1
|
Shang S, Zhang L, Liu K, Lv M, Zhang J, Ju D, Wei D, Sun Z, Wang P, Yuan J, Zhu Z. Landscape of targeted therapies for advanced urothelial carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:641-677. [PMID: 38966172 PMCID: PMC11220318 DOI: 10.37349/etat.2024.00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.
Collapse
Affiliation(s)
- Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Maoxin Lv
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming 65000, Yunnan, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi’an 710068, Shaanxi, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Pinxiao Wang
- School of Clinical Medicine, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
2
|
Shanshan W, Hongying M, Jingjing F, Rui Y. Metformin and buparlisib synergistically induce apoptosis of non-small lung cancer (NSCLC) cells via Akt/FoxO3a/Puma axis. Toxicol In Vitro 2024; 97:105801. [PMID: 38479708 DOI: 10.1016/j.tiv.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a global health issue lacking effective treatments. Buparlisib is a pan-PI3K inhibitor that shows promising clinical results in treating NSCLC. However, chemoresistance is inevitable and hampers the application of buparlisib. Studies show that a combination of phytochemicals and chemotherapeutics enhances its effectiveness. Here, we evaluated the role of metformin, an agent with multiple pharmacological properties, in enhancing the anti-tumour activities of buparlisib against NSCLC cells. Our results showed that metformin and buparlisib synergistically inhibited cell viability, migration, and invasion of NSCLC cells. In addition, co-treatment of metformin and buparlisib also induced cell cycle arrest and cell death in NSCLC cells. Mechanistically, metformin and buparlisib repressed Mcl-1 and upregulated Puma in NSCLC cells in a p53-independent manner. Moreover, they inhibited the PI3K/Akt signalling pathway, leading to activation of the FoxO3a/Puma signalling in NSCLC cells. Our findings suggest that combined treatment of metformin and buparlisib might provide a promising strategy for treating NSCLC.
Collapse
Affiliation(s)
- Wang Shanshan
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Ma Hongying
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Fang Jingjing
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Yu Rui
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315020, China.
| |
Collapse
|
3
|
Mahmoudi G, Ehteshaminia Y, Kokhaei P, Jalali SF, Jadidi-Niaragh F, Pagheh AS, Enderami SE, Kenari SA, Hassannia H. Enhancement of targeted therapy in combination with metformin on human breast cancer cell lines. Cell Commun Signal 2024; 22:10. [PMID: 38167105 PMCID: PMC10763326 DOI: 10.1186/s12964-023-01446-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Breast cancer remains a primary global health concern due to its limited treatment options, frequent disease recurrence, and high rates of morbidity and mortality. Thereby, there is a need for more effective treatment approaches. The proposal suggests that the combination of targeted therapy with other antitumoral agents could potentially address drug resistance. In this study, we examined the antitumoral effect of combining metformin, an antidiabetic drug, with targeted therapies, including tamoxifen for estrogen receptor-positive (MCF-7), trastuzumab for HER2-positive (SKBR-3), and antibody against ROR1 receptor for triple-negative breast cancer (MDA-MB-231). METHODS Once the expression of relevant receptors on each cell line was confirmed and appropriate drug concentrations were selected through cytotoxicity assays, the antitumor effects of both monotherapy and combination therapy on colony formation, migration, invasion were assessed in in vitro as well as tumor area and metastatic potential in ex ovo Chick chorioallantoic membrane (CAM) models. RESULTS The results exhibited the enhanced effects of tamoxifen when combined with targeted therapy. This combination effectively inhibited cell growth, colony formation, migration, and invasion in vitro. Additionally, it significantly reduced tumor size and metastatic potential in an ex ovo CAM model. CONCLUSIONS The findings indicate that a favorable strategy to enhance the efficacy of breast cancer treatment would be to combine metformin with targeted therapies.
Collapse
Affiliation(s)
- Ghazal Mahmoudi
- Student Research Committee, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yahya Ehteshaminia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Kokhaei
- Department of Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Seyedeh Farzaneh Jalali
- Department of Hematology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Almeida-Nunes DL, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Enhancing Immunotherapy in Ovarian Cancer: The Emerging Role of Metformin and Statins. Int J Mol Sci 2023; 25:323. [PMID: 38203494 PMCID: PMC10779012 DOI: 10.3390/ijms25010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer metastization is accompanied by the development of malignant ascites, which are associated with poor prognosis. The acellular fraction of this ascitic fluid contains tumor-promoting soluble factors, bioactive lipids, cytokines, and extracellular vesicles, all of which communicate with the tumor cells within this peritoneal fluid. Metabolomic profiling of ovarian cancer ascites has revealed significant differences in the pathways of fatty acids, cholesterol, glucose, and insulin. The proteins involved in these pathways promote tumor growth, resistance to chemotherapy, and immune evasion. Unveiling the key role of this liquid tumor microenvironment is crucial for discovering more efficient treatment options. This review focuses on the cholesterol and insulin pathways in ovarian cancer, identifying statins and metformin as viable treatment options when combined with standard chemotherapy. These findings are supported by clinical trials showing improved overall survival with these combinations. Additionally, statins and metformin are associated with the reversal of T-cell exhaustion, positioning these drugs as potential combinatory strategies to improve immunotherapy outcomes in ovarian cancer patients.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4169-007 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
- FOREN—Forensic Science Experts, 1400-136 Lisboa, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal;
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- Faculty of Medicine, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Hasan A, Khamjan N, Lohani M, Mir SS. Targeted Inhibition of Hsp90 in Combination with Metformin Modulates Programmed Cell Death Pathways in A549 Lung Cancer Cells. Appl Biochem Biotechnol 2023; 195:7338-7378. [PMID: 37000353 DOI: 10.1007/s12010-023-04424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India
- Current Address: Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nizar Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Center, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
- Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
6
|
Al-Zahrani NS, Zamzami MA, Baghdadi MA, El-Gowily AH, Ali EMM. Regulation of Protein-Induced Apoptosis and Autophagy in Human Hepatocytes Treated with Metformin and Paclitaxel In Silico and In Vitro. Biomedicines 2023; 11:2688. [PMID: 37893061 PMCID: PMC10604243 DOI: 10.3390/biomedicines11102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Metformin and paclitaxel therapy offer promising outcomes in the treatment of liver cancer. Combining paclitaxel with metformin enhances treatment effectiveness and mitigates the adverse effects associated with paclitaxel alone. This study explored the anticancer properties of metformin and paclitaxel in HepG2 liver cancer cells, MCF-7 breast cancer cells, and HCT116 colon cancer cells. The results demonstrated that the combination of these agents exhibited a lower IC50 in the tested cell lines compared to paclitaxel monotherapy. Notably, treating the HepG2 cell line with this combination led to a reduction in the G0/G1 phase and an increase in the S and G2/M phases, ultimately triggering early apoptosis. To further investigate the interaction between the cellular proteins with paclitaxel and metformin, an in silico study was conducted using proteins chosen from a protein data bank (PDB). Among the proteins studied, AMPK-α, EGFRK, and FKBP12-mTOR exhibited the highest binding free energy, with values of -11.01, -10.59, and -15.63 kcal/mol, respectively, indicating strong inhibitory or enhancing effects on these proteins. When HepG2 cells were exposed to both paclitaxel and metformin, there was an upregulation in the gene expression of AMPK-α, a key regulator of the energy balance in cancer growth, as well as apoptotic markers such as p53 and caspase-3, along with autophagic markers including beclin1 and ATG4A. This combination therapy of metformin and paclitaxel exhibited significant potential as a treatment option for HepG2 liver cancer. In summary, the combination of metformin and paclitaxel not only enhances treatment efficacy but also reduces side effects. It induces cell cycle alterations and apoptosis and modulates key cellular proteins involved in cancer growth, making it a promising therapy for HepG2 liver cancer.
