1
|
Lu H, Luo L, Mi J, Sun M, Wang H, Wang Z, Ding W. Prognostic and clinicopathological role of soluble programmed cell death ligand-1 in patients with diffuse large B-cell lymphoma: a meta-analysis. Front Oncol 2025; 15:1506799. [PMID: 39959666 PMCID: PMC11825807 DOI: 10.3389/fonc.2025.1506799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Background The significance of soluble programmed death protein ligand-1 (PD-L1) in predicting the prognosis of diffuse large B-cell lymphoma (DLBCL) has been previously analyzed, but with conflicting results. This study investigated the effect of soluble PD-L1 (sPD-L1) expression on the prognosis of patients with DLBCL. Methods We comprehensively searched the Web of Science, PubMed, Embase, and CNKI databases between their inception and August 14, 2024. The value of sPD-L1 in predicting the overall survival (OS) and progression-free survival (PFS) of patients with DLBCL was analyzed by computing the combined hazard ratios (HRs) and 95% confidence intervals (CIs). Associations between sPD-L1 and the clinicopathological factors of DLBCL were explored by combining odds ratios (ORs) and 95%CIs. Results Seven articles involving 826 patients were included in this meta-analysis. Based on our pooled data, elevated sPD-L1 was closely related to poor OS (HR = 2.81, 95%CI = 1.99-3.95, p < 0.001) and inferior PFS (HR = 3.16, 95%CI = 1.41-7.08, p = 0.005) of DLBCL. Moreover, based on the pooled data, higher sPD-L1 was significantly related to the Eastern Cooperative Oncology Group Performance Status Scale (ECOG PS) ≥2 (OR=4.10, 95%CI=1.82-9.24, p=0.001), clinical stage III-IV (OR = 3.30, 95%CI = 1.48-7.39, p = 0.004), elevated lactate dehydrogenase (LDH) levels (OR = 2.14, 95%CI = 1.07-4.30, p = 0.032), and the International Prognostic Index (IPI) score 3-5 (OR = 3.83, 95%CI = 1.91-7.68, p < 0.001) in DLBCL. Conclusion According to our findings, a higher sPD-L1 level was a significant predictor of poor OS and PFS in patients with DLBCL. Elevated sPD-L1 levels are closely related to factors representing disease aggressiveness in DLBCL.
Collapse
Affiliation(s)
- Hongbin Lu
- Department of Hematology, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, Jiangsu, China
| | - Lulu Luo
- Department of Hematology, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, Jiangsu, China
| | - Jie Mi
- Department of Hematology, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, Jiangsu, China
| | - Min Sun
- Department of Hematology, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, Jiangsu, China
| | - Huaping Wang
- Department of Hematology, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, Jiangsu, China
| | - Zheng Wang
- Suzhou Jsuniwell Medical Laboratory, Suzhou, Jiangsu, China
| | - Wenwen Ding
- Department of Oncology, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Taghavi-Farahabadi M, Mahmoudi M, Mojtabavi N, Noorbakhsh F, Ghanbarian H, Koochaki A, Hashemi SM, Rezaei N. Enhancing the anti-tumor activity and reprogramming M2 macrophages by delivering siRNAs against SIRPα and STAT6 via M1 exosomes and combining with anti-PD-L1. Life Sci 2025; 361:123311. [PMID: 39675552 DOI: 10.1016/j.lfs.2024.123311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The invasive property of breast cancer and the complex composition of the tumor microenvironment (TME) antibodies like anti-PD-L1, can inhibit tumor growth by promoting macrophage phagocytosis. In this research, we used anti-PD-L1 antibody and siRNAs targeting SIRPα (siSIRPα) and STAT6 (siSTAT6). The siRNAs were transported to macrophages using M1-derived exosomes. METHODS For this purpose, exosomes were isolated from the supernatant of lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Next, siSIRPα and siSTAT6 were electroporated into the M1-exosomes. M1-exosomes without siRNA or loaded with different siRNAs were used to treat M2 macrophages. Then, the polarization of macrophages was evaluated. By co-culturing of treated macrophages with 4T1 cells, anti-tumor functions of macrophages were assessed. RESULTS It was demonstrated that siRNA-loaded M1-exosomes induced macrophage polarization into an M1 phenotype and promoted the anti-tumor effects of macrophages as shown by a reduction in migration, invasion and proliferation of 4T1 cells, as well as an enhancement of phagocytosis of 4T1 cells by macrophages. CONCLUSION This study demonstrated the potential of a multifaceted therapeutic approach targeting TAMs to enhance anti-tumor immune responses in breast cancer.
