overexpression of miR-3163 could be a promising strategy for efficiently eradicating the CSC population to prevent chemoresistance and tumor relapse in ovarian cancer patients.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institution of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Subhankar Bose
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institution of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Richa Singh
- Department of Biotechnology, Khwaja Moinuddin Chishti language University, Lucknow, Uttar Pradesh, India
| | - Amit Kumar Dixit
- CCRAS-Central Ayurveda Research Institute, Kolkata, West Bengal, India
| | - Lalrin Puia
- CCRAS-Central Ayurveda Research Institute, Kolkata, West Bengal, India
| | - Amit Kumar Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institution of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Chong ZX. Roles of miRNAs in regulating ovarian cancer stemness. Biochim Biophys Acta Rev Cancer 2024; 1879:189191. [PMID: 39353485 DOI: 10.1016/j.bbcan.2024.189191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Ovarian cancer is one of the gynaecology malignancies with the highest mortality rate. Ovarian cancer stem cell (CSC) is a subpopulation of ovarian cancer cells with increased self-renewability, aggression, metastatic potentials, and resistance to conventional anti-cancer therapy. The emergence of ovarian CSC is a critical factor that promotes treatment resistance and frequent relapse among ovarian cancer patients, leading to poor clinical outcomes. MicroRNA (miRNA) is a short, non-protein-coding RNA that regulates ovarian CSC development. Although multiple original research articles have discussed the CSC-regulatory roles of different miRNAs in ovarian cancer, there is a deficiency of a review article that can summarize the findings from different research papers. To narrow the gap in the literature, this review aimed to provide an up-to-date summary of the CSC-regulatory roles of various miRNAs in modulating ovarian cancer cell stemness. This review will begin by giving an overview of ovarian CSC and the pathways responsible for driving its appearance. Next, the CSC-regulatory roles of miRNAs in controlling ovarian CSC development will be discussed. Overall, more than 60 miRNAs have been reported to play CSC-regulatory roles in the development and progression of ovarian cancer. By targeting various downstream targets, these miRNAs can control the signaling activities of PI3K/AKT, EGFR/ERK, WNT/ß-catenin, NF-kß, Notch, Hippo/YAP, EMT, and DNA repair pathways. Hence, these CSC-modulatory miRNAs have the potential to be used as prognostic biomarkers in predicting the clinical outcomes of ovarian cancer patients. Targeting CSC-promoting miRNAs or increasing the expressions of CSC-repressing miRNAs can help slow ovarian cancer progression. However, more in-depth functional and clinical trials must be carried out to evaluate the suitability, safety, sensitivity, and specificity of these CSC-regulating miRNAs as prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore 117599.
| |
Collapse
|
4
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
5
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
6
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
7
|
Wang J, Ford JC, Mitra AK. Defining the Role of Metastasis-Initiating Cells in Promoting Carcinogenesis in Ovarian Cancer. BIOLOGY 2023; 12:1492. [PMID: 38132318 PMCID: PMC10740540 DOI: 10.3390/biology12121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ovarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.
Collapse
Affiliation(s)
- Ji Wang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - James C. Ford
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Kielbik M, Przygodzka P, Szulc-Kielbik I, Klink M. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells. Biochim Biophys Acta Rev Cancer 2023; 1878:189003. [PMID: 37863122 DOI: 10.1016/j.bbcan.2023.189003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies among women. The reason for this outcome is the frequent acquisition of cancer cell resistance to platinum-based drugs and unresponsiveness to standard therapy. It has been increasingly recognized that the ability of ovarian cancer cells to adopt more aggressive behavior (mainly through the epithelial-to-mesenchymal transition, EMT), as well as dedifferentiation into cancer stem cells, significantly affects drug resistance acquisition. Transcription factors in the Snail family have been implicated in ovarian cancer chemoresistance and metastasis. In this article, we summarize published data that reveal Snail proteins not only as key inducers of the EMT in ovarian cancer but also as crucial links between the acquisition of ovarian cancer stem properties and spheroid formation. These Snail-related characteristics significantly affect the ovarian cancer cell response to treatment and are related to the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
9
|
Szyposzynska A, Bielawska-Pohl A, Murawski M, Sozanski R, Chodaczek G, Klimczak A. Mesenchymal Stem Cell Microvesicles from Adipose Tissue: Unraveling Their Impact on Primary Ovarian Cancer Cells and Their Therapeutic Opportunities. Int J Mol Sci 2023; 24:15862. [PMID: 37958844 PMCID: PMC10647545 DOI: 10.3390/ijms242115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and their derivatives can be promising tools in oncology including ovarian cancer treatment. This study aimed to determine the effect of HATMSC2-MVs (microvesicles derived from human immortalized mesenchymal stem cells of adipose tissue origin) on the fate and behavior of primary ovarian cancer cells. Human primary ovarian cancer (OvCa) cells were isolated from two sources: post-operative tissue of ovarian cancer and ascitic fluid. The phenotype of cells was characterized using flow cytometry, real-time RT-PCR, and immunofluorescence staining. The effect of HATMSC2-MVs on the biological activity of primary cells was analyzed in 2D (proliferation, migration, and cell survival) and 3D (cell survival) models. We demonstrated that HATMSC2-MVs internalized into primary ovarian cancer cells decrease the metabolic activity and induce the cancer cell death and are leading to decreased migratory activity of tumor cells. The results suggests that the anti-cancer effect of HATMSC2-MVs, with high probability, is contributed by the delivery of molecules that induce cell cycle arrest and apoptosis (p21, tumor suppressor p53, executor caspase 3) and proapoptotic regulators (bad, BIM, Fas, FasL, p27, TRAIL-R1, TRAIL-R2), and their presence has been confirmed by apoptotic protein antibody array. In this study, we demonstrate the ability to inhibit primary OvCa cells growth and apoptosis induction after exposure of OvCa cells on HATMSC2-MVs treatment; however, further studies are needed to clarify their anticancer activities.
Collapse
Affiliation(s)
- Agnieszka Szyposzynska
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| | - Marek Murawski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland; (M.M.); (R.S.)
| | - Rafal Sozanski
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-599 Wroclaw, Poland; (M.M.); (R.S.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.S.); (A.B.-P.)
| |
Collapse
|
10
|
Li T, Zhang G, Li W, Xiao J, Zhou Z, Tan G, Ai J. MicroRNA-101-3p inhibits nasopharyngeal carcinoma cell proliferation and cisplatin resistance through ZIC5 down-regulation by targeting SOX2. Biol Chem 2023; 404:961-975. [PMID: 36752150 DOI: 10.1515/hsz-2022-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023]
Abstract
This study aims to explore the mechanism of microRNA (miR)-101-3p-mediated SOX2/ZIC5 axis in the progression of cisplatin resistance of nasopharyngeal carcinoma (NPC). ZIC5 expression was analyzed with a bioinformatics database and detected in NPC cell lines. Cisplatin-resistant cells (HNE-1/DDP and C666-1/DDP) were transfected with sh-ZIC5, sh-SOX2, sh-SOX2 + pcDNA3.1-ZIC5, or miR-101-3p Agomir + pcDNA3.1-SOX2. MiR-101-3p, SOX2, and ZIC5 expression was assessed after transfection, and cancer associated phenotypes were evaluated after cisplatin treatment. The potential relationships among miR-101-3p, SOX2, and ZIC5 were analyzed. A xenograft mouse model of NPC was established with HNE-1 cells stably transfected or not transfected with oe-ZIC5 and subjected to tail vein injection of miR-101-3p Agomir and intraperitoneal injection of cisplatin. Overexpression of ZIC5 was found in cisplatin-resistant NPC cells. Downregulating ZIC5 in NPC cells decreased cell viability, promoted apoptosis, and reduced cisplatin resistance. SOX2 had a binding site on ZIC5, and SOX2 promoted proliferation, migration, and cisplatin resistance and inhibited cell apoptosis by up-regulating ZIC5. Mechanistically, miR-101-3p was decreased in cisplatin-resistant NPC cells and negatively targeted SOX2. Overexpression of miR-101-3p inhibited tumor growth and cisplatin resistance in xenograft mouse model, which was reversed by ZIC5 overexpression. In conclusion, the miR-101-3p/SOX2/ZIC5 axis was implicated in cancer associated phenotypes and cisplatin resistance in NPC.
