1
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Cai M, Wang Y, Ma H, Yang L, Xu Z. Advances and challenges in immunotherapy for locally advanced nasopharyngeal carcinoma. Cancer Treat Rev 2024; 131:102840. [PMID: 39426201 DOI: 10.1016/j.ctrv.2024.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignant tumor of the head and neck, with approximately 70 % of patients being diagnosed at a locally advanced stage. Despite the responsiveness to radiotherapy and chemotherapy, the 5-year survival rate of locally advanced NPC (LANPC) remains at approximately 80 %. Hence, there is an urgent need for novel treatment strategies to improve the prognosis of patients with LANPC. Numerous studies have illustrated the efficacy of immune checkpoint inhibitors (ICIs) in recurrent/metastatic NPC. Hence, the potential of immunotherapy for LANPC is under investigation. Using the Web of Clinical Trials, we identified 84 relevant trials exploring immunotherapy for NPC, encompassing 17 trials focusing on ICIs for LANPC. Preliminary findings from several trials suggest that adding ICIs into the primary treatment for LANPC significantly enhances the objective response rate and progression-free survival, with manageable safety profiles. However, the type, dosage, and timing of integration (induction phase, concurrent phase, and adjuvant phase) of ICIs into standard primary treatment of LANPC varies among these trials and further researches are warranted. This review provides an overview of immunotherapy principles in NPC, discusses recent advances and challenges associated with ICIs in the primary treatment for LANPC derived from published and ongoing clinical trials, and outlines the current landscape of other immunotherapies in LANPC, such as adoptive cell therapy, immunomodulatory agents, and tumor vaccines in LANPC. These insights aim to inform clinical practice and guide future researches.
Collapse
Affiliation(s)
- Miaoying Cai
- Shenzhen University Medicine School, Shenzhen University, 518060, Shenzhen, Guangdong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Yifu Wang
- Shenzhen University Medicine School, Shenzhen University, 518060, Shenzhen, Guangdong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Huangrong Ma
- Shenzhen University Medicine School, Shenzhen University, 518060, Shenzhen, Guangdong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Li Yang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China
| | - Zhiyuan Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, 518053, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Zhang F, Li W, Zheng X, Ren Y, Li L, Yin H. The novel immune landscape of immune-checkpoint blockade in EBV-associated malignancies. FASEB J 2024; 38:e70139. [PMID: 39520274 DOI: 10.1096/fj.202301980rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus and a class 1 carcinogen that is closely associated with a series of malignant lymphomas and epithelial cell carcinomas. Although these EBV-related cancers may exhibit different features in clinical symptoms and anatomical sites, they all have a characteristic immune-suppressed tumor immune microenvironment (TIME) that is tightly correlated with an abundance of tumor-infiltrating lymphocytes (TILs) that primarily result from the EBV infection. Overwhelming evidence indicates that an upregulation of immune-checkpoint molecules is a powerful strategy employed by the EBV to escape immune surveillance. While previous studies have mainly focused on the therapeutic effects of PD-1 and CTLA-4 blockades in treating EBV-associated tumors, several novel inhibitory receptors (e.g., CD47, LAG-3, TIM-3, VISTA, and DDR1) have recently been identified as potential targets for treating EBV-associated malignancies (EBVaMs). This review retrospectively summarizes the biological mechanisms used for immune checkpoint evasion in EBV-associated tumors. Its purpose is to update our current knowledge concerning the underlying mechanisms by which an immune checkpoint blockade triggers host antitumor immunity against EBVaMs. Additionally, this review may help investigators to more fully understand the correlation between EBV infection and tumor development and subsequently develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Li
- The First Class Ward 2 of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Nagato T, Komatsuda H, Hayashi R, Takahara M, Ujiie N, Kosaka A, Ohkuri T, Oikawa K, Sato R, Wakisaka R, Kono M, Yamaki H, Ohara K, Kumai T, Kishibe K, Katada A, Hayashi T, Kobayashi H. Soluble CD27 as a predictive biomarker for intra-tumoral CD70/CD27 interaction in nasopharyngeal carcinoma. Cancer Sci 2024; 115:1073-1084. [PMID: 38279834 PMCID: PMC11007004 DOI: 10.1111/cas.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024] Open
Abstract
In CD70-expressing tumors, the interaction of CD70 on tumor cells with its lymphocyte receptor, CD27, is thought to play a role in immunosuppression in the tumor microenvironment and elevated serum levels of soluble CD27 (sCD27). Previous studies showed that CD70 is expressed in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related malignancy. However, the association between intratumoral CD70/CD27 expression and serum levels of sCD27 in NPC remains unclear. In the present study, we show that CD70 is primarily expressed by tumor cells in NPC and that CD27-positive lymphocytes infiltrate around tumor cells. NPC patients with CD27-positive lymphocytes had significantly better prognosis than patients lacking these cells. In addition, high CD70 expression by tumor cells tended to be correlated with shorter survival in NPC patients with CD27-positive lymphocytes. Serum sCD27 levels were significantly increased in patients with NPC and provided good diagnostic accuracy for discriminating patients from healthy individuals. The concentration of serum sCD27 in patients with CD70-positive NPC with CD27-positive lymphocytes was significantly higher than in patients with tumors negative for CD70 and/or CD27, indicating that the intratumoral CD70/CD27 interaction boosts the release of sCD27. Furthermore, positive expression of CD70 by NPC cells was significantly correlated with EBV infection. Our results suggest that CD70/CD27-targeted immunotherapies may be promising treatment options and that sCD27 may become an essential tool for evaluating the applicability of these therapies by predicting the intratumoral CD70/CD27 interaction in NPC.
Collapse
Affiliation(s)
- Toshihiro Nagato
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroki Komatsuda
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Ryusuke Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Miki Takahara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
- Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Nanami Ujiie
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
- Department of Thoracic Surgery and Breast SurgeryAsahikawa Medical University HospitalAsahikawaJapan
| | - Akemi Kosaka
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Takayuki Ohkuri
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Kensuke Oikawa
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Sato
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Risa Wakisaka
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Michihisa Kono
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hidekiyo Yamaki
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Kenzo Ohara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Takumi Kumai
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
- Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Kan Kishibe
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Akihiro Katada
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Tatsuya Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroya Kobayashi
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
5
|
Polz A, Morshed K, Drop B, Polz-Dacewicz M. Could MMP3 and MMP9 Serve as Biomarkers in EBV-Related Oropharyngeal Cancer. Int J Mol Sci 2024; 25:2561. [PMID: 38473807 DOI: 10.3390/ijms25052561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The high incidence of, and mortality from, head and neck cancers (HNCs), including those related to Epstein-Barr virus (EBV), constitute a major challenge for modern medicine, both in terms of diagnosis and treatment. Therefore, many researchers have made efforts to identify diagnostic and prognostic factors. The aim of this study was to evaluate the diagnostic usefulness of matrix metalloproteinase 3 (MMP 3) and matrix metalloproteinase 9 (MMP 9) in EBV positive oropharyngeal squamous cell carcinoma (OPSCC) patients. For this purpose, the level of these MMPs in the serum of patients with EBV-positive OPSCC was analyzed in relation to the degree of histological differentiation and TNM classification. Our research team's results indicate that the level of both MMPs is much higher in the EBV positive OPSCC patients compared to the EBV negative and control groups. Moreover, their levels were higher in more advanced clinical stages. Considering the possible correlation between the level of MMP 3, MMP 9 and anti-EBV antibodies, and also viral load, after statistical analysis using multiple linear regression, their high correlation was demonstrated. The obtained results confirm the diagnostic accuracy for MMP 3 and MMP 9. Both MMPs may be useful in the diagnosis of EBV positive OPSCC patients.