Collapse
Affiliation(s)
- Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
4
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
5
|
Williams ZJ, Chow L, Dow S, Pezzanite LM. The potential for senotherapy as a novel approach to extend life quality in veterinary medicine. Front Vet Sci 2024; 11:1369153. [PMID: 38812556 PMCID: PMC11133588 DOI: 10.3389/fvets.2024.1369153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cellular senescence, a condition where cells undergo arrest and can assume an inflammatory phenotype, has been associated with initiation and perpetuation of inflammation driving multiple disease processes in rodent models and humans. Senescent cells secrete inflammatory cytokines, proteins, and matrix metalloproteinases, termed the senescence associated secretory phenotype (SASP), which accelerates the aging processes. In preclinical models, drug interventions termed "senotherapeutics" selectively clear senescent cells and represent a promising strategy to prevent or treat multiple age-related conditions in humans and veterinary species. In this review, we summarize the current available literature describing in vitro evidence for senotheraputic activity, preclinical models of disease, ongoing human clinical trials, and potential clinical applications in veterinary medicine. These promising data to date provide further justification for future studies identifying the most active senotherapeutic combinations, dosages, and routes of administration for use in veterinary medicine.
Collapse
Affiliation(s)
- Zoë J. Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
7
|
Wyles SP, Carruthers JD, Dashti P, Yu G, Yap JQ, Gingery A, Tchkonia T, Kirkland JL. Cellular Senescence in Human Skin Aging: Leveraging Senotherapeutics. Gerontology 2023; 70:7-14. [PMID: 37879300 PMCID: PMC10873061 DOI: 10.1159/000534756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND As the largest organ in the human body, the skin is continuously exposed to intrinsic and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related skin changes are the focus of many surgical and nonsurgical treatments aimed at improving overall skin appearance and health. SUMMARY As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding of age-related skin changes and how to optimize patient outcomes in esthetic procedures. KEY MESSAGES This review provides an overview of skin aging in the context of cellular senescence and discusses senolytic intervention strategies to selectively target skin senescent cells that contribute to premature skin aging.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Jean D. Carruthers
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Dashti
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Grace Yu
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, and Mayo Clinic Medical Scientist Training Program, Rochester, MN
| | - Jane Q. Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN United States
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Zhang H, Zhou S, Plewka J, Wu C, Zhu M, Yu Q, Musielak B, Wang X, Awadasseid A, Magiera-Mularz K, Wu Y, Zhang W. Design, Synthesis, and Antitumor Activity Evaluation of 2-Arylmethoxy-4-(2,2'-dihalogen-substituted biphenyl-3-ylmethoxy) Benzylamine Derivatives as Potent PD-1/PD-L1 Inhibitors. J Med Chem 2023; 66:10579-10603. [PMID: 37496104 DOI: 10.1021/acs.jmedchem.3c00731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Novel 2-arylmethoxy-4-(2,2'-dihalogen-substituted biphenyl-3-ylmethoxy) benzylamine derivatives were designed, synthesized, and evaluated in vitro and in vivo against cancers as PD-1/PD-L1 inhibitors. Through the computer-aided structural optimization and the homogeneous time-resolved fluorescence (HTRF) assay, compound A56 was found to most strongly block the PD-1/PD-L1 interaction with an IC50 value of 2.4 ± 0.8 nM and showed the most potent activity. 1H NMR titration results indicated that A56 can tightly bind to the PD-L1 protein with KD < 1 μM. The X-ray diffraction data for the cocrystal structure of the A56/PD-L1 complex (3.5 Å) deciphered a novel binding mode in detail, which can account for its most potent inhibitory activity. Cell-based assays further demonstrated the strong ability of A56 as an hPD-1/hPD-L1 blocker. Especially in an hPD-L1 MC38 humanized mouse model, A56 significantly inhibited tumor growth without obvious toxicity, with a TGI rate of 55.20% (50 mg/kg, i.g.). In conclusion, A56 is a promising clinical candidate worthy of further development.