Collapse
Affiliation(s)
- Tieqi Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Gehou Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Jian Xiao
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Zheng Zhou
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| | - Jingang Ai
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Rd, Changsha 410013, Hunan, P. R. China
| |
Collapse
|
11
|
Manogaran P, Anandan A, Vijaya Padma V. Isoliensinine augments the therapeutic potential of paclitaxel in multidrug-resistant colon cancer stem cells and induced mitochondria-mediated cell death. J Biochem Mol Toxicol 2023; 37:e23395. [PMID: 37424111 DOI: 10.1002/jbt.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
Previously we have reported the isoliensinine (ISO) potentates the therapeutic potential of cisplatin in cisplatin resistant colorectal cancer stem cells. The present study evaluates the chemo-sensitizing potential of the combinatorial regimen of ISO and Paclitaxcel (PTX) on multidrug-resistant (MDR)-HCT-15 cells to reduce the dose requirement of both ISO and PTX. The results of the present study suggest that treatment with the combinatorial regimen of ISO and PTX enhanced the cytotoxic effect with resultant increase in apoptosis in MDR-HCT-15 cells as evident from the altered cellular morphology, G2/M cell cycle arrest, propidium iodide uptake, Annexin V, increased intracellular Ca2+ accumulation, decreased mitochondrial membrane potential, diminished ATP production, PARP-1 cleavage, altered expression of ERK1/2, and apoptotic proteins. Treatment with combinatorial regimen of ISO and PTX also modulated the expression of the transcription factors SOX2, OCT4 which determine the stemness of cancer cells. Thus, results of the present study suggest that ISO and PTX combination regimen induces apoptosis in MDR-HCT-15 in a synergistic manner.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Aparna Anandan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
12
|
Ardizzoia A, Jemma A, Redaelli S, Silva M, Bentivegna A, Lavitrano M, Conconi D. AhRR and PPP1R3C: Potential Prognostic Biomarkers for Serous Ovarian Cancer. Int J Mol Sci 2023; 24:11455. [PMID: 37511212 PMCID: PMC10380391 DOI: 10.3390/ijms241411455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.A.); (A.J.); (S.R.); (M.S.); (A.B.); (M.L.)
| |
Collapse
|
13
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
14
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Jiang J, Chen Z, Wang H, Wang Y, Zheng J, Guo Y, Jiang Y, Mo Z. Screening and Identification of a Prognostic Model of Ovarian Cancer by Combination of Transcriptomic and Proteomic Data. Biomolecules 2023; 13:685. [PMID: 37189432 PMCID: PMC10136255 DOI: 10.3390/biom13040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The integration of transcriptome and proteome analysis can lead to the discovery of a myriad of biological insights into ovarian cancer. Proteome, clinical, and transcriptome data about ovarian cancer were downloaded from TCGA's database. A LASSO-Cox regression was used to uncover prognostic-related proteins and develop a new protein prognostic signature for patients with ovarian cancer to predict their prognosis. Patients were brought together in subgroups using a consensus clustering analysis of prognostic-related proteins. To further investigate the role of proteins and protein-coding genes in ovarian cancer, additional analyses were performed using multiple online databases (HPA, Sangerbox, TIMER, cBioPortal, TISCH, and CancerSEA). The final resulting prognosis factors consisted of seven protective factors (P38MAPK, RAB11, FOXO3A, AR, BETACATENIN, Sox2, and IGFRb) and two risk factors (AKT_pS473 and ERCC5), which can be used to construct a prognosis-related protein model. A significant difference in overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI) curves were found in the training, testing, and whole sets when analyzing the protein-based risk score (p < 0.05). We also illustrated a wide range of functions, immune checkpoints, and tumor-infiltrating immune cells in prognosis-related protein signatures. Additionally, the protein-coding genes were significantly correlated with each other. EMTAB8107 and GSE154600 single-cell data revealed that the genes were highly expressed. Furthermore, the genes were related to tumor functional states (angiogenesis, invasion, and quiescence). We reported and validated a survivability prediction model for ovarian cancer based on prognostic-related protein signatures. A strong correlation was found between the signatures, tumor-infiltrating immune cells, and immune checkpoints. The protein-coding genes were highly expressed in single-cell RNA and bulk RNA sequencing, correlating with both each other and tumor functional states.
Collapse
Affiliation(s)
- Jinghang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
| | - Zhongyuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Honghong Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yifu Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Jie Zheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
| | - Yi Guo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Graduate School, Guangxi Medical University, Nanning 530021, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
16
|
Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB. SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 2023; 160:114336. [PMID: 36738502 DOI: 10.1016/j.biopha.2023.114336] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
SOX2 is a transcription factor involved in multiple stages of embryonic development. In related reports, SOX2 was found to be abnormally expressed in tumor tissues and correlated with clinical features such as TNM staging, tumor grade, and prognosis in patients with various cancer types. In most cancer types, SOX2 is a tumor-promoting factor that regulates tumor progression and metastasis primarily by maintaining the stemness of cancer cells. In addition, SOX2 also regulates the proliferation, apoptosis, invasion, migration, ferroptosis and drug resistance of cancer cells. However, SOX2 acts as a tumor suppressor in some cases in certain cancer types, such as gastric and lung cancer. These key regulatory functions of SOX2 involve complex regulatory networks, including protein-protein and protein-nucleic acid interactions through signaling pathways and noncoding RNA interactions, modulating SOX2 expression may be a potential therapeutic strategy for clinical cancer patients. Therefore, we sorted out the phenotypes related to SOX2 in cancer, hoping to provide a basis for further clinical translation.
Collapse
Affiliation(s)
- L N Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Y Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Lei
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - H B Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Varier L, Sundaram SM, Gamit N, Warrier S. An Overview of Ovarian Cancer: The Role of Cancer Stem Cells in Chemoresistance and a Precision Medicine Approach Targeting the Wnt Pathway with the Antagonist sFRP4. Cancers (Basel) 2023; 15:cancers15041275. [PMID: 36831617 PMCID: PMC9954718 DOI: 10.3390/cancers15041275] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Ovarian cancer is one of the most prevalent gynecological cancers, having a relatively high fatality rate with a low five-year chance of survival when detected in late stages. The early detection, treatment and prevention of metastasis is pertinent and a pressing research priority as many patients are diagnosed only in stage three of ovarian cancer. Despite surgical interventions, targeted immunotherapy and adjuvant chemotherapy, relapses are significantly higher than other cancers, suggesting the dire need to identify the root cause of metastasis and relapse and present more precise therapeutic options. In this review, we first describe types of ovarian cancers, the existing markers and treatment modalities. As ovarian cancer is driven and sustained by an elusive and highly chemoresistant population of cancer stem cells (CSCs), their role and the associated signature markers are exhaustively discussed. Non-invasive diagnostic markers, which can be identified early in the disease using circulating tumor cells (CTCs), are also described. The mechanism of the self-renewal, chemoresistance and metastasis of ovarian CSCs is regulated by the Wnt signaling pathway. Thus, its role in ovarian cancer in promoting stemness and metastasis is delineated. Based on our findings, we propose a novel strategy of Wnt inhibition using a well-known Wnt antagonist, secreted frizzled related protein 4 (sFRP4), wherein short micropeptides derived from the whole protein can be used as powerful inhibitors. The latest approaches to early diagnosis and novel treatment strategies emphasized in this review will help design precision medicine approaches for an effective capture and destruction of highly aggressive ovarian cancer.