Collapse
Affiliation(s)
- Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, Collage of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mazin Abdulaziz Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia;
- Research Group “Cancer, Haemostasis and Angiogenesis”, INSERM U938, Saint-Antoine Research Center, University Institute of Cancerology, Faculty of Medicine, Sorbonne University, 75012 Paris, France
| | - Afnan H. El-Gowily
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt;
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
7
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|
8
|
Yuan SSF, Wang YM, Chan LP, Hung AC, Nguyen HDH, Chen YK, Hu SCS, Lo S, Wang YY. IL-1RA promotes oral squamous cell carcinoma malignancy through mitochondrial metabolism-mediated EGFR/JNK/SOX2 pathway. J Transl Med 2023; 21:473. [PMID: 37461111 PMCID: PMC10351194 DOI: 10.1186/s12967-023-04343-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Interleukin-1 receptor antagonist (IL-1RA), a member of the IL-1 family, has diverse roles in cancer development. However, the role of IL-1RA in oral squamous cell carcinoma (OSCC), in particular the underlying mechanisms, remains to be elucidated. METHODS Tumor tissues from OSCC patients were assessed for protein expression by immunohistochemistry. Patient survival was evaluated by Kaplan-Meier curve analysis. Impact of differential IL-1RA expression on cultured OSCC cell lines was assessed in vitro by clonogenic survival, tumorsphere formation, soft agar colony formation, and transwell cell migration and invasion assays. Oxygen consumption rate was measured by Seahorse analyzer or multi-mode plate reader. PCR array was applied to screen human cancer stem cell-related genes, proteome array for phosphorylation status of kinases, and Western blot for protein expression in cultured cells. In vivo tumor growth was investigated by orthotopic xenograft in mice, and protein expression in xenograft tumors assessed by immunohistochemistry. RESULTS Clinical analysis revealed that elevated IL-1RA expression in OSCC tumor tissues was associated with increased tumor size and cancer stage, and reduced survival in the patient group receiving adjuvant radiotherapy compared to the patient group without adjuvant radiotherapy. In vitro data supported these observations, showing that overexpression of IL-1RA increased OSCC cell growth, migration/invasion abilities, and resistance to ionizing radiation, whereas knockdown of IL-1RA had largely the opposite effects. Additionally, we identified that EGFR/JNK activation and SOX2 expression were modulated by differential IL-1RA expression downstream of mitochondrial metabolism, with application of mitochondrial complex inhibitors suppressing these pathways. Furthermore, in vivo data revealed that treatment with cisplatin or metformin-a mitochondrial complex inhibitor and conventional therapy for type 2 diabetes-reduced IL-1RA-associated xenograft tumor growth as well as EGFR/JNK activation and SOX2 expression. This inhibitory effect was further augmented by combination treatment with cisplatin and metformin. CONCLUSIONS The current study suggests that IL-1RA promoted OSCC malignancy through mitochondrial metabolism-mediated EGFR/JNK activation and SOX2 expression. Inhibition of this mitochondrial metabolic pathway may present a potential therapeutic strategy in OSCC.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1St Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Leong-Perng Chan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Amos C Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1St Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1St Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Steven Lo
- Canniesburn Regional Plastic Surgery and Burns Unit, Glasgow, G4 0SF, UK
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1St Road, Sanmin Dist., Kaohsiung, 80708, Taiwan.
| |
Collapse
|
9
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
10
|
Abdelmoneim M, Eissa IR, Aboalela MA, Naoe Y, Matsumura S, Sibal PA, Bustos-Villalobos I, Tanaka M, Kodera Y, Kasuya H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci Rep 2022; 12:21570. [PMID: 36513720 PMCID: PMC9747797 DOI: 10.1038/s41598-022-25065-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Oncolytic virus (OV) therapy is a promising cancer immunotherapy, especially for cold tumors by inducing the direct lysis of cancer cells and initiation of potent antitumor response. Canerpaturev (C-REV) is an attenuated oncolytic herpes simplex virus-1, which demonstrated a potent antitumor effect in various preclinical models when used either alone or combined. Metformin is a commonly prescribed antidiabetic drug that demonstrated a potent immune modulator effect and antitumor response. We combined C-REV with metformin in a low immunogenic bilateral murine tumor model to enhance C-REV's antitumor efficacy. In vitro, metformin does not enhance the C-REV cell cytotoxic effect. However, in in vivo model, intratumoral administration of C-REV with the systemic administration of metformin led to synergistic antitumor effect on both sides of tumor and prolonged survival. Moreover, combination therapy increased the effector CD44+ CD8+ PD1- subset and decreased the proportion of terminally-differentiated CD103+ KLRG-1+ T-regulatory cells on both sides of tumor. Interestingly, combination therapy efficiently modulates conventional dendritic cells type-1 (cDC1) on tumors, and tumor-drained lymph nodes. Our findings suggest that combination of C-REV and metformin enhances systemic antitumor immunity. This study may provide insights into the mechanism of action of OV therapy plus metformin combination against various tumor models.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Ragab Eissa
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.412258.80000 0000 9477 7793Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona Alhussein Aboalela
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.31451.320000 0001 2158 2757Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yoshinori Naoe
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Shigeru Matsumura
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Patricia Angela Sibal
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Itzel Bustos-Villalobos
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Maki Tanaka
- grid.410820.fTakara Bio Inc., Kusatsu, Shiga Japan
| | - Yasuhiro Kodera
- grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kasuya
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed Pharmacother 2022; 156:113686. [DOI: 10.1016/j.biopha.2022.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
|
12
|
Acquired drug resistance interferes with the susceptibility of prostate cancer cells to metabolic stress. Cell Mol Biol Lett 2022; 27:100. [PMCID: PMC9673456 DOI: 10.1186/s11658-022-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed. Methods Using a range of phenotypic and metabolic assays, we assessed the sensitivity of human prostate cancer PC-3 and DU145 cells, and their drug-resistant lineages (PC-3_DCX20 and DU145_DCX20), to combined docetaxel/metformin stress. Their adaptation responses have been assessed, in particular the shifts in their metabolic profile and invasiveness. Results Metformin increased the sensitivity of PC-3 wild-type (WT) cells to docetaxel, as illustrated by the attenuation of their motility, proliferation, and viability after the combined drug application. These effects correlated with the accumulation of energy carriers (NAD(P)H and ATP) and with the inactivation of ABC drug transporters in docetaxel/metformin-treated PC-3 WT cells. Both PC-3 WT and PC-3_DCX20 reacted to metformin with the Warburg effect; however, PC-3_DCX20 cells were considerably less susceptible to the cytostatic/misbalancing effects of metformin. Concomitantly, an epithelial–mesenchymal transition and Cx43 upregulation was seen in these cells, but not in other more docetaxel/metformin-sensitive DU145_DCX20 populations. Stronger cytostatic effects of the combined fenofibrate/docetaxel treatment confirmed that the fine-tuning of the balance between energy supply and expenditure determines cellular welfare under metabolic stress. Conclusions Collectively, our data identify the mechanisms that underlie the limited potential of metformin for the chemotherapy of drug-resistant tumors. Metformin can enhance the sensitivity of cancer cells to chemotherapy by inducing their metabolic decoupling/imbalance. However, the acquired chemoresistance of cancer cells impairs this effect, facilitates cellular adaptation to metabolic stress, and prompts the invasive front formation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00400-1.
