1
|
Liu R, Yang G, Guo H, Chen F, Lu S, Zhu H. Roles of naïve CD4 + T cells and their differentiated subtypes in lung adenocarcinoma and underlying potential regulatory pathways. J Transl Med 2024; 22:781. [PMID: 39175022 PMCID: PMC11340134 DOI: 10.1186/s12967-024-05530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Naïve CD4+ T cells and their differentiated counterparts play a significant regulatory role in the tumor immune microenvironment, yet their effects on lung adenocarcinoma (LUAD) are not fully understood. METHODS We utilized Mendelian randomization to assess the causal association between naïve CD4+ T cells and LUAD. Employing a modified single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm with The Cancer Genome Atlas (TCGA) database, we determined the infiltration levels of naïve CD4+ T cells and their differentiation subtypes and investigated their correlation with clinical characteristics. Potential regulatory pathways of T helper cells were identified through Mantel tests and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. RESULTS Mendelian randomization analysis revealed an inhibitory effect of naïve CD4+ T cells on LUAD (false discovery rate < 0.05), which was corroborated by observational experiments using TCGA database. Specifically, T helper cell type 2 demonstrated a promotive effect on LUAD in terms of overall, disease-free, and progression-free survival (p < 0.05). Moreover, regulatory T cells exhibited a protective effect on LUAD in terms of disease-specific survival (p < 0.01). Concurrently, we explored the overall impact of naïve CD4+ T cell differentiation subtypes on LUAD, revealing upregulation in pathways such as neutrophil degranulation, MAPK family signaling pathways, and platelet activation, signaling, and aggregation. CONCLUSION Naïve CD4+ T cells and their differentiated counterparts play essential regulatory roles in the tumor immune microenvironment, demonstrating bidirectionality in their effects.Thus, elucidating the mechanisms and developing novel cell differentiation-inducing agents will benefit anti-cancer therapy.
Collapse
Affiliation(s)
- Runze Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
2
|
Suzuki S, Tsuzuki T, Saito M, Ishii T, Takahara T, Satou A, Inukai D, Yamanaka S, Yoshikawa K, Ueda R, Ogawa T. Regulatory T-cells activated in metastatic draining lymph nodes possibly suppress cancer immunity in cancer tissues of head and neck squamous cell cancer. Pathol Int 2024; 74:327-336. [PMID: 38712798 DOI: 10.1111/pin.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Regulatory T cells (Tregs) play an important role in creating an immunosuppressive microenvironment in cancer tissues. However, the mechanisms by which Tregs are activated and suppress cancer immunity remain unclear. To elucidate these mechanisms, we performed a T cell receptor (TCR) repertoire analysis of Tregs and conventional T cells in peripheral blood, draining lymph nodes (DLNs), and cancer tissues of patients with head and neck squamous cell cancer (HNSCC). We found that the TCR repertoire was skewed in cancer tissue and metastatic DLNs (M-DLNs) compared with non-metastatic DLNs, and TCR repertoire similarities in Tregs and CD8+ T cells between M-DLNs and cancer tissue were high compared with those at other sites. These results suggest that Tregs and CD8+ T cells are activated in M-DLNs and cancer tissues by cancer antigens, such as neoantigens, and shared antigens and Tregs suppress CD8+ T cell function in a cancer antigen-specific manner in M-DLNs and cancer tissue. Moreover, M-DLNs might be a source of Tregs and CD8+ T cells recruited into the cancer tissue. Therefore, targeting Tregs in M-DLNs in an antigen-specific manner is expected to be a novel immunotherapeutic strategy for HNSCCs.