Collapse
Affiliation(s)
- Lavanya Varier
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - S. Mohana Sundaram
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sudha Warrier
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
- Correspondence:
| |
Collapse
|
18
|
Ma H, Tian T, Cui Z. Targeting ovarian cancer stem cells: a new way out. Stem Cell Res Ther 2023; 14:28. [PMID: 36788591 PMCID: PMC9926632 DOI: 10.1186/s13287-023-03244-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy due to tumor heterogeneity, the lack of reliable early diagnosis methods and the high incidence of chemoresistant recurrent disease. Although there are developments in chemotherapies and surgical techniques to improve the overall survival of OC patients, the 5-year survival of advanced OC patients is still low. To improve the prognosis of OC patients, it is important to search for novel therapeutic approaches. Cancer stem cells (CSCs) are a subpopulation of tumor cells that participate in tumor growth, metastasis and chemoresistance. It is important to study the role of CSCs in a highly heterogeneous disease such as OC, which may be significant to a better understanding of the oncogenetic and metastatic pathways of the disease and to develop novel strategies against its progression and platinum resistance. Here, we summarized the current findings about targeting methods against ovarian cancer stem cells, including related signaling pathways, markers and drugs, to better manage OC patients using CSC-based therapeutic strategies.
Collapse
Affiliation(s)
- Huiying Ma
- grid.412521.10000 0004 1769 1119Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tian Tian
- grid.412521.10000 0004 1769 1119Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhumei Cui
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
19
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
20
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
21
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
22
|
Rogers MP, Kothari A, Read M, Kuo PC, Mi Z. Maintaining Myofibroblastic-Like Cancer-Associated Fibroblasts by Cancer Stemness Signal Transduction Feedback Loop. Cureus 2022; 14:e29354. [PMID: 36284815 PMCID: PMC9583706 DOI: 10.7759/cureus.29354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Myofibroblast-like cancer-associated fibroblasts (myCAF) in the tumor microenvironment (TME) promote cancer stemness, growth, and metastasis. Cancer cell-derived osteopontin (OPN) has been reported as a biomarker related to malignant cancer growth. In this study, we confirm that cancer cell stemness is required for the maintenance of an OPN-induced myCAF phenotype.
Methods: MDA-MB-231 or HepG2 cells and Sox2 knockout variants were co-cultured with human mesenchymal stem cells (MSC). In selected instances, the OPN bioactivity inhibitor OPN-R3 aptamer (APT), OPN-R3 mutant aptamer (MuAPT), or cancer cell stemness inhibitor BBI-608 were added separately. MDA-MB-231 cancer stemness and myCAF markers were quantified by real-time PCR. Stemness-lacking cancer cell mice models were created to confirm that stemness is required for the maintenance of the OPN-induced myCAF phenotype in vivo.
Results: In an MDA-MB-231 co-culture system, myCAF and stemness markers increased. Osteopontin and stemness blockade in this co-culture system decreased both myCAF and stemness marker expression, but OPN blockade after 72 hours had no effect. In contrast, when BBI608 was added at 72 hours, myCAF markers were abated after 36-hour treatment. Replacing wildtype with MDA-MB-231(-/-sox2) in co-cultures at 72 hours decreased myCAF marker expression to baseline despite the Western blot confirming the presence of OPN. Conversely, replacing MDA-MB-231(-/-sox2) cells with wildtype increased myCAF marker expression to a level equivalent to the MDA-MB-231+MSC co-culture system. In vivo osteopontin blockade diminished stemness and myCAF marker expression and stemness lacking cancer cell models, indicated by decreasing myCAF presence. Experiments were repeated in a HepG2 cell line with identical results.
Conclusions: Cancer and myCAF crosstalk increases myCAF maintenance and cancer cell stemness. In this study using human breast and liver cancer cell lines, maintenance of the OPN-induced myCAF phenotype also requires cancer stemness. This indicates that the myCAF phenotype requires two distinct signaling pathways: initiation and maintenance.
Collapse
|
23
|
du Manoir S, Delpech H, Orsetti B, Jacot W, Pirot N, Noel J, Colombo PE, Sardet C, Theillet C. In high grade ovarian carcinoma, platinum-sensitive tumor recurrence and acquired-resistance derive from quiescent residual cancer cells that overexpress CRYAB, CEACAM6 and SOX2. J Pathol 2022; 257:367-378. [PMID: 35302657 DOI: 10.1002/path.5896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Most High-Grade Ovarian Carcinomas (HGOCs) are sensitive to carboplatin (CBP)-based chemotherapy but frequently recur within 24 months. Recurrent tumors remain CBP-sensitive and acquire resistance only after several treatment rounds. Recurrences arise from a small number of residual tumor cells hardly amenable to investigation in patients. We developed Patient-Derived Xenografts (PDXs) that allow the study of these different stages of CBP-sensitive recurrence and acquisition of resistance. We generated PDX models from CBP-sensitive and intrinsically resistant HGOC. PDXs were CBP- or mock-treated and tumors were sampled, after treatment and at recurrence. We also isolated models with acquired-resistance from CBP-sensitive PDXs. All tumors were characterized at the histological and transcriptome levels. PDX models reproduced treatment response seen in the patients. CBP-sensitive residual tumors contained non-proliferating tumor cells clusters embedded in a fibrotic mesh. In non-treated PDX tumors and treated CBP-resistant tumors fibrotic tissue was not prevalent. Residual tumors had marked differences in gene expression when compared to naïve and recurrent tumors, indicating downregulation of cell cycle and proliferation and upregulation of interferon response and epithelial-mesenchymal transition. This gene expression pattern resembled that described in embryonal diapause and 'drug-tolerant persister' states. Residual and acquired-resistance tumors share the overexpression of three genes: CEACAM6, CRYAB, and SOX2.Immunostaining analysis showed strong CEACAM6, CRYAB, and SOX2 protein expression in CBP-sensitive residual and acquired resistance PDX, thus, confirming RNA profiling results. In HGOC PDX, CBP-sensitive recurrences arise from a small population of quiescent, drug-tolerant, residual cells embedded in a fibrotic mesh. These cells overexpress CEACAM6, CRYAB and SOX2, whose overexpression is also associated with acquired resistance and poor patient prognosis. CEACAM6, CRYAB and SOX2 may, thus, serve as a biomarker to predict recurrence and emergence of resistant disease in CBP-treated HGOC patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Hélène Delpech
- IRCM U1194, INSERM, University of Montpellier, Montpellier, France
| | - Béatrice Orsetti
- IRCM U1194, INSERM, University of Montpellier, Montpellier, France
| | - William Jacot
- IRCM U1194, INSERM, University of Montpellier, Montpellier, France
| | - Nelly Pirot
- IRCM U1194, INSERM, University of Montpellier, Montpellier, France
| | - Jean Noel
- BCM, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Claude Sardet
- IRCM U1194, INSERM, Univ Montpellier, ICM, CNRS, Montpellier, France
| | - Charles Theillet
- IRCM U1194, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
24
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
25
|
Mesothelin Expression Is Not Associated with the Presence of Cancer Stem Cell Markers SOX2 and ALDH1 in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms23031016. [PMID: 35162954 PMCID: PMC8834752 DOI: 10.3390/ijms23031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mesothelin (MSLN) overexpression (OE) is a frequent finding in ovarian carcinomas and increases cell survival and tumor aggressiveness. Since cancer stem cells (CSCs) contribute to pathogenesis, chemoresistance and malignant behavior in ovarian cancer (OC), we hypothesized that MSLN expression could be creating a favorable environment that nurtures CSCs. In this study, we analyzed the expression of MSLN and CSC markers SOX2 and ALDH1 by immunohistochemistry (IHC) in different model systems: primary high-grade serous carcinomas (HGSCs) and OC cell lines, including cell lines that were genetically engineered for MSLN expression by either CRISPR-Cas9-mediated knockout (Δ) or lentivirus-mediated OE. Cell lines, wild type and genetically engineered, were evaluated in 2D and 3D culture conditions and xenografted in nude mice. We observed that MSLN was widely expressed in HGSC, and restricted expression was observed in OC cell lines. In contrast, SOX2 and ALDH1 expression was limited in all tissue and cell models. Most importantly, the expression of CSC markers was independent of MSLN expression, and manipulation of MSLN expression did not affect CSC markers. In conclusion, MSLN expression is not involved in driving the CSC phenotype.