Collapse
Affiliation(s)
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with e-health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Huang X, Zhang M, Zhang Z. The Role of LMP1 in Epstein-Barr Virus-associated Gastric Cancer. Curr Cancer Drug Targets 2024; 24:127-141. [PMID: 37183458 DOI: 10.2174/1568009623666230512153741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein- Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
7
|
Yoshizaki T, Kondo S, Dochi H, Kobayashi E, Mizokami H, Komura S, Endo K. Recent Advances in Assessing the Clinical Implications of Epstein-Barr Virus Infection and Their Application to the Diagnosis and Treatment of Nasopharyngeal Carcinoma. Microorganisms 2023; 12:14. [PMID: 38276183 PMCID: PMC10820804 DOI: 10.3390/microorganisms12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Reports about the oncogenic mechanisms underlying nasopharyngeal carcinoma (NPC) have been accumulating since the discovery of Epstein-Barr virus (EBV) in NPC cells. EBV is the primary causative agent of NPC. EBV-host and tumor-immune system interactions underlie the unique representative pathology of NPC, which is an undifferentiated cancer cell with extensive lymphocyte infiltration. Recent advances in the understanding of immune evasion and checkpoints have changed the treatment of NPC in clinical settings. The main EBV genes involved in NPC are LMP1, which is the primary EBV oncogene, and BZLF1, which induces the lytic phase of EBV. These two multifunctional genes affect host cell behavior, including the tumor-immune microenvironment and EBV behavior. Latent infections, elevated concentrations of the anti-EBV antibody and plasma EBV DNA have been used as biomarkers of EBV-associated NPC. The massive infiltration of lymphocytes in the stroma suggests the immunogenic characteristics of NPC as a virus-infected tumor and, at the same time, also indicates the presence of a sophisticated immunosuppressive system within NPC tumors. In fact, immune checkpoint inhibitors have shown promise in improving the prognosis of NPC patients with recurrent and metastatic disease. However, patients with advanced NPC still require invasive treatments. Therefore, there is a pressing need to develop an effective screening system for early-stage detection of NPC in patients. Various modalities, such as nasopharyngeal cytology, cell-free DNA methylation, and deep learning-assisted nasopharyngeal endoscopy for screening and diagnosis, have been introduced. Each modality has its advantages and disadvantages. A reciprocal combination of these modalities will improve screening and early diagnosis of NPC.
Collapse
|
8
|
Heawchaiyaphum C, Yoshiyama H, Iizasa H, Burassakarn A, Tumurgan Z, Ekalaksananan T, Pientong C. Epstein-Barr Virus Promotes Oral Squamous Cell Carcinoma Stemness through the Warburg Effect. Int J Mol Sci 2023; 24:14072. [PMID: 37762374 PMCID: PMC10531857 DOI: 10.3390/ijms241814072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with various human malignancies. An association between EBV infection and oral squamous cell carcinoma (OSCC) has recently been reported. We established EBV-positive OSCC cells and demonstrated that EBV infection promoted OSCC progression. However, the mechanisms by which EBV promotes OSCC progression remain poorly understood. Therefore, we performed metabolic analyses of EBV-positive OSCC cells and established a xenograft model to investigate the viral contribution to OSCC progression. Here, we demonstrated that EBV infection induced mitochondrial stress by reducing the number of mitochondrial DNA (mtDNA) copies. Microarray data from EBV-positive OSCC cells showed altered expression of glycolysis-related genes, particularly the upregulation of key genes involved in the Warburg effect, including LDHA, GLUT1, and PDK1. Furthermore, lactate production and LDH activity were elevated in EBV-positive OSCC cells. EBV infection significantly upregulated the expression levels of cancer stem cell (CSC) markers such as CD44 and CD133 in the xenograft model. In this model, tumor growth was significantly increased in EBV-positive SCC25 cells compared with that in uninfected cells. Furthermore, tumorigenicity increased after serial passages of EBV-positive SCC25 tumors. This study revealed the oncogenic role of EBV in OSCC progression by inducing the Warburg effect and cancer stemness.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand;
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
| | - Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Zolzaya Tumurgan
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Deng Y, Liu X, Huang Y, Ye J, He Q, Luo Y, Chen Y, Li Q, Lin Y, Liang R, Li Y, Wei J, Zhang J. STIM1-regulated exosomal EBV-LMP1 empowers endothelial cells with an aggressive phenotype by activating the Akt/ERK pathway in nasopharyngeal carcinoma. Cell Oncol (Dordr) 2023; 46:987-1000. [PMID: 36917356 DOI: 10.1007/s13402-023-00790-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Stromal interaction molecule 1 (STIM1)-mediated Ca2+ signaling regulates tumor angiogenesis in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related human malignancy. However, the mechanism by which STIM1 modulates endothelial functional phenotypes contributing to tumor angiogenesis remains elusive. METHODS NPC cell-derived exosomes were isolated via differential centrifugation and observed using transmission electron microscopy. Exosome particle sizes were assessed by nanoparticle tracking analysis (NTA). Uptake of exosomes by recipient ECs was detected by fluorescent labeling of the exosomes with PKH26. Tumor angiogenesis-associated profiles were characterized by determining cell proliferation, migration, tubulogenesis and permeability in human umbilical vein endothelial cells (HUVECs). Activation of the Akt/ERK pathway was assessed by detecting the phosphorylation levels using Western blotting. A chick embryo chorioallantoic membrane (CAM) xenograft model was employed to study tumor-associated neovascularization in vivo. RESULTS We found that NPC cell-derived exosomes harboring EBV-encoded latent membrane protein 1 (LMP1) promoted proliferation, migration, tubulogenesis and permeability by activating the Akt/ERK pathway in ECs. STIM1 silencing reduced LMP1 enrichment in NPC cell-derived exosomes, thereby reversing its pro-oncogenic effects in an Akt/ERK pathway-dependent manner. Furthermore, STIM1 knockdown in NPC cells blunted tumor-induced vascular network formation and inhibited intra-tumor neovascularization in the chorioallantoic membrane (CAM) xenograft model. CONCLUSION STIM1 regulates tumor angiogenesis by controlling exosomal EBV-LMP1 delivery to ECs in the NPC tumor microenvironment. Blocking exosome-mediated cell-to-cell horizontal transfer of EBV-associated oncogenic signaling molecules may be an effective therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yue Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qiuyun Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China.
- Institute of Oncology, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
10
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y, Wang Z, Hong H, Huang H, Lin T. Immunotherapy for nasopharyngeal carcinoma: Current status and prospects (Review). Int J Oncol 2023; 63:97. [PMID: 37417358 PMCID: PMC10367053 DOI: 10.3892/ijo.2023.5545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial tumor located in the nasopharynx and is highly associated with Epstein‑Barr virus (EBV) infection. Although radiotherapy alone can cure ~90% of patients with early‑stage disease, >70% of patients with NPC have locoregionally advanced or metastatic disease at the first diagnosis due to the insidious and aggressive nature of NPC. After comprehensive radiochemotherapy, 20‑30% of patients with advanced NPC still fail treatment, mainly due to recurrence and/or metastasis (R/M). Conventional salvage treatments, such as radiotherapy, chemotherapy and surgery, are suboptimal and frequently accompanied by severe adverse effects and limited efficacy. In recent years, immunotherapy has emerged as a promising treatment modality for R/M NPC. An increasing number of clinical studies have investigated the safety and efficacy of immunotherapy for advanced NPC and have shown considerable progress. In the present review, the rationale for the use of immunotherapy to treat NPC was summarized and the current status, progress and challenges of NPC clinical research on different immunotherapeutic approaches were highlighted, including immune checkpoint inhibitors, vaccines, immunomodulators, adoptive cell transfer and EBV‑specific monoclonal antibodies. The comprehensive overview of immunotherapy in NPC may provide insight for clinical practice and future investigation.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Yuyi Yao
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120
| | - Zongyao Huang
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yungchang Chen
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Zhao Wang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Huangming Hong
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - He Huang
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
| | - Tongyu Lin
- Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong 510060
- Department of Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
11
|
Lin J, Lin D, Qiu S, Huang Z, Liu F, Huang W, Xu Y, Zhang X, Feng S. Shifted-excitation Raman difference spectroscopy for improving in vivo detection of nasopharyngeal carcinoma. Talanta 2023; 257:124330. [PMID: 36773510 DOI: 10.1016/j.talanta.2023.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
A strong fluorescence background is one of the common interference factors of Raman spectroscopic analysis in biological tissue. This study developed an endoscopic shifted-excitation Raman difference spectroscopy (SERDS) system for real-time in vivo detection of nasopharyngeal carcinoma (NPC) for the first time. Owing to the use of the SERDS method, the high-quality Raman signals of nasopharyngeal tissue could be well extracted and characterized from the complex raw spectra by removing the fluorescence interference signals. Significant spectral differences relating to proteins, phospholipids, glucose, and DNA were found between 42 NPC and 42 normal tissue sites. Using linear discriminant analysis, the diagnostic accuracy of SERDS for NPC detection was 100%, which was much higher than that of raw Raman spectroscopy (75.0%), showing the great potential of SERDS for improving the accurate in vivo detection of NPC.