Collapse
Affiliation(s)
- Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Masato Saito
- Translational Research Unit, R&D Division, Kyowa Kirin, Tokyo, Japan
| | | | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Daisuke Inukai
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shunpei Yamanaka
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
3
|
Bin-Alee F, Chunthagonesupawit N, Meesakul T, Diloktaweewattana A, Mahattanasakul P, Mutirangura A, Ruangritchankul K, Keelawat S, Kitkumthorn N. High 4-1BB Expression in PBMCs and Tumor Infiltrating Lymphocytes (TILs) in Patients with Head and Neck Squamous Cell Carcinoma. Eur J Dent 2024; 18:236-242. [PMID: 37130554 PMCID: PMC10959597 DOI: 10.1055/s-0043-1764419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVE 4-1BB is a costimulatory immune-activating molecule. Increased amounts of this protein have previously been found in the plasma of patients with oropharyngeal and oral cancer. Here, we focused on this molecule that functions as part of the immune system. We investigated 4-1BB in the peripheral blood mononuclear cells (PBMCs) and tumor infiltrating lymphocytes (TILs) of patients with head and neck squamous cell cancer (HNSCC). MATERIALS AND METHODS The expression level of 4-1BB in the PBMCs was determined using real-time polymerase chain reaction (PCR). The TIMER (Tumor Immune Estimation Resource) web server was utilized to approximate the 4-1BB level in HNSCC TILs. Moreover, 4-1BB immunohistochemistry (IHC) was used to validate TILs in four organs of HNSCC, including oral cancer (OC), oropharyngeal cancer (OPC), sinonasal cancer (SNC), and laryngeal cancer (LC), in both the tumor area and adjacent normal epithelium. The difference in 4-1BB expression levels in various groups was assessed using a Kruskal-Wallis test and an independent sample t-test. RESULTS The level of 4-1BB expression in PBMCs was highest in OPC, followed by OC and healthy controls (HC). Significant differences were discovered between HC and OPC and between OC and OPC. Bioinformatics revealed a substantial correlation between 4-1BB expression level and lymphocyte infiltration in HNSCC, including B cells, CD8+ T cells, and CD4+ T cells. IHC validation in HNSCC tissue revealed that the average number of 4-1BB positive TILs in all four HNSCC subtypes was considerably greater than the number of lymphocytes seen in adjacent normal tissue. Interestingly, the number of lymphocytes that were 4-1BB positive increased in relation to the TIL level. CONCLUSION A higher number of 4-1BB expression levels were found in the PBMCs and TILs of HNSCC patients, implying that 4-1BB may be a promising approach for HNSCC patients to improve their immune function. It is important to study and create a treatment that uses 4-1BB medicine as well as existing drugs.
Collapse
Affiliation(s)
- Fardeela Bin-Alee
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | | | - Tamonwan Meesakul
- Master of Science Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Areeya Diloktaweewattana
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patnarin Mahattanasakul
- Department of Otolaryngology, Head and Neck Surgery, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Wu YX, Tian BY, Ou XY, Wu M, Huang Q, Han RK, He X, Chen SL. A novel model for predicting prognosis and response to immunotherapy in nasopharyngeal carcinoma patients. Cancer Immunol Immunother 2024; 73:14. [PMID: 38236288 PMCID: PMC10796600 DOI: 10.1007/s00262-023-03626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort (n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein-Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan-Meier (K-M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19+ B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K-M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bo-Yu Tian
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xin-Yuan Ou
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Meng Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qi Huang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Run-Kun Han
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xia He
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Shu-Lin Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China.
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Zhao C, Yu M, Li Y. Pan-cancer analysis reveals the pro-oncogenic role of N6-methyladenosine (m6A)-regulated NTMT1 in head and neck squamous cell carcinoma. J Biochem Mol Toxicol 2024; 38:e23603. [PMID: 38014887 DOI: 10.1002/jbt.23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a common and fatal tumor with a bleak prognosis, posing a significant threat to human health. N6-methyladenosine (m6A) modification regulates tumor progression by modulating gene expression post-transcriptionally. Nevertheless, the specific function of m6A-modified tumor drivers in HNSC remains largely uncharted. In this study, we revealed the pro-oncogenic role of m6A-regulated NTMT1 in HNSC through comprehensive pan-cancer analysis and experimental validation. By scrutinizing the prognostic and expression profiles of NTMT1 across over 30 cancer types, we observed a significant association between NTMT1 and patient overall survival in ACC, HNSC, LAML, LGG, KIRC, and STAD. Moreover, we find a close correlation between NTMT1 and disease-free survival in ACC, HNSC, LUSC, UVM, KIRC, and STAD. NTMT1 exhibited dysregulation in 15 cancers, including CESC, CHOL, COAD, DLBC, GBM, HNSC, LGG, LIHC, PAAD, READ, SKCM, THYM, UCS, LAML, and TGCT. Integrated data underscored the critical involvement of NTMT1 in HNSC. Furthermore, the expression of NTMT1 was closely associated with tumor stage and immune infiltration in HNSC. Functionally, NTMT1 deficiency was demonstrated to significantly impede cell proliferation and cell-cycle progression in HNSC. Mechanistically, METTL3 was elucidated to mediate the epigenetic upregulation of NTMT1 in HNSC in an m6A-dependent manner, and the overexpression of METTL3 was shown to alleviate the inhibitory impact of downregulated NTMT1 on HNSC proliferation. In conclusion, our findings enhance our understanding of NTMT1's role across various cancer types and offer a rationale for clinically targeting NTMT1 as a therapeutic approach for HNSC.