Collapse
|
13
|
Kim MH, Lim SH. Matrix Metalloproteinases and Glaucoma. Biomolecules 2022; 12:biom12101368. [PMID: 36291577 PMCID: PMC9599265 DOI: 10.3390/biom12101368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that decompose extracellular matrix (ECM) proteins. MMPs are thought to play important roles in cellular processes, such as cell proliferation, differentiation, angiogenesis, migration, apoptosis, and host defense. MMPs are distributed in almost all intraocular tissues and are involved in physiological and pathological mechanisms of the eye. MMPs are also associated with glaucoma, a progressive neurodegenerative disease of the eyes. MMP activity affects intraocular pressure control and apoptosis of retinal ganglion cells, which are the pathological mechanisms of glaucoma. It also affects the risk of glaucoma development based on genetic pleomorphism. In addition, MMPs may affect the treatment outcomes of glaucoma, including the success rate of surgical treatment and side effects on the ocular surface due to glaucoma medications. This review discusses the various relationships between MMP and glaucoma.
Collapse
Affiliation(s)
- Moo Hyun Kim
- Department of Ophthalmology, Daegu Premier Eye Center, Suseong-ro 197, Suseong-Gu, Daegu 42153, Korea
| | - Su-Ho Lim
- Department of Ophthalmology, Daegu Veterans Health Service Medical Center, 60 Wolgok-Ro, Dalseo-Gu, Daegu 42835, Korea
- Correspondence: ; Tel.: +82-53-630-7572
| |
Collapse
|
14
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
15
|
Lemon LS, Orr B, Modugno F, Buckanovich RJ, Coffman L, Edwards RP, Taylor S. Metformin and survival: Is there benefit in a cohort limited to diabetic women with endometrial, breast, or ovarian cancer? Gynecol Oncol 2022; 165:60-66. [PMID: 35140015 DOI: 10.1016/j.ygyno.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Evaluate the association between metformin and survival in women with Type 2 diabetes (T2DM) and breast, endometrial and ovarian cancer- 3 hormonally mediated cancers. METHODS We evaluated outcomes in a cohort of 6225 women with T2DM with a new diagnosis of ovarian, breast or endometrial cancer from 2010 to 2019. We classified glycemic medications at time of first cancer diagnosis into 3 tiers in accordance with ADA guidelines. Approaches compared: (i) metformin (tier 1) vs. no glycemic medication, (ii) metformin vs tier 2 medications (sulfonylureas, thiazolidinediones, SGLT2-inhibitors, DPP4-inhibitors, alpha glucosidase-inhibitors, GLP-1 agonists), (iii) metformin vs tier 3 medications (insulins, amylinomimetics), and (iv) tier 2 vs tier 3 medications. Analyses included Cox proportional-hazards models, Kaplan-Meier curves, and conditional logistic regression in a risk set-sampled nested case-control matched on T2DM duration- all modeling survival. Models were adjusted for demographics, cancer type, A1C, T2DM duration, and number of office visits and hospitalizations. RESULTS Metformin was the most used medication (n = 3232) and consistently demonstrated survival benefit compared with tier 2 and 3 medications, across all methods. Tier 3-users demonstrated highest risk of death when compared to metformin rather than tier 2 [adjHR = 1.83 (95% CI: 1.58, 2.13) vs. adjHR = 1.32 (95% CI: 1.11, 1.57)], despite similar baseline profiles between tier 1 and 2 users. CONCLUSIONS Metformin users experienced increased survival even after accounting for surrogates of diabetes progression. Benefit extended beyond that seen in tier 2-users. Our findings, consistent with prior studies, indicate metformin use improves survival in women with T2DM and hormonally mediated women's cancers.
Collapse
Affiliation(s)
- Lara S Lemon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, PA 15213, United States of America; Department of Clinical Analytics, University of Pittsburgh Medical Centers, PA 15213, United States of America.
| | - Brian Orr
- Division of Gynecologic Oncology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, PA 15213, United States of America; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA 15213, United States of America; Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, PA 15213, United States of America
| | - Ronald J Buckanovich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, PA 15213, United States of America
| | - Lan Coffman
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, PA 15213, United States of America; Department of Hematology-Oncology, School of Medicine, University of Pittsburgh, PA 15213, United States of America
| | - Robert P Edwards
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, PA 15213, United States of America
| | - Sarah Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, PA 15213, United States of America
| |
Collapse
|
16
|
Wang W, Xiao D, Zhou S, Xu S, Tang X, Zhou X, Liu J, Xu C, Peng M, Yang X. Synthesis, Anticancer Activities, and Mechanism of N-Heptyl-Containing Biguanide Derivatives. Med Chem 2022; 18:895-902. [PMID: 35142271 DOI: 10.2174/1573406418666220210111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, the anticancer effects of biguanide drugs have received considerable attention. However, the effective concentration of biguanide drugs to kill cancer cells is relative high. Thus, we focus on structural modification of biguanides to obtain better antitumor candidates. Previous study in our laboratory has found that a biguanide compound containing n-heptyl group has the potent anticancer activity. However, the effect of different substituents on the benzene ring side of the biguanides on the anti-proliferative activity is unknown. OBJECTIVE A series of n-heptyl-containing biguanide derivatives whose benzene rings were modified by halogen substitution based on the intermediate derivatization method were further synthesized to find new compounds with improved antiproliferative activities. METHOD Ten n-heptyl-containing biguanide derivatives were synthesized via established chemical procedures. The activities of these derivatives were explored by MTT assay, clonogenic assay, and scratch assay. The protein levels were detected via Western blotting to explore the mechanisms underlying. RESULTS The optimal biguanide derivatives 10a-10c, 11d exhibited IC50 values of 2.21-9.59µΜ for five human cancer cell lines, significantly better than the control drug proguanil. The results of clonogenic and scratch wound healing assays also confirmed the inhibitory effects of derivatives 10a-10c, 11d on the proliferation and migration of human cancer cell lines. Western blot results demonstrated that one representative derivative, 10c upregulates AMPK signal pathway and downregulates mTOR/4EBP1/p70S6K. CONCLUSION All biguanide derivatives containing n-heptyl group are more active than proguanil, indicating that the modification of n-heptyl-containing biguanide derivatives provides a novel approach for the development of novel high efficient antitumor drugs.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Changde Vocational Technical College, Changde, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang Hunan, China
| | - Xinchong Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinbing Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
17
|
Chen D, Ye Y, Guo S, Yao K. Progress in the Research and Targeted Therapy of ErbB/HER Receptors in Urothelial Bladder Cancer. Front Mol Biosci 2022; 8:800945. [PMID: 35004854 PMCID: PMC8735837 DOI: 10.3389/fmolb.2021.800945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Bladder cancer is a lethal malignancy and a majority of bladder cancer arise from urothelial cells. Infiltration and metastasis are barriers for the radical cystectomy to achieve favored outcome and are the main cause of death. Systemic therapy, including chemotherapy, targeted therapy, and immunotherapy, is fundamental for these patients. erbB/HER receptors are found to be overexpressed in a subgroup of urothelial carcinoma, targeting erbB/HER receptors in these patients was found to be an efficient way in the era of genetic testing. To evaluate the role of erbB/HER receptors in bladder cancer, we reviewed the literature and ongoing clinical trials as regards to this topic to unveil the context of erbB/HER receptors in bladder cancer, which probably help to solidate the theoretical basis and might instruct further research.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlin Ye