Collapse
Affiliation(s)
- Jinyong Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China; Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zufang Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| | - Feng Liu
- Simple & Smart Instrument (Beijing) Co.,Ltd, China
| | - Wei Huang
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, PR China
| | - Yuanji Xu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xianzeng Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
12
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
13
|
Kondo S, Okabe A, Nakagawa T, Matsusaka K, Fukuyo M, Rahmutulla B, Dochi H, Mizokami H, Kitagawa Y, Kurokawa T, Mima M, Endo K, Sugimoto H, Wakisaka N, Misawa K, Yoshizaki T, Kaneda A. Repression of DERL3 via DNA methylation by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166598. [PMID: 36372158 DOI: 10.1016/j.bbadis.2022.166598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is Epstein-Barr virus (EBV)-associated invasive malignancy. Increasing evidence indicates that epigenetic abnormalities, including DNA methylation, play important roles in the development of NPC. In particular, the EBV principal oncogene, latent membrane protein 1 (LMP1), is considered a key factor in inducing aberrant DNA methylation of several tumour suppressor genes in NPC, although the mechanism remains unclear. Herein, we comprehensively analysed the methylome data of Infinium BeadArray from 51 NPC and 52 normal nasopharyngeal tissues to identify LMP1-inducible methylation genes. Using hierarchical clustering analysis, we classified NPC into the high-methylation, low-methylation, and normal-like subgroups. We defined high-methylation genes as those that were methylated in the high-methylation subgroup only and common methylation genes as those that were methylated in both high- and low-methylation subgroups. Subsequently, we identified 715 LMP1-inducible methylation genes by observing the methylome data of the nasopharyngeal epithelial cell line with or without LMP1 expression. Because high-methylation genes were enriched with LMP1-inducible methylation genes, we extracted 95 high-methylation genes that overlapped with the LMP1-inducible methylation genes. Among them, we identified DERL3 as the most significantly methylated gene affected by LMP1 expression. DERL3 knockdown in cell lines resulted in significantly increased cell proliferation, migration, and invasion. Lower DERL3 expression was more frequently detected in the advanced T-stage NPC than in early T-stage NPC. These results indicate that DERL3 repression by DNA methylation contributes to NPC tumour progression.
Collapse
Affiliation(s)
- Satoru Kondo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Takuya Nakagawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Pathology, Chiba University Hospital, Chiba, Chiba 260-2856, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Genome Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Hirotomo Dochi
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Harue Mizokami
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Yuki Kitagawa
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tomoya Kurokawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuhira Endo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisashi Sugimoto
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naohiro Wakisaka
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan.
| |
Collapse
|
14
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
15
|
Lee PJ, Sui YH, Liu TT, Tsang NM, Huang CH, Lin TY, Chang KP, Liu SC. Epstein-Barr viral product-containing exosomes promote fibrosis and nasopharyngeal carcinoma progression through activation of YAP1/FAPα signaling in fibroblasts. J Exp Clin Cancer Res 2022; 41:254. [PMID: 35986369 PMCID: PMC9392321 DOI: 10.1186/s13046-022-02456-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The progression of nasopharyngeal carcinoma (NPC) is profoundly affected by Epstein-Barr virus (EBV) infection. However, the role of EBV in the intercommunication between NPC and surrounding stromal cells has yet to be explored.
Methods
NPC biopsies were obtained for immunohistochemical (IHC) analyses. Clinical correlations between the expression of active YAP1/FAPα and the fibrotic response and between YAP1/FAPα and the density of cytotoxic CD8a+ T lymphocytes were determined. Survival times based on IHC scores were compared between groups using Kaplan-Meier survival and log-rank tests. Independent prognostic factors for metastasis/recurrence-free survival and overall survival were identified using univariate and multivariate Cox regression models. Fibroblasts were isolated from human nasopharyngeal biopsies. Exosomes were purified from culture supernatants of EBV+-positive NPC cells. The effects of EBV product-containing exosomes on fibroblast activation, fibrotic response, tumor growth, immune response, and correlations between the expression of featured genes were investigated using gel contraction assays, ELISAs, EdU incorporation assays, real-time impedance assays, RNA sequencing, immunostaining, 3D cancer spheroid coculture systems, and an NPC xenograft model.
Results
NPC patients who developed metastasis had significantly higher levels of active YAP1 and FAPα in their tumor stroma, which was further correlated with tumor fibrosis and poorer metastasis-free survival. Exosomes released from EBV+-NPC cells contained abundant FAPα protein and EBV-encoded latent membrane protein 1. Viral product-containing exosomes markedly enhanced the fibrotic response and tumor growth in a mouse xenograft model. IHC analyses of human NPC and NPC xenografts revealed positive correlations between levels of active YAP1 and FAPα, YAP1 and the fibrotic response, and FAPα and the fibrotic response. Mechanistic studies showed that treatment of fibroblasts with viral product-containing exosomes promoted the characteristics of cancer-associated fibroblasts by stimulating YAP1 signaling and the production of the immunosuppressive cytokines IL8, CCL2, and IL6. Inhibition of YAP1 activation markedly reversed these exosome-mediated protumoral effects, resulting in reduced contractility, inactivation of YAP1 signaling, and decreased production of immunosuppressive cytokines in fibroblasts. Furthermore, fibroblasts stimulated with these viral product-containing exosomes promoted NPC resistance to T cell-mediated cytotoxicity within tumor spheroids. In NPC tissues, a significant negative correlation was found between YAP1/FAPα and the density of CD8a+ T lymphocytes with a granzyme B signature.
Conclusion
EBV orchestrates interactions with the host and surrounding stroma by stimulating the functions of YAP1 and FAPα in fibroblasts through exosome cargos to create a more immunosuppressive, proinvasive microenvironment.
Collapse
|
16
|
Kondo S, Okuno Y, Murata T, Dochi H, Wakisaka N, Mizokami H, Moriyama-Kita M, Kobayashi E, Kano M, Komori T, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Kimura H, Yoshizaki T. EBV genome variations enhance clinicopathological features of nasopharyngeal carcinoma in a non-endemic region. Cancer Sci 2022; 113:2446-2456. [PMID: 35485636 PMCID: PMC9277247 DOI: 10.1111/cas.15381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is caused by infection with Epstein–Barr virus (EBV) and endemic in certain geographic regions. EBV lytic gene, BALF2, closely associates with viral reactivation and BALF2 gene variation, the H‐H‐H strain, causes NPC in endemic region, southern China. Here, we investigate whether such EBV variations also affect NPC in a non‐endemic region, Japan. Viral genome sequencing with 47 EBV isolates of Japanese NPC were performed and compared with those of other EBV‐associated diseases from Japan or NPC in Southern China. EBV genomes of Japanese NPC are different from those of other diseases in Japan or endemic NPC; Japanese NPC was not affected by the endemic strain (the BALF2 H‐H‐H) but frequently carried the type 2 EBV or the strain with intermediate risk of endemic NPC (the BALF2 H‐H‐L). Seven single nucleotide variations were specifically associated with Japanese NPC, of which six were present in both type 1 and 2 EBV genomes, suggesting the contribution of the type 2 EBV‐derived haplotype. This observation was supported by a higher viral titer and stronger viral reactivation in NPC with either type 2 or H‐H‐L strains. Our results highlight the importance of viral strains and viral reactivation in the pathogenesis of non‐endemic NPC.