Collapse
Affiliation(s)
- Hua Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijia Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jacek Plewka
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Caiyun Wu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengyu Zhu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qimeng Yu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Xiao Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, Wei W, Kuca K. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 2023; 97:2089-2109. [PMID: 37335314 DOI: 10.1007/s00204-023-03540-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
10
|
de Paula B, Kieran R, Koh SSY, Crocamo S, Abdelhay E, Muñoz-Espín D. Targeting Senescence as a Therapeutic Opportunity for Triple-Negative Breast Cancer. Mol Cancer Ther 2023; 22:583-598. [PMID: 36752780 PMCID: PMC10157365 DOI: 10.1158/1535-7163.mct-22-0643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Triple-negative breast cancer (TNBC) is associated with an elevated risk of recurrence and poor prognosis. Historically, only chemotherapy was available as systemic treatment, but immunotherapy and targeted therapies currently offer prolonged benefits. TNBC is a group of diseases with heterogeneous treatment sensitivity, and resistance is inevitable and early for a large proportion of the intrinsic subtypes. Although senescence induction by anticancer therapy offers an immediate favorable clinical outcome once the rate of tumor progression reduces, these cells are commonly dysfunctional and metabolically active, culminating in treatment-resistant repopulation associated with worse prognosis. This heterogeneous response can also occur without therapeutic pressure in response to damage or oncogenic stress, playing a relevant role in the carcinogenesis. Remarkably, there is preclinical and exploratory clinical evidence to support a relevant role of senescence in treatment resistance. Therefore, targeting senescent cells has been a scientific effort in many malignant tumors using a variety of targets and strategies, including increasing proapoptotic and decreasing antiapoptotic stimuli. Despite promising results, there are some challenges to applying this technology, including the best schedule of combination, assessment of senescence, specific vulnerabilities, and the best clinical scenarios. This review provides an overview of senescence in TNBC with a focus on future-proofing senotherapy strategies.
Collapse
Affiliation(s)
- Bruno de Paula
- Breast Cancer Research Unit, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | - Rosalind Kieran
- Early Cancer Institute, Department of Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| | - Samantha Shui Yuan Koh
- Department of Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| | - Susanne Crocamo
- Breast Cancer Research Unit, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
11
|
Wyles SP, Tchkonia T, Kirkland JL. Targeting Cellular Senescence for Age-Related Diseases: Path to Clinical Translation. Plast Reconstr Surg 2022; 150:20S-26S. [PMID: 36170432 PMCID: PMC9529239 DOI: 10.1097/prs.0000000000009669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY Beyond the palliative reach of today's medicines, medical therapies of tomorrow aim to treat the root cause of age-related diseases by targeting fundamental aging mechanisms. Pillars of aging include, among others, genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The unitary theory of fundamental aging processes posits that by targeting one fundamental aging process, it may be feasible to impact several or all others given its interdependence. Indeed, pathologic accumulation of senescent cells is implicated in chronic diseases and age-associated morbidities, suggesting that senescent cells are a good target for whole-body aging intervention. Preclinical studies using senolytics, agents that selectively eliminate senescent cells, and senomorphics, agents that inhibit production or release of senescence-associated secretory phenotype factors, show promise in several aging and disease preclinical models. Early clinical trials using a senolytic combination (dasatinib and quercetin), and other senolytics including flavonoid, fisetin, and BCL-xL inhibitors, illustrate the potential of senolytics to alleviate age-related dysfunction and diseases including wound healing. Translation into clinical applications requires parallel clinical trials across institutions to validate senotherapeutics as a vanguard for delaying, preventing, or treating age-related disorders and aesthetic aging.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
- Division of Geriatrics and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
STING mediates nuclear PD-L1 targeting-induced senescence in cancer cells. Cell Death Dis 2022; 13:791. [PMID: 36109513 PMCID: PMC9477807 DOI: 10.1038/s41419-022-05217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
Abstract
Immune checkpoint molecule programmed death-ligand 1 (PD-L1) is overexpressed in cancer cells and imparts resistance to cancer therapy. Although membrane PD-L1 has been targeted for cancer immune therapy, nuclear PD-L1 was reported to confer cancer resistance. Therefore, it is important to regulate the nuclear PD-L1. The mechanisms underlying the therapeutic efficacy of PD-L1 targeting have not been well-established. Cellular senescence has been considered a pivotal mechanism to prevent cancer progression, and recently, PD-L1 inhibition was shown to be involved in cancer cell senescence. However, the relevance of PD-L1 targeting-induced senescence and the role of stimulator of interferon genes (STING) has not been reported. Therefore, we aimed to identify the role of PD-L1 in cancer progression and how it regulates cancer prevention. In this study, we found that PD-L1 depletion-induced senescence via strong induction of STING expression in mouse melanoma B16-F10 and colon cancer CT26 cells, and in human melanoma A375 and lung cancer A549 cells. Interestingly, nuclear PD-L1 silencing increased STING promoter activity, implying that PD-L1 negatively regulates STING expression via transcriptional modulation. Furthermore, we showed that PD-L1 binds to the STING promoter region, indicating that PD-L1 directly controls STING expression to promote cancer growth. In addition, when we combined PD-L1 silencing with the senescence-inducing chemotherapeutic agent doxorubicin, the effect of PD-L1-targeting was even more powerful. Overall, our findings can contribute to the understanding of the role of PD-L1 in cancer therapy by elucidating a novel mechanism for PD-L1 targeting in cancer cells.