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shengjie Guo
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kao Yao
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Alhowail A, Chigurupati S. Research advances on how metformin improves memory impairment in "chemobrain". Neural Regen Res 2022; 17:15-19. [PMID: 34100420 PMCID: PMC8451574 DOI: 10.4103/1673-5374.314284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment caused by chemotherapy, referred to as “chemobrain,” is observed in approximately 70% of cancer survivors. However, it is not completely understood how chemotherapy induces cognitive dysfunction, and clinical treatment strategies for this problem are lacking. Metformin, used as a first-line treatment for type 2 diabetes mellitus, is reported to reduce the effects of chemobrain. Recently, several studies have examined the effect of metformin in rescuing chemobrain. This review discusses recent clinical/preclinical studies that addressed some mechanisms of chemobrain and evaluates the effect of metformin in rescuing chemobrain and its potential mechanisms of action.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Wen M, Cao Y, Wu B, Xiao T, Cao R, Wang Q, Liu X, Xue H, Yu Y, Lin J, Xu C, Xu J, OuYang B. PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain. Nat Commun 2021; 12:5106. [PMID: 34429434 PMCID: PMC8384847 DOI: 10.1038/s41467-021-25416-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by electrostatic interactions between acidic phospholipids and basic residues in the N-terminal region. The absence of the acidic phospholipids and replacement of the basic residues with acidic residues abolish the membrane association. Moreover, the basic-to-acidic mutations also decrease the cellular abundance of PD-L1, implicating that the electrostatic interaction with the plasma membrane mediates the cellular levels of PD-L1. Interestingly, distinct from its reported function as an activator of AMPK in tumor cells, the type 2 diabetes drug metformin enhances the membrane dissociation of PD-L1-CD by disrupting the electrostatic interaction, thereby decreasing the cellular abundance of PD-L1. Collectively, our study reveals an unusual regulatory mechanism that controls the PD-L1 level in tumor cells, suggesting an alternative strategy to improve the efficacy of PD-L1-related immunotherapies.
Collapse
Affiliation(s)
- Maorong Wen
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yunlei Cao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wu
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Taoran Xiao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyu Cao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xiwei Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Hongjuan Xue
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yu
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jialing Lin
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.266900.b0000 0004 0447 0018Stephenson Cancer Center, Oklahoma City, OK USA
| | - Chenqi Xu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jie Xu
- grid.8547.e0000 0001 0125 2443Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bo OuYang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Zhu Z, Jiang T, Suo H, Xu S, Zhang C, Ying G, Yan Z. Metformin Potentiates the Effects of Anlotinib in NSCLC via AMPK/mTOR and ROS-Mediated Signaling Pathways. Front Pharmacol 2021; 12:712181. [PMID: 34421608 PMCID: PMC8373262 DOI: 10.3389/fphar.2021.712181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Anlotinib is a novel multi-targeted tyrosine kinase inhibitor with activity against soft tissue sarcoma, small cell lung cancer, and non-small cell lung cancer (NSCLC). Potentiating the anticancer effect of anlotinib in combination strategies remains a clinical challenge. Metformin is an oral agent that is used as a first-line therapy for type 2 diabetes. Interesting, metformin also exerts broad anticancer effects through the activation of AMP-activated protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR). Here, we evaluated the possible synergistic effect of anlotinib and metformin in NSCLC cells. The results showed that metformin enhanced the antiproliferative effect of anlotinib. Moreover, anlotinib combined with metformin induced apoptosis and oxidative stress, which was associated with the activation of AMPK and inhibition of mTOR. Reactive oxygen species (ROS)- mediated p38/JNK MAPK and ERK signaling may be involved in the anticancer effects of this combination treatment. Our results show that metformin potentiates the efficacy of anlotinib in vivo by increasing the sensitivity of NSCLC cells to the drug. These data provide a potential rationale for the combination of anlotinib and metformin for the treatment of patients with NSCLC or other cancers.
Collapse
Affiliation(s)
- Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Teng Jiang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huirong Suo
- Department of Pharmacy, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shan Xu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cai Zhang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Continuing Education and Science and Technology Service, China Anti-cancer Association, Tianjin, China
| |
Collapse
|
21
|
Chen C, Wang H, Geng X, Zhang D, Zhu Z, Zhang G, Hou J. Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway. Cancer Cell Int 2021; 21:404. [PMID: 34399755 PMCID: PMC8369631 DOI: 10.1186/s12935-021-02043-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Encouraged by the goal of developing an effective treatment strategy for prostate cancer, this study explored the mechanism involved in metformin-mediated inhibition of AR-negative prostate cancer. METHODS Cell behaviors of DU145 and PC3 cells were determined by CCK8 test, colony formation experiment and scratch test. Flow cytometry was used to detect cell cycle distribution. Cell autophagy was induced with metformin, and an autophagy inhibitor, 3-MA, was used to assess the level of autophagy. Detection of LC3B by immunofluorescence was conducted to determine autophagy level. Cell proliferation, autophagy and cell cycle were examined by performing Western blot. DU145 and PC3 cell lines were transfected with AMPK siRNA targeting AMPK-α1 and AMPK-α2. Tumor formation experiment was carried out to evaluate the anti-prostate cancer effect of metformin in vivo. RESULTS The inhibitory effect of metformin on the proliferation of prostate cancer cell lines was confirmed in this study, and the mechanism of such an effect was related to autophagy and the block of cell cycle at G0/G1 phase. Metformin also induced the activation of AMPK, markedly promoted expression of LC3II, and down-regulated the expression of p62/SQSTM1. Animal experiments showed that the tumor volume of metformin group was smaller, meanwhile, the levels of p-AMPK (Thr172) and LC3B were up-regulated and the Ki-67 level was down-regulated, without abnormalities in biochemical indicators. CONCLUSION This study found that autophagy induction might be the mechanism through which metformin suppressed the growth of AR-negative prostate cancer. Moreover, the activation of AMPK/autophagy pathway might be a therapeutically effective for treating AR-negative prostate cancer in the future.