Collapse
Affiliation(s)
- Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan.,These authors contributed equally to this work
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.,Pediatric Cancer Treatment Center, Nagoya University Hospital, Nagoya, Aichi, Japan.,These authors contributed equally to this work
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Naohiro Wakisaka
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University, Graduate school of Medicine, Nagoya, Aichi, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University. Kanazawa, Ishikawa, Japan
| |
Collapse
|
17
|
Su ZY, Siak PY, Leong CO, Cheah SC. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front Oncol 2022; 12:840467. [PMID: 35311066 PMCID: PMC8924466 DOI: 10.3389/fonc.2022.840467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre of Cancer and Stem Cells Research, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
19
|
Ju Y, Wu X, Wang H, Li B, Long Q, Zhang D, Chen H, Xiao N, Li F, Zhang S, Yang S. Genomic Landscape of Head and Neck Squamous Cell Carcinoma Across Different Anatomic Sites in Chinese Population. Front Genet 2021; 12:680699. [PMID: 34194478 PMCID: PMC8236955 DOI: 10.3389/fgene.2021.680699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 12/09/2022] Open
Abstract
Background The characteristics of head and neck squamous cell carcinoma (HNSCC) across different anatomic sites in the Chinese population have not been studied. To determine the genomic abnormalities underlying HNSCC across different anatomic sites, the alterations of selected cancer-related genes were evaluated. Methods Genomic DNA samples obtained from formalin-fixed, paraffin-embedded tissues were analyzed using targeted sequencing in a panel of 383 cancer-related genes to determine the genomic alterations. Results A total of 317 formalin-fixed, paraffin-embedded HNSCC specimens were collected, and a total of 2,156 protein-coding mutations, including 1,864 single nucleotide variants and 292 insertions and deletions, were identified across more than six different anatomic sites. Mutation loads were distinct across the anatomic sites. Larynx carcinoma was found with the highest mutation loads, whereas nasopharynx carcinoma showed the lowest mutation loads. A total of 1,110 gains and 775 losses were identified in the 317 specimens. Patients who had at least one clinically actionable alteration (levels 1–4 in OncoKB) were identified. One patient had an actionable alteration with level 1 evidence in OncoKB, TEX10-NTRK2 fusion, who may benefit from larotrectinib or entrectinib treatment. Conclusion The genomic profiling of HNSCC using targeted sequencing can identify rational therapeutic candidate genes suitable for the treatment of the HNSCCs.
Collapse
Affiliation(s)
- Yunhe Ju
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingrao Wu
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Bin Li
- 3D Medicines Inc., Shanghai, China
| | - Qing Long
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Hao Chen
- 3D Medicines Inc., Shanghai, China
| | | | - Fugen Li
- 3D Medicines Inc., Shanghai, China
| | - Shiwen Zhang
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shenggang Yang
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Burassakarn A, Srisathaporn S, Pientong C, Wongjampa W, Vatanasapt P, Patarapadungkit N, Ekalaksananan T. Exosomes-carrying Epstein-Barr virus-encoded small RNA-1 induces indoleamine 2, 3-dioxygenase expression in tumor-infiltrating macrophages of oral squamous-cell carcinomas and suppresses T-cell activity by activating RIG-I/IL-6/TNF-α pathway. Oral Oncol 2021; 117:105279. [PMID: 33819809 DOI: 10.1016/j.oraloncology.2021.105279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Although exosomes carrying Epstein-Barr virus-encoded small RNA-1 (EBER-1) are involved in the immunosuppressive tumor microenvironments of EBV-associated head and neck carcinomas, the effects of EBER-1-associated exosomes on tumor-infiltrating macrophages are poorly understood. MATERIALS AND METHODS The association between EBV infection and expression of indoleamine 2,3-dioxygenase (IDO) was assessed in 165 paraffin-embedded oral squamous cell carcinoma (OSCC) tissue samples. Using in vitro techniques, we investigated whether stimulation of the RIG-I/IL-6/TNF-α pathway by exosomes carrying EBER-1 is critical for IDO induction in macrophages. We performed a thymidine incorporation and a cell cytolytic assay to test for up-regulated IDO in macrophages that can block the proliferation and function of effector T cells. RESULTS Some infiltrated macrophages expressed levels of IDO higher than OSCC cells which was significantly associated with presence of EBV. The production of IDO, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in human monocyte-derived macrophages (MDMs) was induced by EBV-associated exosomes in vitro. Mechanistically, the retinoic acid-inducible gene I (RIG-I) pathway in MDMs was stimulated by EBV-encoded small RNA-1 (EBER-1) whereas the inhibition of these pathways by BX-795 almost abolished the production of these two cytokines and IDO induction. Also, the EBER-1-activated IDO in MDMs suppressed the proliferation of T lymphocytes and diminished the cytolytic activity of CD8+ T cells. CONCLUSION Exosomes carrying EBER-1 could induce IDO expression in MDMs, considerably aided by an IL-6 and TNF-α-dependent mechanism via the RIG-I signaling pathway, which might create an immunosuppressive microenvironment affecting T-cell immune responses.
Collapse
Affiliation(s)
- Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawarot Srisathaporn
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerayut Wongjampa
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patravoot Vatanasapt
- Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natcha Patarapadungkit
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
21
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
22
|
Epstein-Barr Virus LMP1 Induces Soluble PD-L1 in Nasopharyngeal Carcinoma. Microorganisms 2021; 9:microorganisms9030603. [PMID: 33804064 PMCID: PMC7998736 DOI: 10.3390/microorganisms9030603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus (EBV)-associated malignancy. The principal oncogene of EBV, latent membrane protein 1 (LMP1), induces the expression of programmed death-ligand 1 (PD-L1), which is an immunosuppressive transmembrane protein and a promising therapeutic target for various malignancies. Recent studies have revealed an association between the level of soluble PD-L1 (sPD-L1) and disease progression. However, the role of sPD-L1 in NPC or its relevance to LMP1 has not been elucidated. This study aimed to examine whether LMP1 induces sPD-L1 in vitro and analyze the clinical relevance of LMP1, PD-L1, and sPD-L1 in NPC patients. Analysis of nasopharyngeal cell lines revealed that LMP1 induces both cellular PD-L1 and sPD-L1. Analysis of biopsy specimens from 32 NPC patients revealed that LMP1 expression was significantly correlated with PD-L1 expression. Finally, the serum sPD-L1 level in NPC patients was higher than that in the controls. Moreover, the sPD-L1 level in the advanced stage was higher than that in the early stage. However, LMP1 expression, PD-L1 expression, and sPD-L1 levels were not associated with prognosis. These results suggest that LMP1 induces both sPD-L1 and PD-L1, which are associated with NPC progression.