Collapse
|
13
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
14
|
Niu M, Liu Y, Yi M, Jiao D, Wu K. Biological Characteristics and Clinical Significance of Soluble PD-1/PD-L1 and Exosomal PD-L1 in Cancer. Front Immunol 2022; 13:827921. [PMID: 35386715 PMCID: PMC8977417 DOI: 10.3389/fimmu.2022.827921] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint pathway consisting of the cell membrane-bound molecule programmed death protein 1 (PD-1) and its ligand PD-L1 has been found to mediate negative regulatory signals that effectively inhibit T-cell proliferation and function and impair antitumor immune responses. Considerable evidence suggests that the PD-1/PD-L1 pathway is responsible for tumor immune tolerance and immune escape. Blockage of this pathway has been found to reverse T lymphocyte depletion and restore antitumor immunity. Antagonists targeting this pathway have shown significant clinical activity in specific cancer types. Although originally identified as membrane-type molecules, several other forms of PD-1/PD-L1 have been detected in the blood of cancer patients, including soluble PD-1/PD-L1 (sPD-1/sPD-L1) and exosomal PD-L1 (exoPD-L1), increasing the composition and functional complications of the PD-1/PD-L1 signaling pathway. For example, sPD-1 has been shown to block the PD-1/PD-L immunosuppressive pathway by binding to PD-L1 and PD-L2, whereas the role of sPD-L1 and its mechanism of action in cancer remain unclear. In addition, many studies have investigated the roles of exoPD-L1 in immunosuppression, as a biomarker for tumor progression and as a predictive biomarker for response to immunotherapy. This review describes the molecular mechanisms underlying the generation of sPD-1/sPD-L1 and exoPD-L1, along with their biological activities and methods of detection. In addition, this review discusses the clinical importance of sPD-1/sPD-L1 and exoPD-L1 in cancer, including their predictive and prognostic roles and the effects of treatments that target these molecules.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| |
Collapse
|
15
|
Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44:527-544. [PMID: 35178659 DOI: 10.1007/s00281-022-00909-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.
Collapse
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA. .,Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Xue JS, Liu H, Meng GX, Ding ZN, Yan LJ, Yao SY, Li HC, Dong ZR, Chen ZQ, Hong JG, Li T. Prognostic value of soluble programmed cell death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) for hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Immunol Immunother 2021; 71:1633-1644. [PMID: 34750662 DOI: 10.1007/s00262-021-03103-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Preliminary studies have suggested that soluble programmed death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) have prognostic implications in many malignant tumors. However, the correlation between sPD-1/sPD-L1 level and prognosis of hepatocellular carcinoma (HCC) is still unclear. METHODS We searched several electronic databases from database inception to October 7, 2021. Meta-analyses were performed separately for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), time to progression (TTP), and tumor-free survival (TFS). Random effects were introduced to this meta-analysis. The correlation between sPD-1/sPD-L1 level and prognosis was evaluated using hazard ratios (HRs) with 95% confidence intervals (95%CIs). RESULTS A total of 11 studies (1291 patients) were incorporated into this meta-analysis, including seven on sPD-L1, two on sPD-1, and two about both factors. The pooled results showed that high sPD-L1 level was associated with worse OS (HR = 2.46, 95%CI 1.74-3.49, P < 0.001; I2 = 31.4, P = 0.177) and poorer DFS/RFS/TTP/TFS of patients with HCC (HR = 2.22, 95%CI 1.47-3.35, P < 0.001; I2 = 66.1, P = 0.011), irrespective of method of detection, study type, treatment, cut-off value and follow-up time. In contrast, the level of sPD-1 was not correlated to the OS (HR = 1.19, 95%CI 0.55-2.56, P = 0.657) and DFS/TFS of patients with HCC (HR = 0.94, 95%CI 0.36-2.49, P = 0.906). CONCLUSION sPD-L1 rather than sPD-1 could be a good predictor for recurrence and survival after treatment for HCC. More high-quality prospective studies are warranted to assess the prognostic value of sPD-1 or sPD-L1 for HCC.