Collapse
|
26
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Hafez HG, Mohareb RM, Salem SM, Matloub AA, Eskander EF, Ahmed HH. Molecular Mechanisms Underlying the Anti-Breast Cancer Stem Cell Activity of Pterocladia capillacea and Corallina officinalis Polysaccharides. Anticancer Agents Med Chem 2021; 22:1213-1225. [PMID: 34315394 DOI: 10.2174/1871520621666210727122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against breast cancer stem cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. METHODS Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24- and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/β-catenin and Notch signaling pathways was evaluated. RESULTS P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. β-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. CONCLUSION Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.
Collapse
Affiliation(s)
- Hebatallah G Hafez
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Giza, Egypt
| | - Azza A Matloub
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Emad F Eskander
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
28
|
Zhang W, Zhang YM, Gao Y, Zhang S, Chu W, Wei G, Li K, He X, Chen L, Guo L, Luan S, Zhang P. A novel decision tree model based on chromosome imbalances in cell-free DNA and CA-125 in the differential diagnosis of ovarian cancer. Int J Biol Markers 2021; 36:3-13. [PMID: 34053311 DOI: 10.1177/1724600821992356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE CA-125 is widely used as biomarker of ovarian cancer. However, CA-125 suffers low accuracy. We developed a hybrid analytical model, the Ovarian Cancer Decision Tree (OCDT), employing a two-layer decision tree, which considers genetic alteration information from cell-free DNA along with CA-125 value to distinguish malignant tumors from benign tumors. METHODS We consider major copy number alterations at whole chromosome and chromosome-arm level as the main feature of our detection model. Fifty-eight patients diagnosed with malignant tumors, 66 with borderline tumors, and 10 with benign tumors were enrolled. RESULTS Genetic analysis revealed significant arm-level imbalances in most malignant tumors, especially in high-grade serous cancers in which 12 chromosome arms with significant aneuploidy (P<0.01) were identified, including 7 arms with significant gains and 5 with significant losses. The area under receiver operating characteristic curve (AUC) was 0.8985 for copy number variations analysis, compared to 0.8751 of CA125. The OCDT was generated with a cancerous score (CScore) threshold of 5.18 for the first level, and a CA-125 value of 103.1 for the second level. Our most optimized OCDT model achieved an AUC of 0.975. CONCLUSIONS The results suggested that genetic variations extracted from cfDNA can be combined with CA-125, and together improved the differential diagnosis of malignant from benign ovarian tumors. The model would aid in the pre-operative assessment of women with adnexal masses. Future clinical trials need to be conducted to further evaluate the value of CScore in clinical settings and search for the optimal threshold for malignancy detection.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Yu-Min Zhang
- Biological Testing Department, Heze Food and Drug Testing Institute, Heze, Shandong Province, China
| | - Yuan Gao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shengmiao Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Weixin Chu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Guopeng Wei
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Ke Li
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Xuesong He
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Long Chen
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shufang Luan
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
29
|
Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nat Commun 2021; 12:3039. [PMID: 34031395 PMCID: PMC8144406 DOI: 10.1038/s41467-021-23171-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To understand the selection of factors driving heterogeneity before and through adaptation to treatment, we profile single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during therapy. We analyze scRNA-seq data from two independent patient cohorts to reveal that HGSOC is driven by three archetypal phenotypes, defined as oncogenic states that describe the majority of the transcriptome variation. Using a multi-task learning approach to identify the biological tasks of each archetype, we identify metabolism and proliferation, cellular defense response, and DNA repair signaling as consistent cell states found across patients. Our analysis demonstrates a shift in favor of the metabolism and proliferation archetype versus cellular defense response archetype in cancer cells that received multiple lines of treatment. While archetypes are not consistently associated with specific whole-genome driver mutations, they are closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism and proliferation archetype as resistance is acquired to multiple lines of therapy.
Collapse
Affiliation(s)
- Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Hoda Mirsafian
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Lance Pflieger
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Benjamin Copeland
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Sumana Majumdar
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Mihaela C Cristea
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, Department of Surgery, City of Hope, Duarte, CA, USA
| | - Stephen J Lee
- Division of Gynecologic Oncology, Department of Surgery, City of Hope, Duarte, CA, USA
| | - Edward W Wang
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Theresa Werner
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Adam L Cohen
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Philip Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA.
| |
Collapse
|
30
|
Mechanisms of High-Grade Serous Carcinogenesis in the Fallopian Tube and Ovary: Current Hypotheses, Etiologic Factors, and Molecular Alterations. Int J Mol Sci 2021; 22:ijms22094409. [PMID: 33922503 PMCID: PMC8122889 DOI: 10.3390/ijms22094409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian high-grade serous carcinomas (HGSCs) are a heterogeneous group of diseases. They include fallopian-tube-epithelium (FTE)-derived and ovarian-surface-epithelium (OSE)-derived tumors. The risk/protective factors suggest that the etiology of HGSCs is multifactorial. Inflammation caused by ovulation and retrograde bleeding may play a major role. HGSCs are among the most genetically altered cancers, and TP53 mutations are ubiquitous. Key driving events other than TP53 mutations include homologous recombination (HR) deficiency, such as BRCA 1/2 dysfunction, and activation of the CCNE1 pathway. HR deficiency and the CCNE1 amplification appear to be mutually exclusive. Intratumor heterogeneity resulting from genomic instability can be observed at the early stage of tumorigenesis. In this review, I discuss current carcinogenic hypotheses, sites of origin, etiologic factors, and molecular alterations of HGSCs.