Collapse
Affiliation(s)
- Chunyang Chen
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, People's Republic of China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xinyu Geng
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhengyu Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Jianquan Hou
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Luo D, Wang X, Zhong X, Chang J, He M, Wang H, Li Y, Zhao C, Luo Y, Ran L. MPEG-PCL Nanomicelles Platform for Synergistic Metformin and Chrysin Delivery to Breast Cancer in Mice. Anticancer Agents Med Chem 2021; 22:280-293. [PMID: 34165412 DOI: 10.2174/1871520621666210623092725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Metformin (MET) is a well-known anti-diabetic drug that also has anti-cancer effects. However, high therapeutic doses of MET on cancer cells and the low efficacy of combinatory therapeutic approaches limit its clinical application. Recent studies have shown that chrysin (CHR) can improve the pharmaceutical efficacy of MET by suppressing human telomerase reverse transcriptase (hTERT) and cyclin D1 gene expression. OBJECTIVE This study aimed to develop different ratios of methoxy poly(ethylene glycol)-b-poly(e-caprolactone) (MPEG-PCL) micelles for breast cancer to co-deliver a synergistic CHR/MET combination. METHODS CHR/MET drug-loaded micelles were prepared by modified thin-film hydration. Fourier infrared spectrum, gel permeation chromatography, transmission electron microscopy, and high-performance liquid chromatography were used to evaluate the physicochemical properties of nanostructures. Cell proliferation and cell apoptosis were assessed by MTT and Annexin V-FITC/PI double staining method. The gene expression of hTERT and cyclin D1 was measured by real-time PCR assay. A subcutaneous mouse T47D xenograft model was established to evaluate the in vivo efficiency. RESULTS When the ratio of MPEG-PCL was 1:1.7, the highest drug loading rate and encapsulation efficiency of CHR (11.31±0.37) and MET (12.22±0.44) were observed. Uniform MPEG-PCL micelles of 51.70±1.91 nm allowed MET to incorporate with CHR, which were co-delivered to breast cancer cells. We demonstrated that CHR/MET co-delivery micelles showed a good synergistic effect on inhibiting proliferation in T47D cells (combination index=0.87) by suppressing hTERT and cyclin D1 gene expression. Compared with the free CHR/MET group, the apoptosis rate on T47D cells by CHR/MET nano-micelles significantly improved from 71.33% to 79.25%. The tumour volume and tumour weight of the CHR/MET group increased more slowly than that of the single-drug treatment group (P<0.05). Compared with the CHR/MET group, the tumour volume and tumour weight of the CHR/MET nano-micelle group decreased by 42% and 59%, respectively. CONCLUSIONS We demonstrated that ratiometric CHR/MET micelles could provide an effective technique for the treatment of breast cancer.
Collapse
Affiliation(s)
- Daiqin Luo
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Xinjun Wang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaomei Zhong
- The Second People's Hospital of Guiyang; GuiYang 550000, China
| | - Jianying Chang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Mingyuan He
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Heran Wang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yongxia Li
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Chaofen Zhao
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yan Luo
- Guiyang Medical University Guiyang, 550001, P.R. China, Gui Zhou province, China
| | - Li Ran
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| |
Collapse
|
23
|
The Metabolic Heterogeneity and Flexibility of Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12102780. [PMID: 32998263 PMCID: PMC7601708 DOI: 10.3390/cancers12102780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) have been shown to be the main cause of therapy resistance and cancer recurrence. An analysis of their biological properties has revealed that CSCs have a particular metabolism that differs from non-CSCs to maintain their stemness properties. In this review, we analyze the flexible metabolic mechanisms of CSCs and highlight the new therapeutics that target CSC metabolism. Abstract Numerous findings have indicated that CSCs, which are present at a low frequency inside primary tumors, are the main cause of therapy resistance and cancer recurrence. Although various therapeutic methods targeting CSCs have been attempted for eliminating cancer cells completely, the complicated characteristics of CSCs have hampered such attempts. In analyzing the biological properties of CSCs, it was revealed that CSCs have a peculiar metabolism that is distinct from non-CSCs to maintain their stemness properties. The CSC metabolism involves not only the catabolic and anabolic pathways, but also intracellular signaling, gene expression, and redox balance. In addition, CSCs can reprogram their metabolism to flexibly respond to environmental changes. In this review, we focus on the flexible metabolic mechanisms of CSCs, and highlight the new therapeutics that target CSC metabolism.
Collapse
|
24
|
Samuel SM, Varghese E, Koklesová L, Líšková A, Kubatka P, Büsselberg D. Counteracting Chemoresistance with Metformin in Breast Cancers: Targeting Cancer Stem Cells. Cancers (Basel) 2020; 12:E2482. [PMID: 32883003 PMCID: PMC7565921 DOI: 10.3390/cancers12092482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the leaps and bounds in achieving success in the management and treatment of breast cancers through surgery, chemotherapy, and radiotherapy, breast cancer remains the most frequently occurring cancer in women and the most common cause of cancer-related deaths among women. Systemic therapeutic approaches, such as chemotherapy, although beneficial in treating and curing breast cancer subjects with localized breast tumors, tend to fail in metastatic cases of the disease due to (a) an acquired resistance to the chemotherapeutic drug and (b) the development of intrinsic resistance to therapy. The existence of cancer stem cells (CSCs) plays a crucial role in both acquired and intrinsic chemoresistance. CSCs are less abundant than terminally differentiated cancer cells and confer chemoresistance through a unique altered metabolism and capability to evade the immune response system. Furthermore, CSCs possess active DNA repair systems, transporters that support multidrug resistance (MDR), advanced detoxification processes, and the ability to self-renew and differentiate into tumor progenitor cells, thereby supporting cancer invasion, metastasis, and recurrence/relapse. Hence, current research is focusing on targeting CSCs to overcome resistance and improve the efficacy of the treatment and management of breast cancer. Studies revealed that metformin (1, 1-dimethylbiguanide), a widely used anti-hyperglycemic agent, sensitizes tumor response to various chemotherapeutic drugs. Metformin selectively targets CSCs and improves the hypoxic microenvironment, suppresses the tumor metastasis and inflammation, as well as regulates the metabolic programming, induces apoptosis, and reverses epithelial-mesenchymal transition and MDR. Here, we discuss cancer (breast cancer) and chemoresistance, the molecular mechanisms of chemoresistance in breast cancers, and metformin as a chemo-sensitizing/re-sensitizing agent, with a particular focus on breast CSCs as a critical contributing factor to acquired and intrinsic chemoresistance. The review outlines the prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer/chemo-sensitizing drug in the treatment of breast cancer. It intends to provide a rationale for the use of metformin as a combinatory therapy in a clinical setting.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Lenka Koklesová
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (L.K.); (A.L.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
25
|
Tyagi A, Kolluru V, Chandrasekaran B, Saran U, Sharma AK, Ankem MK, Damodaran C. ASR488, a novel small molecule, activates an mRNA binding protein, CPEB1, and inhibits the growth of bladder cancer. Oncol Lett 2020; 20:850-860. [PMID: 32566012 PMCID: PMC7285857 DOI: 10.3892/ol.2020.11593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 12/03/2022] Open
Abstract
Due to a lack of mechanistic insights, muscle-invasive bladder cancer (MIBC) remains incurable and is one of the most lethal types of cancer in the United States. The present study investigated changes in the molecular signatures of MIBC cells (TCCSUP and HT1376) after treatment with a novel small molecule, ASR488, to gain knowledge of the mechanisms that inhibited MIBC cell growth. ASR488 treatment initiated apoptotic signaling in MIBC cells. Pathway enrichment analysis was used to analyze the changes in function of differentially expressed genes. Gene Ontology analysis, as well as Kyoto Encyclopedia of Genes and Genomes analysis, was also performed. These analyses along with reactome pathway enrichment analyses indicated that the genes upregulated in the ASR488-treated cells are involved in focal adhesion, neurotrophin signaling, p53 signaling, endoplasmic reticulum functioning in terms of protein processing, and pathways related to bladder cancer. The genes downregulated in ASR488-treated MIBC cells were mainly involved in DNA replication, mismatch repair, RNA degradation, nucleotide excision repair and TGFβ signaling (P<0.05). Furthermore, reverse transcription-quantitative PCR analysis revealed an increase in transcripts of the most upregulated genes in ASR 488-treated MIBC cells: CPEB1 (36-fold), IL11 (30-fold), SFN (20.12-fold) and CYP4F11 (15.8-fold). In conclusion, the analysis of biological functions of the most differentially expressed genes revealed possible mechanisms that may be associated with the aggressiveness of MIBC.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | | | - Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