Collapse
Affiliation(s)
- Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, China. .,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
17
|
Ma X, Wang N, Chen K, Zhang C. Oncosuppressive role of MicroRNA-205-3p in gastric cancer through inhibition of proliferation and induction of senescence: Oncosuppressive role of MicroRNA-205 in gastric cancer. Transl Oncol 2021; 14:101199. [PMID: 34388692 PMCID: PMC8363882 DOI: 10.1016/j.tranon.2021.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 12/04/2022] Open
Abstract
The molecular mechanism of miR-205-3p in inhibiting the proliferation and invasion of GC was elucidated in animal and cell experiments. The molecular mechanism of miR-205-3p in induction of senescence by inhibiting CXCL11 and Akt pathways was indicated. It was found that, in the tumor microenvironment, senescent GC cells secreted immunostimulatory SASP factors, recruit ed more T cells, and down-regulated the immunosuppressive signal PD- L1 expression, which enriched the network of miR-205-3p for negatively regulating GC progression
Background Our previous study showed that CXCL11 could play an immunomodulatory role. In this study, we investigated the regulator (miR-205–3p) of CXCL11 and the mechanism of miR-205–3p as a tumor suppressor gene in gastric cancer (GC). Materials and methods A target relationship between miR-205–3p and CXCL11 was revealed by using the bioinformatics method. This study detected the expressions of miR-205–3p and CXCL11 through qRT-PCR and Western blotting. Moreover, the expressions of Akt, PD-L1, p16, p21, and senescence-associated secretory phenotype (SASP) factor were determined. The effects of miR-205 on proliferation, invasion, and senescence of GC cells were assessed by using methods, such as transfection, Transwell assay, tablet cloning, flow cytometry, and senescence-associated beta-galactosidase (SA-β-gal) staining. Furthermore, the effects were verified using methods, like immunohistochemistry, flow cytometry and SA-β-gal in animal experiments. Results Based on the study, it is found that the expression of miR-205–3p is down-regulated, while that of CXCL11 is up-regulated in GC cell lines. By regulating CXCL11, miR-205–3p inhibits Akt activation, reduces the proliferation and invasion of GC cells, promotes cell apoptosis, induces senescence of GC cells, and secretes immunostimulatory SASP factor. The animal experiments confirm that miR-205–3p promotes cell senescence, down-regulates the immunosuppressive signal induced by PD-L1, and promotes secretion of immunostimulatory SASP factor, so that more T cells are recruited in blood and tumors. Conclusions This study revealed the molecular mechanism of miR-205–3p in inhibiting proliferation and invasion and inducing senescence of GC cells by regulating CXCL11 and Akt pathways in animal and cell experiments.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Geratology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Naiqian Wang
- Department of gynecology, Shenyang Shenda hospital, Shenyang 110001, China.
| | - Keyan Chen
- Department of Laboratory Animal Science of China Medical University, Shenyang 110001, China.