Collapse
|
31
|
Robinson M, Gilbert SF, Waters JA, Lujano-Olazaba O, Lara J, Alexander LJ, Green SE, Burkeen GA, Patrus O, Sarwar Z, Holmberg R, Wang C, House CD. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers (Basel) 2021; 13:cancers13020262. [PMID: 33445692 PMCID: PMC7828139 DOI: 10.3390/cancers13020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of tumor-initiating cells (TICs) has traditionally relied on surface markers including CD133, CD44, CD117, and the aldehyde dehydrogenase (ALDH) enzyme, which have diverse expression across samples. A more reliable indication of TICs may include the expression of embryonic transcription factors that support long-term self-renewal, multipotency, and quiescence. We hypothesize that SOX2, OCT4, and NANOG will be enriched in ovarian TICs and may indicate TICs with high relapse potential. We evaluated a panel of eight ovarian cancer cell lines grown in standard 2-D culture or in spheroid-enriching 3-D culture, and correlated expression with growth characteristics, TIC marker expression, and chemotherapy resistance. RNA-sequencing showed that cell cycle regulation pathways involving SOX2 were elevated in 3-D conditions. HGSOC lines had longer doubling-times, greater chemoresistance, and significantly increased expression of SOX2, OCT4, and NANOG in 3-D conditions. CD117+ or ALDH+/CD133+ cells had increased SOX2, OCT4, and NANOG expression. Limiting dilution in in vivo experiments implicated SOX2, but not OCT4 or NANOG, with early tumor-initiation. An analysis of patient data suggested a stronger role for SOX2, relative to OCT4 or NANOG, for tumor relapse potential. Overall, our findings suggest that SOX2 may be a more consistent indicator of ovarian TICs that contribute to tumor repopulation following chemotherapy. Future studies evaluating SOX2 in TIC biology will increase our understanding of the mechanisms that drive ovarian cancer relapse.
Collapse
Affiliation(s)
- Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Samuel F. Gilbert
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Omar Lujano-Olazaba
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Jacqueline Lara
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Logan J. Alexander
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Samuel E. Green
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Gregory A. Burkeen
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Omid Patrus
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Zinia Sarwar
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Ryne Holmberg
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Christine Wang
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA 92106, USA; (M.R.); (S.F.G.); (J.A.W.); (O.L.-O.); (J.L.); (L.J.A.); (S.E.G.); (G.A.B.); (O.P.); (Z.S.); (R.H.); (C.W.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +1-(619)-594-3053
| |
Collapse
|
32
|
Ovarian Cancer Stem Cells: Characterization and Role in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:151-169. [PMID: 34339036 DOI: 10.1007/978-3-030-73359-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is a heterogenous disease with variable clinicopathological and molecular mechanisms being responsible for tumorigenesis. Despite substantial technological improvement, lack of early diagnosis contributes to its highest mortality. Ovarian cancer is considered to be the most lethal female gynaecological cancer across the world. Conventional treatment modules with platinum- and Taxane-based chemotherapy can cause an initial satisfactory improvement in ovarian cancer patients. However, approximately 75-80% patients of advanced stage ovarian cancer, experience relapse and nearly 40% have overall poor survival rate. It has been observed that a subpopulation of cells referred as cancer stem cells (CSCs), having self renewal property, escape the conventional chemotherapy because of their quiescent nature. Later, these CSCs following its interaction with microenvironment and release of various inflammatory cytokines, chemokines and matrix metalloproteinases, induce invasion and propagation to distant organs of the body mainly peritoneal cavity. These CSCs can be enriched by their specific surface markers such as CD44, CD117, CD133 and intracellular enzyme such as aldehyde dehydrogenase. This tumorigenicity is further aggravated by the epithelial to mesenchymal transition of CSCs and neovascularisation via epigenetic reprogramming and over-expression of various signalling cascades such as Wnt/β-catenin, NOTCH, Hedgehog, etc. to name a few. Hence, a comprehensive understanding of various cellular events involving interaction between cancer cells and cancer stem cells as well as its surrounding micro environmental components would be of unmet need to achieve the ultimate goal of better management of ovarian cancer patients. This chapter deals with the impact of ovarian cancer stem cells in tumorigenesis which would help in the implementation of basic research into the clinical field in the form of translational research in order to reduce the morbidity and mortality in ovarian cancer patients through amelioration of diagnosis and impoverishment of therapeutic resistance.
Collapse
|
33
|
Pasquale V, Ducci G, Campioni G, Ventrici A, Assalini C, Busti S, Vanoni M, Vago R, Sacco E. Profiling and Targeting of Energy and Redox Metabolism in Grade 2 Bladder Cancer Cells with Different Invasiveness Properties. Cells 2020; 9:cells9122669. [PMID: 33322565 PMCID: PMC7764708 DOI: 10.3390/cells9122669] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is one of the most prevalent deadly diseases worldwide. Grade 2 tumors represent a good window of therapeutic intervention, whose optimization requires high resolution biomarker identification. Here we characterize energy metabolism and cellular properties associated with spreading and tumor progression of RT112 and 5637, two Grade 2 cancer cell lines derived from human bladder, representative of luminal-like and basal-like tumors, respectively. The two cell lines have similar proliferation rates, but only 5637 cells show efficient lateral migration. In contrast, RT112 cells are more prone to form spheroids. RT112 cells produce more ATP by glycolysis and OXPHOS, present overall higher metabolic plasticity and are less sensitive than 5637 to nutritional perturbation of cell proliferation and migration induced by treatment with 2-deoxyglucose and metformin. On the contrary, spheroid formation is less sensitive to metabolic perturbations in 5637 than RT112 cells. The ability of metformin to reduce, although with different efficiency, cell proliferation, sphere formation and migration in both cell lines, suggests that OXPHOS targeting could be an effective strategy to reduce the invasiveness of Grade 2 bladder cancer cells.
Collapse
Affiliation(s)
- Valentina Pasquale
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Giacomo Ducci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Gloria Campioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Adria Ventrici
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
| | - Chiara Assalini
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
| | - Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
- Correspondence: (M.V.); (R.V.); (E.S.); Tel.: +39-02-6448-3525 (M.V.); +39-02-2643-5664 (R.V.); +39-02-6448-3379 (E.S.)
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence: (M.V.); (R.V.); (E.S.); Tel.: +39-02-6448-3525 (M.V.); +39-02-2643-5664 (R.V.); +39-02-6448-3379 (E.S.)
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
- Correspondence: (M.V.); (R.V.); (E.S.); Tel.: +39-02-6448-3525 (M.V.); +39-02-2643-5664 (R.V.); +39-02-6448-3379 (E.S.)
| |
Collapse
|
34
|
Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, Han S, Liu Y, Ying G, Shu X, Di M. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res 2020; 39:232. [PMID: 33153498 PMCID: PMC7643364 DOI: 10.1186/s13046-020-01690-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transmembrane 4 L six family member 1 (TM4SF1) is upregulated in several epithelial cancers and is closely associated with poor prognosis. However, the role of TM4SF1 and its potential mechanism in colorectal cancer (CRC) remain elusive. METHODS We investigated the expression of TM4SF1 in the Oncomine, the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and confirmed the results by immunohistochemistry (IHC), qPCR and Western blotting (WB) of CRC tissues. The effect of TM4SF1 on the epithelial-to-mesenchymal transition (EMT) and cancer stemness of CRC cells was investigated by Transwell, wound healing and sphere formation assays. A series of in vitro and in vivo experiments were conducted to reveal the mechanisms by which TM4SF1 modulates EMT and cancer stemness in CRC. RESULTS TM4SF1 expression was markedly higher in CRC tissues than in non-tumour tissues and was positively correlated with poor prognosis. Downregulation of TM4SF1 inhibited the migration, invasion and tumour sphere formation of SW480 and LoVo cells. Conversely, TM4SF1 overexpression significantly enhanced the migration, invasion and tumoursphere formation potential of CRC cells, Additionally, TM4SF1 silencing inhibited the EMT mediated by transforming growth factor-β1 (TGF-β1). Mechanistically, gene set enrichment analysis (GSEA) predicted that the Wnt signalling pathway was one of the most impaired pathways in TM4SF1-deficient CRC cells compared to controls. The results were further validated by WB, which revealed that TM4SF1 modulated SOX2 expression in a Wnt/β-catenin activation-dependent manner. Furthermore, we found that knockdown of TM4SF1 suppressed the expression of c-Myc, leading to decreased c-Myc binding to the SOX2 gene promoter. Finally, depletion of TM4SF1 inhibited metastasis and tumour growth in a xenograft mouse model. CONCLUSION Our study substantiates a novel mechanism by which TM4SF1 maintains cancer cell stemness and EMT via the Wnt/β-catenin/c-Myc/SOX2 axis during the recurrence and metastasis of CRC.