26
|
Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, Yang K, Reynolds RK, Johnston C, McLean K, Uppal S, Liu JR, Cabrera L, Taylor SE, Orr BC, Modugno F, Mehta P, Bregenzer M, Mehta G, Shen H, Coffman LG, Buckanovich RJ. Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight 2020; 5:133247. [PMID: 32369446 PMCID: PMC7308054 DOI: 10.1172/jci.insight.133247] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUNDEpidemiologic studies suggest that metformin has antitumor effects. Laboratory studies indicate metformin impacts cancer stem-like cells (CSCs). As part of a phase II trial, we evaluated the impact of metformin on CSC number and on carcinoma-associated mesenchymal stem cells (CA-MSCs) and clinical outcomes in nondiabetic patients with advanced-stage epithelial ovarian cancer (EOC).METHODSThirty-eight patients with stage IIC (n = 1)/III (n = 25)/IV (n = 12) EOC were treated with either (a) neoadjuvant metformin, debulking surgery, and adjuvant chemotherapy plus metformin or (b) neoadjuvant chemotherapy and metformin, interval debulking surgery, and adjuvant chemotherapy plus metformin. Metformin-treated tumors, compared with historical controls, were evaluated for CSC number and chemotherapy response. Primary endpoints were (a) a 2-fold or greater reduction in aldehyde dehydrogenase-positive (ALDH+) CD133+ CSCs and (b) a relapse-free survival at 18 months of more than 50%.RESULTSMetformin was well tolerated. Median progression-free survival was 18.0 months (95% CI 14.0-21.6) with relapse-free survival at 18 months of 59.3% (95% CI 38.6-70.5). Median overall survival was 57.9 months (95% CI 28.0-not estimable). Tumors treated with metformin had a 2.4-fold decrease in ALDH+CD133+ CSCs and increased sensitivity to cisplatin ex vivo. Furthermore, metformin altered the methylation signature in CA-MSCs, which prevented CA-MSC-driven chemoresistance in vitro.CONCLUSIONTranslational studies confirm an impact of metformin on EOC CSCs and suggest epigenetic change in the tumor stroma may drive the platinum sensitivity ex vivo. Consistent with this, metformin therapy was associated with better-than-expected overall survival, supporting the use of metformin in phase III studies.TRIAL REGISTRATIONClinicalTrials.gov NCT01579812.
Collapse
Affiliation(s)
- Jason R. Brown
- Division of Hematology and Oncology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Daniel K. Chan
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jessica J. Shank
- Department of Obstetrics and Gynecology, Naval Medical Center, San Diego, California, USA
| | - Kent A. Griffith
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Huihui Fan
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Robert Szulawski
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Kun Yang
- Division of Hematology and Oncology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - R. Kevin Reynolds
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Carolyn Johnston
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Karen McLean
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shitanshu Uppal
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - J. Rebecca Liu
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Lourdes Cabrera
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Sarah E. Taylor
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Brian C. Orr
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Francesmary Modugno
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Pooja Mehta
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Michael Bregenzer
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Geeta Mehta
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Hui Shen
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Lan G. Coffman
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Zhao Y, Luo Q, Mo J, Li J, Ye D, Ao Z, Chen L, Liu J. Metformin in combination with JS-K inhibits growth of renal cell carcinoma cells via reactive oxygen species activation and inducing DNA breaks. J Cancer 2020; 11:3701-3712. [PMID: 32328174 PMCID: PMC7171495 DOI: 10.7150/jca.36372] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin (MET) is taken as a principal medication for remedying Type 2 diabetes mellitus. Its anti-tumor effect has been reported increasingly, but the precise mechanism of it remains unclear. This study aims to explore the efficacy of MET and MET combined with nitric oxide donor prodrug JS-K on the proliferation, apoptosis, and DNA damage in human renal cell carcinoma (RCC) cells, and investigate the possible molecular mechanism involved. The cell proliferation was tested through methyl-tetrazolium assay and cell apoptosis was ascertained by flow cytometry. The dihydroethidium and JC-1 fluorescent methods were used to detect Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm), respectively. Proteins associated with apoptosis and DNA damage were evaluated by Western blotting. Results showed that MET and JS-K could suppress cell growth, and the inhibition concentration 50 of treatment with MET combined with JS-K (MET + JS-K) showed more toxicity than individual agents on RCC cells. This augmented toxicity was associated with intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential alteration, and induced DNA breaks. The results of Western blotting showed that the expression level of pro-apoptotic proteins, such as Bax, Bak, caspase-3, and caspase-9, was up-regulated, and the anti-apoptotic protein Bcl-2 was down-regulated after treatment using MET alone and MET + JS-K, correspondingly. Moreover, MET + JS-K inhibited the expression of cellular PCNA and Rad51, and immunofluorescence analysis of γH2AX proved that MET + JS-K enhanced DNA damage. In summary, the results of this research indicated that MET and JS-K inhibited RCC cell growth by activating ROS, targeting mitochondria-dependent apoptotic pathways, and inducing DNA breaks.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qiuming Luo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianwei Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dongcai Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhixian Ao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Lixin Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
28
|
Chen K, Li Y, Guo Z, Zeng Y, Zhang W, Wang H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY) 2020; 12:3993-4009. [PMID: 32074084 PMCID: PMC7066888 DOI: 10.18632/aging.102787] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
Metformin is one of the most commonly used first-line oral medications for type 2 diabetes mellitus. Multiple observational studies, reviewed in numerous systematic reviews, have shown that metformin treatment may not only reduce the risk of cancer but may also improve the efficacy of cancer treatment in diabetic patients. Recent studies have been conducted to determine whether a similar protective effect can be demonstrated in nondiabetic cancer patients. However, the results are controversial. The potential optimal dose, schedule, and duration of metformin treatment and the heterogeneity of histological subtypes and genotypes among cancer patients might contribute to the different clinical benefits. In addition, as the immune property of metformin was investigated, further studies of the immunomodulatory effect of metformin on cancer cells should also be taken into account to optimize its clinical use. In this review, we present and discuss the latest findings regarding the anticancer potential of metformin in nondiabetic patients with cancer.
Collapse
Affiliation(s)
- Kailin Chen
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| | - Yajun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| | - Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha 410013, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, P.R. China
| |
Collapse
|
29
|
Masuda T, Tsuruda Y, Matsumoto Y, Uchida H, Nakayama KI, Mimori K. Drug repositioning in cancer: The current situation in Japan. Cancer Sci 2020; 111:1039-1046. [PMID: 31957175 PMCID: PMC7156828 DOI: 10.1111/cas.14318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of death worldwide, and the incidence continues to increase. Despite major research aimed at discovering and developing novel and effective anticancer drugs, oncology drug development is a lengthy and costly process, with high attrition rates. Drug repositioning (DR, also referred to as drug repurposing), the process of finding new uses for approved noncancer drugs, has been gaining popularity in the past decade. DR has become a powerful alternative strategy for discovering and developing novel anticancer drug candidates from the existing approved drug space. Indeed, the availability of several large established libraries of clinical drugs and rapid advances in disease biology, genomics/transcriptomics/proteomics and bioinformatics has accelerated the pace of activity‐based, literature‐based and in silico DR, thereby improving safety and reducing costs. However, DR still faces financial obstacles in clinical trials, which could limit its practical use in the clinic. Here, we provide a brief review of DR in cancer and discuss difficulties in the development of DR for clinical use. Furthermore, we introduce some promising DR candidates for anticancer therapy in Japan.