| | - Chenlu Zhang
- Department of Geratology, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
18
|
Soluble PD-1 but Not PD-L1 Levels Predict Poor Outcome in Patients with High-Risk Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13030398. [PMID: 33499013 PMCID: PMC7865236 DOI: 10.3390/cancers13030398] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Soluble forms of checkpoint protein PD-1 and its ligand PD-L1 can be measured from circulation, but their source, function, and clinical impact in cancer remain incompletely understood. In this study, we used serum samples collected during a conduction of a prospective immunochemotherapy trial in patients with high-risk diffuse large B-cell lymphoma (DLBCL) and assessed their clinical significance. Our results demonstrate that sPD-1 levels in the peripheral blood at the time of diagnosis correlate with the quantities of tumor infiltrating PD1+ T cells and translate to inferior survival. To our knowledge, this is the first study to identify sPD-1 as a prognostic factor, providing interesting perspectives on future clinical trials in DLBCL, including patients’ stratification associated with checkpoint blockade. Abstract Interaction of checkpoint receptor programmed death 1 (PD-1) with its ligand 1 (PD-L1) downregulates T cell effector functions and thereby leads to tumor immune escape. Here, we aimed to determine the clinical significance of soluble PD-1 (sPD-1) and soluble PD-L1 (sPD-L1) in patients with diffuse large B-cell lymphoma (DLBCL). We included 121 high-risk DLBCL patients treated in the Nordic NLG-LBC-05 trial with dose-dense immunochemotherapy. sPD-1 and sPD-L1 levels were measured from serum samples collected prior to treatment, after three immunochemotherapy courses, and at the end of therapy. sPD-1 and sPD-L1 levels were the highest in pretreatment samples, declining after three courses, and remaining low post-treatment. Pretreatment sPD-1 levels correlated with the quantities of PD1+ T cells in tumor tissue and translated to inferior survival, while no correlation was observed between sPD-L1 levels and outcome. The relative risk of death was 2.9-fold (95% CI 1.12–7.75, p = 0.028) and the risk of progression was 2.8-fold (95% CI 1.16–6.56, p = 0.021) in patients with high pretreatment sPD-1 levels compared to those with low levels. In conclusion, pretreatment sPD-1 level is a predictor of poor outcome after dose-dense immunochemotherapy and may be helpful in further improving molecular risk profiles in DLBCL.
Collapse
|
19
|
Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Miller JD, Passos JF, Pignolo RJ, Tchkonia T, Niedernhofer LJ. Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annu Rev Pharmacol Toxicol 2021; 61:779-803. [PMID: 32997601 PMCID: PMC7790861 DOI: 10.1146/annurev-pharmtox-050120-105018] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Senescence is the consequence of a signaling mechanism activated in stressed cells to prevent proliferation of cells with damage. Senescent cells (Sncs) often develop a senescence-associated secretory phenotype to prompt immune clearance, which drives chronic sterile inflammation and plays a causal role in aging and age-related diseases. Sncs accumulate with age and at anatomical sites of disease. Thus, they are regarded as a logical therapeutic target. Senotherapeutics are a new class of drugs that selectively kill Sncs (senolytics) or suppress their disease-causing phenotypes (senomorphics/senostatics). Since 2015, several senolytics went from identification to clinical trial. Preclinical data indicate that senolytics alleviate disease in numerous organs, improve physical function and resilience, and suppress all causes of mortality, even if administered to the aged. Here, we review the evidence that Sncs drive aging and disease, the approaches to identify and optimize senotherapeutics, and the current status of preclinical and clinical testing of senolytics.
Collapse
Affiliation(s)
- Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA;
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert J Pignolo
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
20
|
Khan M, Zhao Z, Arooj S, Fu Y, Liao G. Soluble PD-1: Predictive, Prognostic, and Therapeutic Value for Cancer Immunotherapy. Front Immunol 2020; 11:587460. [PMID: 33329567 PMCID: PMC7710690 DOI: 10.3389/fimmu.2020.587460] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed death protein 1 (PD-1) interaction with PD-L1 deliver immunosuppressive environment for tumor growth, and its blockade with directed monoclonal antibodies (anti-PD-1/anti-PD-L1) has shown remarkable clinical outcome. Lately, their soluble counterparts, sPD-1 and sPD-L1, have been detected in plasma, and elevated levels have been associated with advanced disease, clinical stages, and worst prognosis for cancer patients. Elevated plasma levels of sPD-L1 have been correlated with worst prognosis in several studies and has displayed a persistent outlook. On the other hand, sPD-1 levels have been inconsistent in their predictive and prognostic ability. Pretherapeutic higher sPD-1 plasma levels have shown to predict advanced disease state and to a lesser extent worst prognosis. Any increase in sPD-1 plasma level post therapeutically have been correlated with improved survival for various cancers. In vitro and in vivo studies have shown sPD-1 ability to bind PD-L1 and PD-L2 and block PD-1/PD-L1 interaction. Local delivery of sPD-1 in cancer tumor microenvironment through local gene therapy have demonstrated an increase in tumor specific CD8+ T cell immunity and tumor growth reduction. It had also exhibited enhancement of T cell immunity induced by vaccination and other gene therapeutic agents. Furthermore, it may also lessen the inhibitory effect of circulating sPD-L1 and enhance the effects of mAb-based immunotherapy. In this review, we highlight various aspects of sPD-1 role in cancer prediction, prognosis, and anti-cancer immunity, as well as, its therapeutic value for local gene therapy or systemic immunotherapy in blocking the PD-1 and PD-L1 checkpoint interactions.