Collapse
Affiliation(s)
- Qiang Tang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjins Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jinhuang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyang Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengbo Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanwei Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjins Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Maojun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.
| |
Collapse
|
35
|
Yang WT, Feng Q, Ma HM, Lei D, Zheng PS. NF-YA promotes the cell proliferation and tumorigenic properties by transcriptional activation of SOX2 in cervical cancer. J Cell Mol Med 2020; 24:12464-12475. [PMID: 32954681 PMCID: PMC7686972 DOI: 10.1111/jcmm.15777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
NF‐YA is considered as a crucial regulator for the maintenance of cancer stem cell (CSC) and involved in various types of malignant tumours. However, the exact function and molecular mechanisms of NF‐YA in the progression of cervical cancer remains poorly understood. Here, the expression of NF‐YA detected by immunohistochemistry was gradually increased from normal cervical tissues, to the high‐grade squamous intraepithelial lesions, and then to cervical cancer tissues. NF‐YA promoted the cell proliferation and tumorigenic properties of cervical cancer cells as well as tumorsphere formation and chemoresistance in vitro. The luciferase reporter assay combined with mutagenesis analyses and Western blotting showed that NF‐YA trans‐activated the expression of SOX2 in cervical cancer. Furthermore, quantitative chromatin immunoprecipitation (qChIP) and electrophoretic mobility shift assay (EMSA) confirmed that NF‐YA protein directly bound to the CCAAT box region located upstream of the SOX2 promoter. Together, our data demonstrated that NF‐YA was highly expressed in cervical cancer and promoted the cell proliferation, tumorigenicity and CSC characteristic by trans‐activating the expression of SOX2.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Shaanxi, Xi'an, China
| |
Collapse
|
36
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
37
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
38
|
Muñoz-Galván S, Carnero A. Targeting Cancer Stem Cells to Overcome Therapy Resistance in Ovarian Cancer. Cells 2020; 9:cells9061402. [PMID: 32512891 PMCID: PMC7349391 DOI: 10.3390/cells9061402] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to its late detection and high recurrence rate. Resistance to conventional platinum-based therapies and metastasis are attributed to a population of cells within tumors called cancer stem cells, which possess stem-like features and are able to recapitulate new tumors. Recent studies have deepened the understanding of the biology of ovarian cancer stem cells and their special properties and have identified multiple markers and signaling pathways responsible for their self-renewal abilities. Targeting cancer stem cells represents the most promising strategy for overcoming therapy resistance and reducing mortality in ovarian cancer, but further efforts must be made to improve our understanding of the mechanisms involved in therapy resistance. In this review, we summarize our current knowledge about ovarian cancer stem cells, their involvement in metastasis and their interactions with the tumor microenvironment; we also discuss the therapeutic approaches that are being developed to target them to prevent tumor relapse.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.-G.); (A.C.); Tel.: +34-955-923-115 (S.M.-G); +34-955-923-110 (A.C.)
| |
Collapse
|
39
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Sun S, Yang Q, Cai E, Huang B, Ying F, Wen Y, Cai J, Yang P. EZH2/H3K27Me3 and phosphorylated EZH2 predict chemotherapy response and prognosis in ovarian cancer. PeerJ 2020; 8:e9052. [PMID: 32435534 PMCID: PMC7227641 DOI: 10.7717/peerj.9052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
Background EZH2 acts as an oncogene through canonical pathway EZH2/H3K27Me3 and uncanonical pathway pAkt1/pS21EZH2 in many solid tumors including ovarian cancer. However, the clinical value of EZH2/H3K27Me3 and pAkt1/pS21EZH2 remain unclear. In the current study, we aim to investigate the correlation between these two pathways to clinical-pathological parameters and prognosis. Methods EZH2, H3K27Me3, pAkt1 and pS21EZH2 expression were evaluated by tissue micro-array and immunohistochemistry in a cohort of ovarian cancer patients. The results were analyzed based on clinical characteristics and survival outcomes. Results EZH2, H3K27Me3, pAkt1 and pS21EZH2 were universally expressed in ovarian cancer specimens with a positive expression rate of 81.54% (53/65), 88.89% (48/54), 63.07% (41/65) and 75.38% (49/65). EZH2-pS21EZH2 (Spearman r = 0.580, P < 0.0001) and pS21EZH2-pAkt1 (Spearman r = 0.546, P < 0.0001) were closely correlated while EZH2- H3K27Me3 were less closely correlated (Spearman r = 0.307, P = 0.002). Low pS21EZH2 associated with better chemotherapy response (OR = 0.184; 95% CI [0.052–0.647], P = 0.008) according to logistic regression with an area under the curve of 0.789 (specificity 89.36%, sensitivity 68.42%) by ROC analysis and predicted improved progression-free survival (HR = 0.453; 95% CI [0.229–0.895], P = 0.023) as indicated by multivariate cox regression. A combination of EZH2low/H3K27Me3low status predicted better chemotherapy response (OR = 0.110; 95% CI [0.013–0.906], P = 0.040) and better progression-free survival (HR = 0.388; 95% CI [0.164–0.917], P = 0.031). The results suggested that EZH2/H3K27Me3 and pEZH2 predicted chemotherapy response and progression-free survival in ovarian cancer.