Collapse
Affiliation(s)
- Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yusuke Tsuruda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | - Hiroki Uchida
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
30
|
Cole AJ, Fayomi AP, Anyaeche VI, Bai S, Buckanovich RJ. An evolving paradigm of cancer stem cell hierarchies: therapeutic implications. Theranostics 2020; 10:3083-3098. [PMID: 32194856 PMCID: PMC7053211 DOI: 10.7150/thno.41647] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over a decade of research has confirmed the critical role of cancer stem-like cells (CSCs) in tumor initiation, chemoresistance, and metastasis. Increasingly, CSC hierarchies have begun to be defined with some recurring themes. This includes evidence that these hierarchies are 'flexible,' with both cell state transitions and dedifferentiation events possible. These findings pose therapeutic hurdles and opportunities. Here, we review cancer stem cell hierarchies and their interactions with the tumor microenvironment. We also discuss the current therapeutic approaches designed to target CSC hierarchies and initial clinical trial results for CSC targeting agents. While cancer stem cell targeted therapies are still in their infancy, we are beginning to see encouraging results that suggest a positive outlook for CSC-targeting approaches.
Collapse
Affiliation(s)
- Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shoumei Bai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Xiao D, Lu Z, Wang Z, Zhou S, Cao M, Deng J, Hu X, Peng M, He C, Wu J, Xu S, Zhang H, Xu C, Wang W, Guan A, Yang X. Synthesis, biological evaluation and anti-proliferative mechanism of fluorine-containing proguanil derivatives. Bioorg Med Chem 2020; 28:115258. [PMID: 31864776 DOI: 10.1016/j.bmc.2019.115258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
Proguanil, a member of biguanide family, has excellent anti-proliferative activities. Fluorine-containing compounds have been demonstrated to have super biological activities including enhanced binding interactions, metabolic stability, and reduced toxicity. In this study, based on the intermediate derivatization methods, we synthesized 13 new fluorine-containing proguanil derivatives, and found that 7a,7d and 8e had much lower IC50 than proguanil in 5 human cancerous cell lines. The results of clonogenic and scratch wound healing assays revealed that the inhibitory effects of derivatives 7a,7d and 8e on proliferation and migration of human cancer cell lines were much better than proguanil as well. Mechanistic study based on representative derivative 7a indicated that this compound up-regulates AMPK signal pathway and downregulates mTOR/4EBP1/p70S6K. In conclusion, these new fluorine-containing derivatives show potential for the development of cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Zhicheng Lu
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd., Shenyang, China
| | - Zhiren Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mengru Cao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xin Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Caimei He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jingtao Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
| | - Aiying Guan
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd., Shenyang, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C. Life Sci 2020; 243:117276. [PMID: 31926250 DOI: 10.1016/j.lfs.2020.117276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
AIMS Chemo-resistance still was the main obstacle for AML patients, more effective and less toxic forms of therapies were desperately needed. Metformin, a classic hypoglycemic drug for diabetes recently delivered us a new identity that it exerted anti-tumor activity through suppressing mTOR in various tumors. But the anti-tumor effect of metformin in AML was not clear. METHODS In this study, we used CCK8 assay and apoptosis assay to determine the anti-leukemia activity of metformin combined with AraC, and explore the mechanism of the joint role of Ara-C/metformin in AML. We finally used xenograft experiment in mice to determine the anti-leukemia effect of Ara-C/metformin in vivo. KEY FINDINGS We found that metformin could synergistically sensitize AML cells to Ara-C via inhibiting mTORC1/P70S6K pathway. In vivo experiment also verified metformin in aid of Ara-C caused an obviously synergistic anti-tumor effect. SIGNIFICANCE We firstly found the synergistic anti-tumor effect of Ara-C/metformin in AML through inhibiting mTORC1/P70S6K pathway.
Collapse
|
33
|
Zuniga KB, Graff RE, Feiger DB, Meng MV, Porten SP, Kenfield SA. Lifestyle and Non-muscle Invasive Bladder Cancer Recurrence, Progression, and Mortality: Available Research and Future Directions. Bladder Cancer 2020; 6:9-23. [PMID: 34095407 PMCID: PMC8174672 DOI: 10.3233/blc-190249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND: A broad, comprehensive review of studies exploring associations between lifestyle factors and non-muscle invasive bladder cancer (NMIBC) outcomes is warranted to consolidate recommendations and identify gaps in research. OBJECTIVE: To summarize the literature on associations between lifestyle factors and clinical outcomes among patients with NMIBC. METHODS: PubMed was systematically queried for articles published through March 2019 regarding lifestyle factors and recurrence, progression, cancer-specific mortality, and all-cause mortality among patients with NMIBC. RESULTS: Notwithstanding many ambiguities, there is good-quality evidence suggesting a benefit of smoking avoidance/cessation, healthy body mass index (BMI), and type II diabetes mellitus prevention and treatment. Lactobacillus casei probiotic supplementation may reduce recurrence. There have been individual studies suggesting a benefit for uncooked broccoli and supplemental vitamin E as well as avoidance of supplemental vitamin B9, areca nut chewing, and a “Western diet” pattern high in fried foods and red meat. Additional studies do not suggest associations between NMIBC outcomes and use of fibrin clot inhibitors; insulin and other oral hypoglycemics; statins; supplemental selenium, vitamin A, vitamin C, and vitamin B6; fluid intake and intake of specific beverages (e.g., alcohol, coffee, green tea, cola); various dietary patterns (e.g., Tex-Mex, high fruit and vegetable, low-fat); and occupational and chemical exposures. CONCLUSIONS: Despite a myriad of publications on lifestyle factors and NMIBC, a need remains for research on unexplored associations (e.g., physical activity) and further studies that can elucidate causal effects. This would inform future implementation strategies for healthy lifestyle change in NMIBC patients.