Collapse
|
23
|
Nkosi D, Sun L, Duke LC, Meckes DG. Epstein-Barr virus LMP1 manipulates the content and functions of extracellular vesicles to enhance metastatic potential of recipient cells. PLoS Pathog 2020; 16:e1009023. [PMID: 33382850 PMCID: PMC7774862 DOI: 10.1371/journal.ppat.1009023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) mediate intercellular communication events and alterations in normal vesicle content contribute to function and disease initiation or progression. The ability to package a variety of cargo and transmit molecular information between cells renders EVs important mediators of cell-to-cell crosstalk. Latent membrane protein 1 (LMP1) is a chief viral oncoprotein expressed in most Epstein-Barr virus (EBV)-associated cancers and is released from cells at high levels in EVs. LMP1 containing EVs have been demonstrated to promote cell growth, migration, differentiation, and regulate immune cell function. Despite these significant changes in recipient cells induced by LMP1 modified EVs, the mechanism how this viral oncogene modulates the recipient cells towards these phenotypes is not well understood. We hypothesize that LMP1 alters EV content and following uptake of the LMP1-modified EVs by the recipient cells results in the activation of cell signaling pathways and increased gene expression which modulates the biological properties of recipient cell towards a new phenotype. Our results show that LMP1 expression alters the EV protein and microRNA content packaged into EVs. The LMP1-modified EVs also enhance recipient cell adhesion, proliferation, migration, invasion concomitant with the activation of ERK, AKT, and NF-κB signaling pathways. The LMP1 containing EVs induced transcriptome reprogramming in the recipient cells by altering gene expression of different targets including cadherins, matrix metalloproteinases 9 (MMP9), MMP2 and integrin-α5 which contribute to extracellular matrix (ECM) remodeling. Altogether, our data demonstrate the mechanism in which LMP1-modified EVs reshape the tumor microenvironment by increasing gene expression of ECM interaction proteins.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Leanne C. Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
24
|
Huo S, Luo Y, Deng R, Liu X, Wang J, Wang L, Zhang B, Wang F, Lu J, Li X. EBV-EBNA1 constructs an immunosuppressive microenvironment for nasopharyngeal carcinoma by promoting the chemoattraction of Treg cells. J Immunother Cancer 2020; 8:jitc-2020-001588. [PMID: 33122398 PMCID: PMC7597532 DOI: 10.1136/jitc-2020-001588] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is primarily caused by the Epstein-Barr virus (EBV) infection in NPC endemic areas. EBNA1 is an EBV-encoded nuclear antigen, which plays a critical role in the maintenance and replication of EBV genome. However, the mechanisms of EBNA1-promoted NPC immune escape are unknown. Regulatory T (Treg) cells are among the key regulators in restraining antitumor responses. However, the mechanisms of accumulation of Treg cells in NPC have not been defined. This study attempted to identify the detailed mechanisms of EBNA1 functions as a tumor accelerator to promote NPC immune escape by enhancing chemoattraction of Treg cells. Methods mRNA profiles were determined by next-generation sequencing in NPC cells. In vitro and in vivo assays were performed to analyze the role of EBNA1 in regulation of recruitment of Treg cells. Colocation and coimmunoprecipitation analyzes were used to identify the SMAD3/c-JUN complex. Chromatin immunoprecipitation assay and dual luciferase reporter assays were designed to demonstrate c-JUN binding to miR-200a promoter and miR-200a targeting to CXCL12 3’Untranslated Regions. The hepatocellular carcinoma models were designed to demonstrate universality of the CXCL12-CXCR4-Treg axis in promoting immune evasion of various tumors. Result A novel molecular mechanism was identified that involves EBV-EBNA1-stimulated chemotactic migration of Treg cells toward NPC microenvironment by upregulation of the transforming growth factor-β1 (TGFβ1)-SMAD3-PI3K-AKT-c-JUN-CXCL12-CXCR4 axis and downregulation of miR-200a. EBV-EBNA1 promotes the chemoattraction of Treg cells by governing the protein–protein interactions of the SMAD3/c-JUN complex in a TGFβ1-dependent manner in vitro and in vivo. TGFβ1 suppresses miR-200a by enhancing the SMAD3/c-JUN complex. miR-200a negatively regulates the CXCL12 chemokine by direct targeting of the CXCL12 3’UTR region. However, CXCL12 acts as the target gene of miR-200a and as an inhibitor of miR-200a transcription, and inhibition of miR-200a by CXCL12 is mediated by c-JUN, which directly binds to the miR-200a promoter and forms a c-JUN-miR-200a-CXCL12-c-JUN feedback loop. In addition, enhanced CXCL12 efficiently attracts CXCR4-positive Treg cells to remodel an immunosuppressive microenvironment. Conclusions EBV-EBNA1 promotes chemotactic migration of Treg cells via the TGFβ1-SMAD3-PI3K-AKT-c-JUN-miR-200a-CXCL12-CXCR4 axis in the NPC microenvironment. These results suggest that EBV-EBNA1 may serve as a potential therapeutic target to reshape the NPC microenvironment.
Collapse
Affiliation(s)
- Shaofen Huo
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfan Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiong Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Wang
- Department of Otolaryngology Head and Neck Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Bao Zhang
- Department of School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Juan Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangping Li
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Wakae K, Kondo S, Pham HT, Wakisaka N, Que L, Li Y, Zheng X, Fukano K, Kitamura K, Watashi K, Aizaki H, Ueno T, Moriyama‐Kita M, Ishikawa K, Nakanishi Y, Endo K, Muramatsu M, Yoshizaki T. EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Med 2020; 9:7663-7671. [PMID: 32815637 PMCID: PMC7571841 DOI: 10.1002/cam4.3357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
An Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a principal oncogene that plays a pivotal role in EBV-associated malignant tumors including nasopharyngeal cancer (NPC). Recent genomic landscape studies revealed that NPC also contained many genomic mutations, suggesting the role of LMP1 as a driver gene for the induction of these genomic mutations. Nonetheless, its exact mechanism has not been investigated. In this study, we report that LMP1 alters the expression profile of APOBEC3s(A3s), host deaminases that introduce consecutive C-to-U mutations (hypermutation). In vitro, LMP1 induces APOBEC3B (A3B) and 3F(A3F), in a nasopharyngeal cell line, AdAH. Overexpression of LMP1, A3B, or A3F induces mtDNA hypermutation, which is also detectable from NPC specimens. Expression of LMP1 and A3B in NPC was correlated with neck metastasis. These results provide evidence as to which LMP1 induces A3s and mtDNA hypermutation, and how LMP1 facilitates metastasis is also discussed.
Collapse
Affiliation(s)
- Kousho Wakae
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Satoru Kondo
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Hai Thanh Pham
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Naohiro Wakisaka
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Lusheng Que
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Yingfang Li
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Xin Zheng
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Kento Fukano
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Kouichi Kitamura
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesMusashi‐MurayamaTokyoJapan
| | - Koichi Watashi
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Hideki Aizaki
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Takayoshi Ueno
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Makiko Moriyama‐Kita
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Kazuya Ishikawa
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Yosuke Nakanishi
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Kazuhira Endo
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| | - Masamichi Muramatsu
- Department of Molecular GeneticsGraduate School of Medical ScienceKanazawa UniversityKanazawaJapan
- Department of Virology IINational Institute of Infectious DiseasesTokyoJapan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology and Head and Neck SurgeryKanazawa UniversityKanazawaJapan
| |
Collapse
|
26
|
Wang J, Jiang Q, Faleti OD, Tsang CM, Zhao M, Wu G, Tsao SW, Fu M, Chen Y, Ding T, Chong T, Long Y, Yang X, Zhang Y, Cai Y, Li H, Peng M, Lyu X, Li X. Exosomal Delivery of AntagomiRs Targeting Viral and Cellular MicroRNAs Synergistically Inhibits Cancer Angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:153-165. [PMID: 32927364 PMCID: PMC7494942 DOI: 10.1016/j.omtn.2020.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer characterized by a high degree of recurrence, angiogenesis, and metastasis. The importance of alternative pro-angiogenesis pathways including viral factors has emerged after decades of directly targeting various signaling components. Using NPC as a model, we identified an essential oncogenic pathway underlying angiogenesis regulation that involves the inhibition of a tumor suppressor, Spry3, and its downstream targets by EBV-miR-BART10-5p (BART10-5p) and hsa-miR-18a (miR-18a). Overexpression of EBV-miR-BART10-5p and hsa-miR-18a strongly promotes angiogenesis in vitro and in vivo by regulating the expression of VEGF and HIF1-α in a Spry3-dependent manner. In vitro or in vivo treatment with iRGD-tagged exosomes containing antagomiR-BART10-5p and antagomiR-18a preferentially suppressed the angiogenesis and growth of NPC. Our findings first highlight the role of EBV-miR-BART10-5p and oncogenic hsa-miR-18a in NPC angiogenesis and also shed new insights into the clinical intervention and therapeutic strategies for nasopharyngeal carcinoma and other virus-associated tumors.