Collapse
Affiliation(s)
- Si Sun
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Yang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Cai
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bangxing Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiquan Ying
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wen
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
41
|
Zuber E, Schweitzer D, Allen D, Parte S, Kakar SS. Stem Cells in Ovarian Cancer and Potential Therapies. PROCEEDINGS OF STEM CELL RESEARCH AND ONCOGENESIS 2020; 8:e1001. [PMID: 32776013 PMCID: PMC7413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Elena Zuber
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Diana Schweitzer
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Dominick Allen
- Department of Physiology, University of Louisville, Louisville, KY40202
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska, Omaha, NE-68198-5870
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY40202
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
42
|
Fanelli GN, Naccarato AG, Scatena C. Recent Advances in Cancer Plasticity: Cellular Mechanisms, Surveillance Strategies, and Therapeutic Optimization. Front Oncol 2020; 10:569. [PMID: 32391266 PMCID: PMC7188928 DOI: 10.3389/fonc.2020.00569] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The processes of recurrence and metastasis, through which cancer relapses locally or spreads to distant sites in the body, accounts for more than 90% of cancer-related deaths. At present there are very few treatment options for patients at this stage of their disease. The main obstacle to successfully treat advanced cancer is the cells' ability to change in ways that make them resistant to treatment. Understanding the cellular mechanisms that mediate this cancer cell plasticity may lead to improved patient survival. Epigenetic reprogramming, together with tumor microenvironment, drives such dynamic mechanisms favoring tumor heterogeneity, and cancer cell plasticity. In addition, the development of new approaches that can report on cancer plasticity in their native environment have profound implications for studying cancer biology and monitoring tumor progression. We herein provide an overview of recent advancements in understanding the mechanisms regulating cell plasticity and current strategies for their monitoring and therapy management.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG, Menendez JA. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY) 2020; 12:4794-4814. [PMID: 32191225 PMCID: PMC7138538 DOI: 10.18632/aging.102887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | | | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
44
|
Terraneo N, Jacob F, Dubrovska A, Grünberg J. Novel Therapeutic Strategies for Ovarian Cancer Stem Cells. Front Oncol 2020; 10:319. [PMID: 32257947 PMCID: PMC7090172 DOI: 10.3389/fonc.2020.00319] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies. Due to the lack of specific symptoms and screening methods, this disease is usually diagnosed only at an advanced and metastatic stage. The gold-standard treatment for OC patients consists of debulking surgery followed by taxane combined with platinum-based chemotherapy. Most patients show complete clinical remission after first-line therapy, but the majority of them ultimately relapse, developing radio- and chemoresistant tumors. It is now proposed that the cause of recurrence and reduced therapy efficacy is the presence of small populations of cancer stem cells (CSCs). These cells are usually resistant against conventional cancer therapies and for this reason, effective targeted therapies for the complete eradication of CSCs are urgently needed. In this review article, we highlight the mechanisms of CSC therapy resistance, epithelial-to-mesenchymal transition, stemness, and novel therapeutic strategies for ovarian CSCs.
Collapse
Affiliation(s)
- Nastassja Terraneo
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
45
|
Wang P, Shang J, Zhao J, Wang K, Guo L, Gu J, Wang W. SRY‑related HMG box‑2 role in anaplastic thyroid cancer aggressiveness is related to the fibronectin 1 and PI3K/AKT pathway. Mol Med Rep 2020; 21:1201-1207. [PMID: 31922212 PMCID: PMC7002997 DOI: 10.3892/mmr.2020.10907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare thyroid tumor associated with high mortality rates; thus, the identification of novel molecular targets and the development of therapeutic strategies are urgently required. The present study aimed to investigate the role of SRY-related HMG box-2 (SOX2) in ATC cells and explore whether the underlying mechanism was associated with fibronectin 1 (FN1). The proliferative, migratory and invasive ability of ATC cell lines was investigated using Cell Counting Kit-8, colony formation, wound-healing and Transwell assays, respectively; SOX2 expression in FRO cells was knocked down using small interfering RNA and SOX2 overexpression in FRO cells was achieved using cDNA constructs; and reverse transcription-quantitative PCR and western blotting were used to identify the mechanism of action underlying the SOX-2 mediated increased in cell aggressive phenotypes. Increased protein expression levels of SOX2 protein were observed in ATC tissue, and FRO and 8505c ATC cell lines. SOX2 overexpression increased the cell viability, and proliferative, migratory and invasive abilities of FRO cell lines. SOX2 overexpression increased FN1, p65, phosphorylated PI3K and AKT expression levels, whereas the knockdown of SOX2 promoted the opposite effects. In conclusion, the present study suggested a possible model of SOX2-mediated gene regulation in ATC cells, in which the overexpression of SOX2 promoted FN1 expression via the PI3K/AKT signaling pathway to induce the aggressive phenotype of ATC. These findings may provide crucial molecular insights into ATC pathogenesis and may demonstrate potential to develop into novel therapeutic interventions for patients with ATC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jinbiao Shang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jianqiang Zhao
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Kejing Wang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Liang Guo
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jialei Gu
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Wendong Wang
- Department of Head and Neck Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
46
|
Genes Involved in the Transcriptional Regulation of Pluripotency Are Expressed in Malignant Tumors of the Uterine Cervix and Can Induce Tumorigenic Capacity in a Nontumorigenic Cell Line. Stem Cells Int 2019; 2019:7683817. [PMID: 31885625 PMCID: PMC6914900 DOI: 10.1155/2019/7683817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Transcription factors OCT4, SOX2, KLF4, C-MYC, and NANOG (OSKM-N) regulate pluripotency and stemness, and their ectopic expression reprograms human and murine fibroblasts that constitute the key of regenerative medicine. To determine their contribution to cell transformation, we analyzed the gene expression profiles of these transcription factors in cervical cancer samples and found that they are preferentially expressed in the tumor component. Also, cancer stem cell-enriched cultures grown as sphere cultures showed overexpression of OSKM-N genes. Importantly, we observed that lentiviral-mediated transduction of these factors confers, to a nontumorigenic immortalized human cell line, properties of cancer stem cells as the ability to form tumors in a mouse model. When we performed a meta-analysis using microarray data from cervical cancer biopsies and normal tissues, we found that the expression of OSKM-N and some target genes allowed separating tumor and normal tissues between samples, which enhanced the importance of OSKM-N in the tumorigenesis. Finally, we analyzed and compared both transcript and protein expression profiles of these factors within a cohort of patients with cervical cancer. To our knowledge, this is the first time that the expression of OSKM-N is described to induce one of the main characteristics of the cancer stem cell, the tumorigenicity. And, more importantly, its exogenous expression in a nontumorigenic cell line is sufficient to induce a tumorigenic phenotype; furthermore, the differential expression of this transcription factor distinguishes tumor tissue and normal tissue in cervical samples.