Collapse
Affiliation(s)
- Kyle B Zuniga
- Department of Urology, University of California, San Francisco, CA, USA.,Osher Center for Integrative Medicine, University of California, San Francisco, CA, USA.,College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - David B Feiger
- Department of Urology, University of California, San Francisco, CA, USA.,School of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Emergency Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maxwell V Meng
- Department of Urology, University of California, San Francisco, CA, USA
| | - Sima P Porten
- Department of Urology, University of California, San Francisco, CA, USA
| | - Stacey A Kenfield
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Ezzeldin E, Iqbal M, Herqash RN, ElNahhas T. Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121851. [DOI: 10.1016/j.jchromb.2019.121851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/02/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
|
35
|
Lee JY, Shin DH, Kim JS. Anticancer Effect of Metformin in Herceptin-Conjugated Liposome for Breast Cancer. Pharmaceutics 2019; 12:pharmaceutics12010011. [PMID: 31877620 PMCID: PMC7023063 DOI: 10.3390/pharmaceutics12010011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/27/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Metformin (MET) is an anti-diabetic drug effective against breast cancer, targeting breast cancer stem cells (BCSCs). MET-encapsulating liposome (LP-MET) and Herceptin-conjugated LP-MET (Her-LP-MET) were evaluated for their anti-cancer effect in vitro and in vivo. Size and zeta potentials of LP-MET and Her-LP-MET were suitable for enhanced permeability and retention effects. Her-LP-MET yielded greater inhibition of BCSC proliferation in vitro than free MET or LP-MET, as well as a dose-dependent long-term anti-proliferation effect. Further, the anti-migration effect of Her-LP-MET on BCSCs was superior to that of MET or LP-MET, and was enhanced when used in concert with doxorubicin (DOX). In a mouse model, Her-LP-MET combined with free DOX was more effective than free MET, free DOX, or Her-LP-MET. Moreover, Her-LP-MET combined with free DOX yielded tumor remission, whereas free DOX alone resulted in metastasis or death. As such, Her-LP-MET formulation is expected to provide a new therapeutic modality targeting BCSCs.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongparo 47 gil 100, Yongsan gu, Seoul 04310, Korea;
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea;
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongparo 47 gil 100, Yongsan gu, Seoul 04310, Korea;
- Correspondence: ; Tel.: +82-043-710-9574; Fax: +82-043-710-0032
| |
Collapse
|
36
|
Park JH, Kim YH, Park EH, Lee SJ, Kim H, Kim A, Lee SB, Shim S, Jang H, Myung JK, Park S, Lee SJ, Kim MJ. Effects of metformin and phenformin on apoptosis and epithelial-mesenchymal transition in chemoresistant rectal cancer. Cancer Sci 2019; 110:2834-2845. [PMID: 31278880 PMCID: PMC6726705 DOI: 10.1111/cas.14124] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Recurrence and chemoresistance in colorectal cancer remain important issues for patients treated with conventional therapeutics. Metformin and phenformin, previously used in the treatment of diabetes, have been shown to have anticancer effects in various cancers, including breast, lung and prostate cancers. However, their molecular mechanisms are still unclear. In this study, we examined the effects of these drugs in chemoresistant rectal cancer cell lines. We found that SW837 and SW1463 rectal cancer cells were more resistant to ionizing radiation and 5‐fluorouracil than HCT116 and LS513 colon cancer cells. In addition, metformin and phenformin increased the sensitivity of these cell lines by inhibiting cell proliferation, suppressing clonogenic ability and increasing apoptotic cell death in rectal cancer cells. Signal transducer and activator of transcription 3 and transforming growth factor‐β/Smad signaling pathways were more activated in rectal cancer cells, and inhibition of signal transducer and activator of transcription 3 expression using an inhibitor or siRNA sensitized rectal cancer cells to chemoresistant by inhibition of the expression of antiapoptotic proteins, such as X‐linked inhibitor of apoptosis, survivin and cellular inhibitor of apoptosis protein 1. Moreover, metformin and phenformin inhibited cell migration and invasion by suppression of transforming growth factor β receptor 2‐mediated Snail and Twist expression in rectal cancer cells. Therefore, metformin and phenformin may represent a novel strategy for the treatment of chemoresistant rectal cancer by targeting signal transducer and activator of transcription 3 and transforming growth factor‐β/Smad signaling.
Collapse
Affiliation(s)
- Ji-Hye Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Young-Heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Eun Hyeh Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Sun-Joo Lee
- Laboratory of Experimental Pathology, Department of Pathology, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Hyewon Kim
- Laboratory of Experimental Pathology, Department of Pathology, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea.,Laboratory of Experimental Pathology, Department of Pathology, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea.,Laboratory of Experimental Pathology, Department of Pathology, Korea Institute of Radiological & Medical Science, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Min Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul, Korea
| |
Collapse
|
37
|
Retnakumar SV, Muller S. Pharmacological Autophagy Regulators as Therapeutic Agents for Inflammatory Bowel Diseases. Trends Mol Med 2019; 25:516-537. [PMID: 30952481 DOI: 10.1016/j.molmed.2019.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
The arsenal of effective molecules to treat patients with chronic inflammatory bowel diseases (IBDs) remains limited. These remitting-relapsing diseases have become a global health issue and new therapeutic strategies are eagerly awaited to regulate the course of these disorders. Since the association between autophagy-related gene polymorphism and an increased risk of Crohn's disease (CD) has been discovered, a new domain of investigation has emerged, focused on the intracellular degradation system, with the objective of generating new medicines that are safer and more targeted. This review summarizes the drugs administered to IBD patients and describes recently emerged therapeutic agents. We compile evidence on the contribution of autophagy to IBD pathogenesis, give an overview of pharmacological autophagy regulators in animal models of colitis, and propose novel therapeutic avenues based on autophagy components.
Collapse
Affiliation(s)
- Sruthi Vijaya Retnakumar
- CNRS-University of Strasbourg, Biotechnology and Cell signaling, Institut de Science et d'ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell signaling, Institut de Science et d'ingénierie Supramoléculaire, 67000 Strasbourg, France; University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France.
| |
Collapse
|
38
|
Peng M, Deng J, Zhou S, Tao T, Su Q, Yang X, Yang X. The role of Clusterin in cancer metastasis. Cancer Manag Res 2019; 11:2405-2414. [PMID: 31114318 PMCID: PMC6497892 DOI: 10.2147/cmar.s196273] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Clusterin is a conserved glycoprotein that has been characterized from almost all human tissues and fluids and plays a key role in cellular stress response and survival. Recently, research efforts have been contributed to explore the function of Clusterin in cancer metastasis, which is particularly important to design the strategies for treating metastatic patients. Evidence collected has demonstrated that Clusterin is overexpressed in tumor metastatic patients and experimental metastasis models. Specifically, Clusterin has been shown to have the role in anti-apoptotic capacities, development of therapy resistance and induction of epithelial–mesenchymal transition, all associated with cancer metastasis. Inhibition of Clusterin is known to increase the cytotoxic effects of chemotherapeutic agents and improves advanced cancer patients survival in clinical trials. Our unpublished data have demonstrated that Clusterin is overexpressed in bladder cancer and metformin, a well-known metabolism modulator specifically targets Clusterin by inhibiting migration of bladder cancer cells. In this review, we provide a general view of how Clusterin modulates cancer metastasis and update current understanding of detailed molecular mechanisms underlying of Clusterin for developing cancer management in future.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Qiongli Su
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
39
|
Deng J, Peng M, Wang Z, Zhou S, Xiao D, Deng J, Yang X, Peng J, Yang X. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci 2018; 110:23-30. [PMID: 30358009 PMCID: PMC6317954 DOI: 10.1111/cas.13849] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
The success of targeted drug therapies for treating cancer patients has attracted broad attention both in the academic community and social society. However, rapidly developed acquired resistance is becoming a newly recognized major challenge to the continuing efficiency of these therapies. Metformin is a well‐known natural compound with low toxicity derived from the plant French lilac. Our previous work has highlighted research progress of the combination of clinically applied chemotherapies and metformin by different mechanisms. We have also launched a study to combine metformin with the small molecule targeted drug gefitinib to treat bladder cancer using intravesical administration. Thus, in this minireview, we summarize recent achievements combining metformin with various targeted therapies. This work directs the potential clinical future by selecting available cancer patients and providing precise medicine by the combination of metformin and targeted drugs to overcome resistance and enhance therapeutic efficacies.
Collapse
Affiliation(s)
- Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiren Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jiating Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyuan Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|