Collapse
Affiliation(s)
- Jianguo Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qiang Jiang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Oluwasijibomi Damola Faleti
- Departmrent of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chi-Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, China
| | - Gongfa Wu
- Department of Pathology, Zengcheng District People's Hospital of Guangzhou City, Guangzhou, China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Minyi Fu
- Otolaryngology-Head and Neck Surgery Department, Zhongshan City People's Hospital, Zhongshan, China
| | - Yuxiang Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tuotuo Chong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yufei Long
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yunxi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hanzhao Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Manli Peng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoming Lyu
- Departmrent of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
27
|
Novel Therapies Boosting T Cell Immunity in Epstein Barr Virus-Associated Nasopharyngeal Carcinoma. Int J Mol Sci 2020; 21:ijms21124292. [PMID: 32560253 PMCID: PMC7352617 DOI: 10.3390/ijms21124292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck affecting localised regions of the world, with the highest rates described in Southeast Asia, Northern Africa, and Greenland. Its high morbidity rate is linked to both late-stage diagnosis and unresponsiveness to conventional anti-cancer treatments. Multiple aetiological factors have been described including environmental factors, genetics, and viral factors (Epstein Barr Virus, EBV), making NPC treatment that much more complex. The most common forms of NPCs are those that originate from the epithelial tissue lining the nasopharynx and are often linked to EBV infection. Indeed, they represent 75–95% of NPCs in the low-risk populations and almost 100% of NPCs in high-risk populations. Although conventional surgery has been improved with nasopharyngectomy’s being carried out using more sophisticated surgical equipment for better tumour resection, recent findings in the tumour microenvironment have led to novel treatment options including immunotherapies and photodynamic therapy, able to target the tumour and improve the immune system. This review provides an update on the disease’s aetiology and the future of NPC treatments with a focus on therapies activating T cell immunity.
Collapse
|
28
|
Wang ZH, Pei XF, Zhu ZQ, Lin Z, Mao YY, Xu XL, Luo YL, Zhang L, Peng PJ. CD47 Overexpression Is Associated with Epstein-Barr Virus Infection and Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:3325-3334. [PMID: 32368091 PMCID: PMC7183341 DOI: 10.2147/ott.s245023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Little is known about the clinical significance of CD47 expression and its association with Epstein–Barr virus (EBV) infection in patients with nasopharyngeal carcinoma (NPC). The aim of this study was to clarify the prognostic value and role of CD47 in EBV-associated NPC. Materials and Methods Sixty-six cases of non-metastatic NPC were retrospectively reviewed. Tissues were collected for immunohistochemical staining of CD47 and the EBV-encoded oncoprotein latent membrane protein 1 (LMP1). Western blotting and quantitative real-time PCR were performed to determine the CD47 and LMP1 levels in common human NPC cell lines. Additionally, CD47 and LMP1 expression in a constructed EBV-positive human NPC cell (CNE-2-EBV+) and a stable cell line transfected with LMP1 plasmid (CNE-2-LMP1) was assessed. Next, we used Western blotting to assess the decrease in CD47 expression on CNE-2-LMP1 cells after transfecting them with small interfering RNA (siRNA)-targeting LMP1. Results In NPC patients, CD47 overexpression was significantly associated with disease recurrence (P=0.010), leading to poorer disease-free survival (DFS; P=0.002) and overall survival (P=0.021). Multivariate Cox proportional hazards models demonstrated that CD47 (HR=5.452, P=0.016) was an independent prognostic factor of DFS. Moreover, CD47 expression was associated with plasma EBV-DNA copy number and LMP1 tissue expression. Among the human NPC cell lines, CD47 and LMP1 expression was notably higher in the EBV-positive C666-1 cell line than in the EBV-negative cell lines. Furthermore, EBV infection upregulated CD47 expression via LMP1-mediated pathways in human NPC cells. Conclusion This study indicated that CD47 is related to EBV infection in NPC patients, and it is a feasible biomarker.
Collapse
Affiliation(s)
- Zhi-Hui Wang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Xiao-Feng Pei
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Zhi-Quan Zhu
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Zhong Lin
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Yin-Yan Mao
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Xiao-Lu Xu
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - You-Li Luo
- Department of Interventional Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Pei-Jian Peng
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Wei J, Ye J, Luo Y, Weng J, He Q, Liu F, Li M, Lin Y, Li Y, Zhang Z, Qu S, Zhang J. EB virus promotes metastatic potential by boosting STIM1-dependent Ca 2+ signaling in nasopharyngeal carcinoma cells. Cancer Lett 2020; 478:122-132. [PMID: 32165272 DOI: 10.1016/j.canlet.2020.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck malignancy with highly metastatic cell-biological characteristics, for which latent EBV-infection is responsible. Our earlier studies showed that EGF-stimulated Ca2+ signaling via store-operated Ca2+ entry (SOCE) was amplified in NPC cells expressing EBV-encoded LMP1, thus contributing to EBV-enhanced metastatic capacities. However, the pathway through which EBV modulates cytosolic Ca2+ signaling still remains unclear. Here, we demonstrated that EBV-infection amplified EGF-stimulated Ca2+ responses through the promotion of intracellular aggregation of STIM1, which serves as a Ca2+ sensor to activate SOCE. Blockage of EBV-remodeled Ca2+ signaling by STIM1-silencing inhibited cell migration by interrupting epithelial-mesenchymal transition (EMT) in vitro, and suppressed tumor dissemination in zebrafish and lymph node metastasis in mice. In addition, STIM1 expression was upregulated in primary NPC tissues compared with normal nasopharyngeal epithelium and stronger among the patients with advanced lymph node metastatic disease (N2-3 stage). Our findings thus indicate that EBV promotes metastatic potential by enhancing STIM1-dependent Ca2+ signaling that manipulates EMT in NPC cells. EBV-modulated Ca2+ signaling could serve as a candidate anti-metastatic target for NPC treatment.
Collapse
Affiliation(s)
- Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Yue Luo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Jingjin Weng
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, China
| | - Fei Liu
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530021, China.
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
30
|
Zeng J, Chen S, Li C, Ye Z, Lin B, Liang Y, Wang B, Ma Y, Chai X, Zhang X, Zhou K, Zhang Q, Zhang H. Mesenchymal stem/stromal cells-derived IL-6 promotes nasopharyngeal carcinoma growth and resistance to cisplatin via upregulating CD73 expression. J Cancer 2020; 11:2068-2079. [PMID: 32127934 PMCID: PMC7052921 DOI: 10.7150/jca.37932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have implicated the important role of mesenchymal stem/stromal cells (MSCs) within tumor microenvironment (TME) in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), but the potential mechanisms are still unclear. Herein, we showed that an elevated IL-6 level was positively correlated with elevated expression of CD73 in TME of NPC. NPC specimens with an IL-6highCD73high phenotype showed higher expression levels of gp80, gp130, p-STAT3, MMP-9 and α-SMA, and clinically, a poorer prognosis than those with an IL-6lowCD73low phenotype. We found that stimulation with conditioned media derived from IL-6 gene knocked out MSC (MSCIL6KO-CM) down-regulated the expression of CD73, IL-6, gp80, p-STAT3, and proliferative cell nuclear antigen (PCNA) in CNE-2 NPC cells. Meanwhile, NPC cells co-cultured with MSCIL6KO-CM were more sensitive to cisplatin than those co-cultured with MSC-CM. Additionally, MSC-derived IL-6 transcriptionally upregulated CD73 expression via activating STAT3 signaling pathway in NPC cells. In summary, our findings suggest that MSCs promote NPC progression and chemoresistance by upregulation of CD73 expression via activating STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Shasha Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Caihong Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, The Fifth People's Hospital of Dongguan, Dongguan 523905, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Yan Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Xingxing Chai
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, 524023 China
| | - Keyuan Zhou
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Haitao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
31
|
Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, Zhang Z. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer 2020; 11:1257-1269. [PMID: 31956372 PMCID: PMC6959064 DOI: 10.7150/jca.37415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Latent membrane protein 1 (LMP1) is known as an oncogenic protein encoded by the EBV genome. The purpose of this study was to investigate the mechanism of LMP1-induced cell epithelial-mesenchymal transition (EMT). Methods: The NP69 cell line of nasopharyngeal epithelial cells with high expression of LMP1 was established to observe the effect of high expression of LMP1 on cell growth, proliferation, cycle, apoptosis, migration and invasion. We used proteomics to screen and identify differentially expressed proteins related to LMP1-mediated epithelial cell transformation. Then, we analyzed the expression and significance of differentially expressed calreticulin (CRT) in nasopharyngeal carcinoma (NPC), and observed the effect of CRT expression on EMT in CNE2 cells of NPC. Finally, the expression of neuropilin-1 (NRP1), which is a protein downstream of the EMT-related signaling pathway TGF-β (transforming growth factor β), was detected. Results: LMP1 promoted NP69 cells proliferation, inhibited apoptosis and induced EMT. We identified 22 differentially expressed proteins associated with LMP1-induced EMT. Among them, CRT expression level was significantly increased in NPC compared with adjacent tissues, and was interrelated with TNM staging and lymph node metastasis of NPC. After knockdown of CRT expression, the phenomenon of cell EMT was reduced and the ability of cell migration and invasion was weakened. CRT regulated NRP1 expression by affecting SMAD3 phosphorylation. Conclusion: LMP1 induced cell EMT via TGF-β/Smad3/NRP1 pathway, which promoted migration and invasion of NPC cells.