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Yuxiang Fu
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guixiang Liao
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
21
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 597] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
22
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
23
|
Cheng B, Ren Y, Niu X, Wang W, Wang S, Tu Y, Liu S, Wang J, Yang D, Liao G, Chen J. Discovery of Novel Resorcinol Dibenzyl Ethers Targeting the Programmed Cell Death-1/Programmed Cell Death–Ligand 1 Interaction as Potential Anticancer Agents. J Med Chem 2020; 63:8338-8358. [DOI: 10.1021/acs.jmedchem.0c00574] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Binbin Cheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaoge Niu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
24
|
Analysis of Plasma EBV-DNA and Soluble Checkpoint Proteins in Nasopharyngeal Carcinoma Patients after Definitive Intensity-Modulated Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3939720. [PMID: 31192256 PMCID: PMC6525834 DOI: 10.1155/2019/3939720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
Background Tumor immunotherapy and immunological checkpoint-related proteins are research hotspots. Intensity-modulated radiotherapy (IMRT) is the main treatment for nasopharyngeal carcinoma (NPC). Hence, the evaluation of its effect is very important. The aim of this study was to assess the relationship between the concentrations of soluble checkpoint proteins, plasma EBV-DNA, and cytokines in NPC patients treated with IMRT. Methods In this study, the plasma samples of 37 NPC patients and 40 healthy controls were collected. Luminex MAGPIX was used to detect the concentrations of 32 plasma targets, including soluble programmed cell death 1 (sPD-1). RT-qPCR was used to measure EBV-DNA. Results The concentrations of 33 plasma targets were detected in NPC patients before and after IMRT to explore the changes after IMRT. The results showed that IMRT could increase the expression of sPD-1 and significantly reduce the level of EBV-DNA in the plasma of NPC patients. The expression level of sPD-1 in TNM I/II patients was significantly higher than that in III/IV patients. Besides, the concentrations of 12 other targets were significantly different after IMRT, including LAG-3, PD-L1, TIM-3, IFN-γ, IL-12p70, IL-1β, IL-5, IL-6, TNF-α, IL-10, IL-17A, and IL-22. High sPD-1 patients had longer survival than those with low sPD-1. Also, patients with lower EBV-DNA and TNM grades I and II/III had longer survival than those with higher EBV-DNA or TNM IV. Conclusions This study demonstrated that the concentration of sPD-1 was significantly increased and EBV-DNA was significantly reduced in the NPC patients after IMRT. Plasma EBV-DNA level was a highly specific and sensitive biomarker for NPC diagnosis. Both sPD-1 expression and EBV-DNA concentration in plasma were related to the survival of patients.
Collapse
|
25
|
Chen Z, Hu K, Feng L, Su R, Lai N, Yang Z, Kang S. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 2018; 109:1753-1763. [PMID: 29675979 PMCID: PMC5989746 DOI: 10.1111/cas.13618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023] Open
Abstract
Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent‐cell‐based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple‐negative breast cancer. However, the programmed death receptor‐1/programmed death ligand‐1 (PD‐1/PD‐L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor‐1 (sPD1)‐expressing senescent cells to overcome PD‐L1/PD‐1‐mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T‐cell activation. In the present study, sPD1‐expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1‐expressing senescent tumor cell vaccine (STCV/sPD‐1) treatment attracted more mature DC and fewer exhausted‐PD1+ T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD‐1 than for control treatments. STCV/sPD‐1 pre‐injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD‐1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD‐1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kang Hu
- Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lieting Feng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruxiong Su
- Department of Pharmacy, Puning People's Hospital, Southern Medical University, Puning, China
| | - Nan Lai
- Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zike Yang
- Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shijun Kang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|