Collapse
|
47
|
Kaipio K, Chen P, Roering P, Huhtinen K, Mikkonen P, Östling P, Lehtinen L, Mansuri N, Korpela T, Potdar S, Hynninen J, Auranen A, Grénman S, Wennerberg K, Hautaniemi S, Carpén O. ALDH1A1-related stemness in high-grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTOR-PI3K/aurora kinase inhibitors. J Pathol 2019; 250:159-169. [PMID: 31595974 DOI: 10.1002/path.5356] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Poor chemotherapy response remains a major treatment challenge for high-grade serous ovarian cancer (HGSC). Cancer stem cells are the major contributors to relapse and treatment failure as they can survive conventional therapy. Our objectives were to characterise stemness features in primary patient-derived cell lines, correlate stemness markers with clinical outcome and test the response of our cells to both conventional and exploratory drugs. Tissue and ascites samples, treatment-naive and/or after neoadjuvant chemotherapy, were prospectively collected. Primary cancer cells, cultured under conditions favouring either adherent or spheroid growth, were tested for stemness markers; the same markers were analysed in tissue and correlated with chemotherapy response and survival. Drug sensitivity and resistance testing was performed with 306 oncology compounds. Spheroid growth condition HGSC cells showed increased stemness marker expression (including aldehyde dehydrogenase isoform I; ALDH1A1) as compared with adherent growth condition cells, and increased resistance to platinum and taxane. A set of eight stemness markers separated treatment-naive tumours into two clusters and identified a distinct subgroup of HGSC with enriched stemness features. Expression of ALDH1A1, but not most other stemness markers, was increased after neoadjuvant chemotherapy and its expression in treatment-naive tumours correlated with chemoresistance and reduced survival. In drug sensitivity and resistance testing, five compounds, including two PI3K-mTOR inhibitors, demonstrated significant activity in both cell culture conditions. Thirteen compounds, including EGFR, PI3K-mTOR and aurora kinase inhibitors, were more toxic to spheroid cells than adherent cells. Our results identify stemness markers in HGSC that are associated with a decreased response to conventional chemotherapy and reduced survival if expressed by treatment-naive tumours. EGFR, mTOR-PI3K and aurora kinase inhibitors are candidates for targeting this cell population. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katja Kaipio
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ping Chen
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pia Roering
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Piia Mikkonen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Östling
- Science for Life Laboratory Department of Oncology & Pathology, Karolinska Institutet, Huddinge, Sweden.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Laura Lehtinen
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Naziha Mansuri
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Taina Korpela
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, High Throughput Biomedicine Unit (HTB), University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Annika Auranen
- Department of Obstetrics and Gynaecology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Seija Grénman
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, High Throughput Biomedicine Unit (HTB), University of Helsinki, Helsinki, Finland.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland.,Research Programs Unit, Genome-Scale Biology and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
The Effects of TGF-β Signaling on Cancer Cells and Cancer Stem Cells in the Bone Microenvironment. Int J Mol Sci 2019; 20:ijms20205117. [PMID: 31619018 PMCID: PMC6829436 DOI: 10.3390/ijms20205117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) plays a key role in bone metastasis formation; we hypothesized the possible involvement of TGF-β in the induction of cancer stem cells (CSCs) in the bone microenvironment (micro-E), which may be responsible for chemo-resistance. METHODS Mouse mammary tumor cells were implanted under the dorsal skin flap over the calvaria and into a subcutaneous (subQ) lesions in female mice, generating tumors in the bone and subQ micro-Es. After implantation of the tumor cells, mice were treated with a TGF-β R1 kinase inhibitor (R1-Ki). RESULTS Treatment with R1-Ki decreased tumor volume and cell proliferation in the bone micro-E, but not in the subQ micro-E. R1-Ki treatment did not affect the induction of necrosis or apoptosis in either bone or subQ micro-E. The number of cells positive for the CSC markers, SOX2, and CD166 in the bone micro-E, were significantly higher than those in the subQ micro-E. R1-Ki treatment significantly decreased the number of CSC marker positive cells in the bone micro-E but not in the subQ micro-E. TGF-β activation of the MAPK/ERK and AKT pathways was the underlying mechanism of cell proliferation in the bone micro-E. BMP signaling did not play a role in cell proliferation in either micro-E. CONCLUSION Our results indicated that the bone micro-E is a key niche for CSC generation, and TGF-β signaling has important roles in generating CSCs and tumor cell proliferation in the bone micro-E. Therefore, it is critically important to evaluate responses to chemotherapeutic agents on both cancer stem cells and proliferating tumor cells in different tumor microenvironments in vivo.
Collapse
|
49
|
Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res 2019; 12:93. [PMID: 31610800 PMCID: PMC6792265 DOI: 10.1186/s13048-019-0574-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background The ST6Gal-I glycosyltransferase, which adds α2–6-linked sialic acids to N-glycosylated proteins is upregulated in a wide range of malignancies including ovarian cancer. Prior studies have shown that ST6Gal-I-mediated sialylation of select surface receptors remodels intracellular signaling to impart cancer stem cell (CSC) characteristics. However, the mechanisms that contribute to ST6Gal-I expression in stem-like cancer cells are poorly understood. Results Herein, we identify the master stem cell transcription factor, Sox2, as a novel regulator of ST6Gal-I expression. Interestingly, SOX2 and ST6GAL1 are located within the same tumor-associated amplicon, 3q26, and these two genes exhibit coordinate gains in copy number across multiple cancers including ~ 25% of ovarian serious adenocarcinomas. In conjunction with genetic co-amplification, our studies suggest that Sox2 directly binds the ST6GAL1 promoter to drive transcription. ST6Gal-I expression is directed by at least four distinct promoters, and we identified the P3 promoter as the predominant promoter utilized by ovarian cancer cells. Chromatin Immunoprecipitation (ChIP) assays revealed that Sox2 binds regions proximal to the P3 promoter. To confirm that Sox2 regulates ST6Gal-I expression, Sox2 was either overexpressed or knocked-down in various ovarian cancer cell lines. Sox2 overexpression induced an increase in ST6Gal-I mRNA and protein, as well as surface α2–6 sialylation, whereas Sox2 knock-down suppressed levels of ST6Gal-I mRNA, protein and surface α2–6 sialylation. Conclusions These data suggest a process whereby SOX2 and ST6GAL1 are coordinately amplified in cancer cells, with the Sox2 protein then binding the ST6GAL1 promoter to further augment ST6Gal-I expression. Our collective results provide new insight into mechanisms that upregulate ST6Gal-I expression in ovarian cancer cells, and also point to the possibility that some of the CSC characteristics commonly attributed to Sox2 may, in part, be mediated through the sialyltransferase activity of ST6Gal-I.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
50
|
Wei Z, Jia J, Heng G, Xu H, Shan J, Wang G, Liu C, Xia J, Zhou H, Wu M, Yang Z, Wang M, Xiong Z, Huang H, Liu L, Qian C. Sirtuin-1/Mitochondrial Ribosomal Protein S5 Axis Enhances the Metabolic Flexibility of Liver Cancer Stem Cells. Hepatology 2019; 70:1197-1213. [PMID: 30901096 DOI: 10.1002/hep.30622] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming endows cancer cells with the ability to adjust metabolic pathways to support heterogeneously biological processes. However, it is not known how the reprogrammed activities are implemented during differentiation of cancer stem cells (CSCs). In this study, we demonstrated that liver CSCs relied on the enhanced mitochondrial function to maintain stemness properties, which is different from aerobic glycolysis playing main roles in the differentiated non-CSCs. We found that liver CSCs exhibit increased mitochondrial respiratory capacity and that complex-I of mitochondria was necessary for stemness properties of liver CSCs through regulation of mitochondrial respiration. Bioinformatics analysis reveals that mitochondrial ribosomal protein S5 (MRPS5) is closely related with the function of complex-I. Further experiments confirmed that MRPS5 promoted the production of nicotinamide adenine dinucleotide (NAD+ ), which is necessary for enhanced mitochondrial function in liver CSCs. MRPS5 played a critical role for liver CSCs to maintain stemness properties and to participate in tumor progression. Mechanistically, the acetylation status of MRPS5 is directly regulated by NAD+ dependent deacetylase sirtuin-1 (SIRT1), which is abundant in liver CSCs and decreased during differentiation. Deacetylated MRPS5 locates in mitochondria to promote the function complex-I and the generation of NAD+ to enhance mitochondrial respiration. Conversely, the acetylated MRPS5 gathered in nuclei leads to increased expression of glycolytic proteins and promotion of the Warburg Effect. Therefore, liver CSCs transform mitochondrial-dependent energy supply to a Warburg phenotype by the dual function of MRPS5. Clinical analysis of SIRT1 and MRPS5 expression in tumor tissues showed the SIRT1High /Cytoplasmic-MRPS5High profile was associated with patients with hepatocellular carcinoma with poor prognosis. Conclusion: SIRT1/MRPS5 axis participates in metabolic reprogramming to facilitate tumor progression and may serve as a promising therapeutic target of liver cancer.
Collapse
Affiliation(s)
- Zhihao Wei
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiankun Jia
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang Heng
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huailong Xu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Juanjuan Shan
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guiqin Wang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Chungang Liu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianyu Xia
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| | - Haijun Zhou
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| | - Min Wu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhi Yang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Meiling Wang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhouxing Xiong
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Huang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Limei Liu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| | - Cheng Qian
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China.,Precision Cancer Medicine Center, Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|