Collapse
Affiliation(s)
- Dongmei Ye
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan Hengyang 421001, China
| | - Junhui Zhu
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan Hengyang 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan Hengyang 421001, Hunan Province China
| | - Wei Ma
- Department of Surgery, Innovative Practice Base for Postgraduate Training of Basic Medicine and Clinical Collaboration, University of South China and Yueyang Maternal and Child Health Hospital, Yueyang 414000, Hunan Province, China
| | - Yiyang Xiao
- Clinical Medicine of Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Gaosheng Xu
- Department of Surgery, Innovative Practice Base for Postgraduate Training of Basic Medicine and Clinical Collaboration, University of South China and Yueyang Maternal and Child Health Hospital, Yueyang 414000, Hunan Province, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan Hengyang 421001, China
| |
Collapse
|
32
|
Abstract
Cullin 4A (CUL4A) is a protein of E3 ubiquitin ligase with many cellular processes. CUL4A could regulate cell cycle, development, apoptosis, and genome instability. This study aimed to analyze the expression of CUL4A in nasopharyngeal carcinoma (NPC) tissues and the associations of CUL4A expression with prognostic significance. A total of 115 NPC patients were collected to assess the protein expression of CUL4A by immunohistochemistry, so as to analyze the relationships between CUL4A expression and clinicopathological and prognostic parameters. All patients were followed-up until death or 5 years. The results showed that high expression of CUL4A was significantly associated with larger primary tumor size (P = .026), higher nodal status (P = .013), more distant metastasis (P = .020), and higher TNM stage (P = .005). Kaplan-Meier curves showed that patients with higher CUL4A expression had significantly shorter overall survival (OS) and progression-free survival (PFS) (both P < .001). In multivariate Cox analysis, CUL4A is an independent prognostic factor for OS (P = .016; hazard ratio [HR] = 2.770, 95% CI: 1.208-6.351) and PFS (P = .022; HR = 2.311, 95% CI: 1.126-4.743). In conclusion, high expression of CUL4A was associated with advanced disease status of NPC, and might serve as an independent prognostic factor.
Collapse
|
33
|
Targeting Immune-Related Biological Processes in Solid Tumors: We do Need Biomarkers. Int J Mol Sci 2019; 20:ijms20215452. [PMID: 31683784 PMCID: PMC6862285 DOI: 10.3390/ijms20215452] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has become the standard-of-care in many solid tumors. Despite the significant recent achievements in the diagnosis and treatment of cancer, several issues related to patients’ selection for immunotherapy remain unsolved. Multiple lines of evidence suggest that, in this setting, the vision of a single biomarker is somewhat naïve and imprecise, given that immunotherapy does not follow the rules that we have experienced in the past for targeted therapies. On the other hand, additional immune-related biomarkers that are reliable in real-life clinical practice remain to be identified. Recently, the immune-checkpoint blockade has been approved in the US irrespective of the tumor site of origin. Further histology-agnostic approvals, coupled with with tumor-specific companion diagnostics and guidelines, are expected in this field. In addition, immune-related biomarkers can also have a significant prognostic value. In this review, we provide an overview of the role of these biomarkers and their characterization in the management of lung cancer, melanoma, colorectal cancer, gastric cancer, head and neck cancer, renal cell carcinoma, urothelial cancers, and breast cancer.
Collapse
|
34
|
Cao Y, Chan KI, Xiao G, Chen Y, Qiu X, Hao H, Mak SC, Lin T. Expression and clinical significance of PD-L1 and BRAF expression in nasopharyngeal carcinoma. BMC Cancer 2019; 19:1022. [PMID: 31664962 PMCID: PMC6819586 DOI: 10.1186/s12885-019-6276-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background The prognostic value of programmed death-ligand 1 (PD-L1) and BRAF expression in nasopharyngeal carcinoma (NPC) is not well-defined. In this study we investigated alterations in PD-L1, BRAF and EGFR by using immunohistochemistry analysis in a cohort of consecutively enrolled NPC patients. Methods A retrospective review of 154 NPC patients form our previous study (BMC Cancer. 2013; 13:226) were conducted. Survival and prognostic impacts were analyzed based on PD-L1, BRAF and EGFR expression levels. Results One hundred fifty four patients were included in this study. PD-L1 expression was detected in 87.7% of patients; 14.3% had 1–5% PD-L1 expression, 47.4% had 5–49% expression while 26% had ≥50% expression Higher PD-L1 expression was significantly associated with shorter PFS and OS. The median PFS was 25 months (95% CI 15.7–34.3 months) and OS was 35 months (95% CI 22.60–47.4 months) for patients with PD-L1 expression ≥50%; both median PFS and OS were not yet reached for patients with PD-L1 expression < 50%. PFS was significantly higher in BRAF mutation positive patients (5-year PFS: 55.1% vs. 30.8%, P = 0.044). Conclusion Tumor PD-L1 expression and BRAF mutation are associated with poor outcomes in patients with NPC. This study was retrospectively registered in ClinicalTrials.gov (NCT03989297) on 2019-6-18.
Collapse
Affiliation(s)
- Yabing Cao
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China.
| | - Kin Iong Chan
- Department of Pathology, Kiang Wu Hospital, Macau, SAR, China
| | - Gungli Xiao
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China
| | - Yanqun Chen
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China
| | - Xibin Qiu
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China
| | - Hu Hao
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China
| | - Sao Chi Mak
- Department of Oncology, Kiang Wu Hospital, Macau, SAR, China
| | - Tongyu Lin
- Department of Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
35
|
Yang J, Hu M, Bai X, Ding X, Xie L, Ma J, Fan B, Yu J. Plasma levels of soluble programmed death ligand 1 (sPD-L1) in WHO II/III nasopharyngeal carcinoma (NPC): A preliminary study. Medicine (Baltimore) 2019; 98:e17231. [PMID: 31574833 PMCID: PMC6775345 DOI: 10.1097/md.0000000000017231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma levels of soluble PD-L1 (sPD-L1) have been reported to be an independent prognostic factor in many malignant tumors. The expression of sPD-L1 in nasopharyngeal carcinoma (NPC) has not been reported. The purpose of this study was to evaluate the expression of sPD-L1 and analyze its correlation with clinical characteristics in patients with NPC.Thirty-five patients with stage I-IVa NPC were included. Plasma samples were obtained pretreatment. The sPD-L1 concentrations were measured by enzyme-linked immunosorbent assay (ELISA). The correlations of sPD-L1 expression with clinical parameters and laboratory data were analyzed.sPD-L1 was detected in 35 plasma samples, the mean sPD-L1 concentration was 45.47 pg/ml. sPD-L1 was significantly higher in stage III-IVa (50.76 ± 28.15 pg/ml) compared to stage I-II (19.87 ± 11.38 pg/ml) (t = 2.618, P = .013). sPD-L1 was also higher in stage N2-3 (52.03 ± 28.98 pg/ml) than that in N0-1 (32.88 ± 23.75 pg/ml) (t = 2.096, P = .046). Univariate analysis identified that sPD-L1 level positively correlated with clinical stage (r = 0.495, P = .002) and N stage (r = 0.34, P = .046). Multivariate analysis showed the clinical stage was an independent factor affecting sPD-L1 expression.This is the first report to detect sPD-L1 in NPC. The study indicated sPD-L1 is quantifiable, convenient and easy to obtain. sPD-L1 may serve as a useful biomarker for evaluating tumor progression and therapeutic efficacy of NPC.
Collapse
Affiliation(s)
- Jia Yang
- Shandong Cancer Hospital affiliated to Shandong University
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Xinbin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Li Xie
- Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bingjie Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| |
Collapse
|
36
|
Inhibition of UCH-L1 Deubiquitinating Activity with Two Forms of LDN-57444 Has Anti-Invasive Effects in Metastatic Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20153733. [PMID: 31370144 PMCID: PMC6696221 DOI: 10.3390/ijms20153733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/28/2023] Open
Abstract
Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein–Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.
Collapse
|
37
|
Tumor Microenvironment and Cell Fusion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5013592. [PMID: 31380426 PMCID: PMC6657644 DOI: 10.1155/2019/5013592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
Cell fusion is a highly regulated biological process that occurs under both physiological and pathological conditions. The cellular and extracellular environment is critical for the induction of the cell-cell fusion. Aberrant cell fusion is initiated during tumor progression. Tumor microenvironment is a complex dynamic system formed by the interaction between tumor cells and their surrounding cells. Cell-cell fusion mediates direct interaction between tumor cells and their surrounding cells and is associated with tumor initiation and progression. Various microenvironmental factors affect cell fusion in tumor microenvironment and generate hybrids that acquire genomes of both parental cells and exhibit novel characteristics, such as tumor stem cell-like properties, radioresistance, drug resistance, immune evasion, and enhanced migration and invasion abilities, which are closely related to the initiation, invasion, and metastasis of tumor. The phenotypic characteristics of hybrids are based on the phenotypes of parental cells, and the fusion of tumor cells with diverse types of microenvironmental fusogenic cells is concomitant with phenotypic heterogeneity. This review highlights the types of fusogenic cells in tumor microenvironment that can fuse with tumor cells and their specific significance and summarizes the various microenvironmental factors affecting tumor cell fusion. This review may be used as a reference to develop strategies for future research on tumor cell fusion and the exploration of cell fusion-based antitumor therapies.
Collapse
|
38
|
Zhao C, Liu Y, Liang Z, Feng H, Xu S. MACC1 facilitates the escape of nasopharyngeal carcinoma cells from killing by natural killer cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1596041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yuehua Liu
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhuoping Liang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Huajun Feng
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Sheng’en Xu
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
39
|
Ding RR, Yuan JL, Jia YN, Liao XM, Wang SS, Shao ZM, Feng MY, Jie W, Shen ZH. Epstein-Barr virus-encoded LMP1 regulated Pim1 kinase expression promotes nasopharyngeal carcinoma cells proliferation. Onco Targets Ther 2019; 12:1137-1146. [PMID: 30809095 PMCID: PMC6376889 DOI: 10.2147/ott.s190274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Epstein–Barr virus-encoded LMP1 plays a critical role in the carcinogenesis of nasopharyngeal carcinoma (NPC), but the mechanism remains elusive. We aimed to analyze the expression and clinical pathological significance of provirus integration site for Moloney murine leukemia virus 1 (Pim1) in clinical NPC, and to elucidate the effect of LMP1 on Pim1 expression and its mechanism. Methods Immunohistochemical staining was used to detect the expression of Pim1 in clinical NPC tissues and control nasopharyngeal chronic inflammation (NPI) tissues, and the correlation between Pim1 and clinical parameters of NPC patients was analyzed. The LMP1 stable expression cell line CNE1-LMP1-OV was constructed through infecting the well-differentiated nasopharyngeal carcinoma cells CNE1 with LMP1 overexpressing lentivirus. Then the in vivo experiments were conducted. Results Among 89 NPC patients, 48 cases (53.93%) were positive for Pim1, while only one case was Pim1 positive in 15 NPI controls (6.67%). Pim1 expression was not correlated with gender, age, smoking status and clinical classification of NPC patients, but positively correlated with T, N and M classification. CNE1-LMP1-OV cell line was successfully established, which displayed a higher cell proliferation ability and Pim1 expression. NF-κB inhibitor PDTC, PKC inhibitor GF109203X and STAT3 inhibitor Stattic significantly attenuated LMP1-induced Pim1 expression, and while AP-1 inhibitor SR11302 showed no inhibitory effect. Interestingly, Pim1 inhibitor quercetagetin significantly inhibited the proliferation of CNE1-LMP1-OV cells. Conclusion LMP1 mediates Pim1 expression through NF-κB, PKC and STAT3 signaling, which promotes the proliferation of NPC cells and participate in the clinical progression of NPC.
Collapse
Affiliation(s)
- Ran-Ran Ding
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Jian-Ling Yuan
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Ya-Nan Jia
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China, .,Department of Pathology, Dongguan People's Hospital, Dongguan 523059, China
| | - Xiao-Min Liao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Si-Si Wang
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Zhong-Ming Shao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Mu-Yin Feng
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| | - Zhi-Hua Shen
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, China,
| |
Collapse
|
40
|
Wu J, Yang J, Ding J, Guo X, Zhu XQ, Zheng Y. Exosomes in virus-associated cancer. Cancer Lett 2018; 438:44-51. [PMID: 30219505 DOI: 10.1016/j.canlet.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
Exosomes are phospholipid bilayer membrane-enclosed vesicles in a size from 30 to 150 nm, carrying a variety of active components, such as proteins, mRNA and miRNAs, and are involved in intercellular communication. Exosomes are released by almost all living cells and detected in various biological fluids. Viruses especially oncogenic viruses have been reported to influence the formation of virus-associated cancer through reshaping the tumor microenvironment via exosomes. In this review, a role of exosomes released by oncogenic virus-infected cells in promoting or inhibiting cancer formation is outlined. Moreover, the prospects and challenges of exosome applications in cancer therapies are critically discussed.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, China.
| |
Collapse
|
41
|
Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol 2018; 84:61-70. [DOI: 10.1016/j.oraloncology.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
42
|
Lin Q, Peng S, Yang Y. Inhibition of CD9 expression reduces the metastatic capacity of human hepatocellular carcinoma cell line MHCC97-H. Int J Oncol 2018; 53:266-274. [PMID: 29749468 DOI: 10.3892/ijo.2018.4381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Metastasis is a characteristic of malignant tumors and may be a fatal clinical factor for many patients with cancer. Hepatocellular carcinoma (HCC) cells are highly metastatic; the mechanism of metastasis is complicated and may be influenced by a number of factors. Membrane proteins may block receptors or inhibit important enzymes, thus inhibiting tumor progression, and may be potential therapeutic targets for tumor prognosis and treatment. The present study aimed to use proteomics to analyze the dynamic changes of membrane proteins in HCC cells, to improve our understanding of membrane protein functions and to clarify the important components of the mechanisms of HCC metastasis. The present study used the highly metastatic MHCC97-H and the lowly metastatic MHCC97-L HCC cell lines, and the isobaric tags for relative and absolute quantitation (iTRAQ) approach was used for high-throughput screening of metastasis-related membrane proteins. A total of 22 membrane proteins were identified as differentially expressed between the MHCC97-H and MHCC97-L cell lines; these results were verified by reverse transcription-quantitative polymerase chain reaction and western blotting. A number of the identified proteins were revealed to be related to tumor metastasis, including the tetraspan in transmembrane protein CD9. CD9 was demonstrated to be highly expressed in MHCC97-H cells compared with MHCC97-L cells. The functional role of CD9 was characterized by inhibiting its expression using a small interfering RNAs, which demonstrated that reduced CD9 expression inhibited cell migration and metastasis, as determined by wound-healing and invasion assays. Results from the present study demonstrated that CD9 was highly expressed in the highly metastatic HCC cells and promoted HCC cell migration. This protein may be a novel target for regulating the invasive phenotype in HCC.
Collapse
Affiliation(s)
- Qing Lin
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
43
|
Yoshizaki T, Kondo S, Endo K, Nakanishi Y, Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, Ishikawa K, Wakisaka N. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci 2018; 109:272-278. [PMID: 29247573 PMCID: PMC5797826 DOI: 10.1111/cas.13473] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein‐Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre‐invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1‐expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development.
Collapse
Affiliation(s)
- Tomokazu Yoshizaki
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Satoru Kondo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuhira Endo
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Yosuke Nakanishi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Mitsuharu Aga
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Eiji Kobayashi
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Hirai
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Miyako Hatano
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takayoshi Ueno
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazuya Ishikawa
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Naohiro Wakisaka
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|