Collapse
Affiliation(s)
- Chunhong Zhao
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Min Yu
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Liu Z, Zhang M, Shi X, Zhao W, Cao C, Jin L, Wang Y, Xiao J. Decreased programmed cell death ligand 2-positive monocytic myeloid-derived suppressor cells and programmed cell death protein 1-positive T-regulatory cells in patients with type 2 diabetes: implications for immunopathogenesis. Endocr Connect 2023; 12:e230218. [PMID: 37410080 PMCID: PMC10448569 DOI: 10.1530/ec-23-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Objectives The activation of immune cells plays a significant role in the progression of type 2 diabetes. This study aimed to investigate the potential role of myeloid-derived suppressor cells (MDSCs) and T-regulatory cells (Tregs) in type 2 diabetes. Methods A total of 61 patients diagnosed with type 2 diabetes were recruited. Clinical characteristics were reviewed and peripheral blood samples were collected. We calculated the percentage of different cells. Frequencies of MDSC subsets refered to the percentage of G-MDSCs (CD15+CD33+CD11b+CD14-HLA-DR-/low) in CD45 positive cells and the percentage of M-MDSCs (CD14+CD15-CD11b+CD33+HLA-DR-/low) in lymphocytes plus monocytes. Results Frequencies of programmed cell death ligand 1-positive granulocytic MDSCs (PD-L1+ G-MDSCs), programmed cell death ligand 2-positive monocytic MDSCs (PD-L2+ M-MDSCs), PD-L2+ G-MDSC, and programmed cell death protein 1-positive Tregs (PD-1+Tregs) were decreased in patients with type 2 diabetes. The frequency of PD-1+ Tregs was positively related to PD-L2+ M-MDSCs (r= 0.357, P = 0.009) and negatively related to HbA1c (r = -0.265, P = 0.042), fasting insulin level (r = -0.260, P = 0.047), and waist circumference (r = -0.373, P = 0.005). Conclusions Decreased PD-L2+ M-MDSCs and PD-1+ Tregs may promote effector T cell activation, leading to chronic low-grade inflammation in type 2 diabetes. These findings highlight the contribution of MDSCs and Tregs to the immunopathogenesis of type 2 diabetes and suggest their potential as targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Zhaoxiang Liu
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhui Zhao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chenxiang Cao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lixia Jin
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanlei Wang
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianzhong Xiao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Jain A, Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Front Oncol 2023; 13:1211603. [PMID: 37427139 PMCID: PMC10325729 DOI: 10.3389/fonc.2023.1211603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy that affects a large percentage of the global population. The conventional treatments for CRC have a number of limitations. Nanoparticles have emerged as a promising cancer treatment method due to their ability to directly target cancer cells and regulate drug release, thereby enhancing therapeutic efficacy and minimizing side effects. This compilation examines the use of nanoparticles as drug delivery systems for CRC treatment. Different nanomaterials can be used to administer anticancer drugs, including polymeric nanoparticles, gold nanoparticles, liposomes, and solid lipid nanoparticles. In addition, we discuss recent developments in nanoparticle preparation techniques, such as solvent evaporation, salting-out, ion gelation, and nanoprecipitation. These methods have demonstrated high efficacy in penetrating epithelial cells, a prerequisite for effective drug delivery. This article focuses on the various targeting mechanisms utilized by CRC-targeted nanoparticles and their recent advancements in this field. In addition, the review offers descriptive information regarding numerous nano-preparative procedures for colorectal cancer treatments. We also discuss the outlook for innovative therapeutic techniques in the management of CRC, including the potential application of nanoparticles for targeted drug delivery. The review concludes with a discussion of current nanotechnology patents and clinical studies used to target and diagnose CRC. The results of this investigation suggest that nanoparticles have great potential as a method of drug delivery for the treatment of colorectal cancer.
Collapse
|
9
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Prognostic value of immune phenotype and PD-L1 status in recurrent or metastatic renal cell carcinoma: an exploratory analysis of the ARCHERY study. Pathology 2023; 55:31-39. [PMID: 36241555 DOI: 10.1016/j.pathol.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023]
Abstract
Studies have reported the relevance of immune phenotype, or presence of cluster of differentiation 8 (CD8)-positive tumour-infiltrating lymphocytes, to the anti-tumour efficacy of checkpoint inhibitors and to prognosis. The multicentre, retrospective ARCHERY study (UMIN000034131) collected tissue samples from Japanese patients with recurrent or metastatic renal cell carcinoma (RCC) who received systemic therapy between 2010 and 2015. In this exploratory analysis, the prognostic impact of immune phenotype and PD-L1 expression (separately and combined) was investigated using 770 surgical specimens and outcomes from patients enrolled in ARCHERY. A key objective was to determine overall survival (OS), defined as time from nephrectomy to death from any cause, by immune and PD-L1 subgroups. The median OS by immune phenotype was 28.8, 57.3, and 63.4 months in patients with inflamed, excluded, and desert tumours, respectively [hazard ratio (95% CI): inflamed 1.78 (1.27-2.49); excluded 1.08 (0.89-1.30); desert as reference]. PD-L1 positivity by SP142 showed a strong association with immune phenotype; 88.1%, 61.9%, and 8.7% of PD-L1-positive patients had inflamed, excluded, and desert phenotypes, respectively. PD-L1 positivity was also associated with worse OS in each phenotype, except for the inflamed phenotype (due to limited sample size in the PD-L1-negative immune inflamed subgroup; n=7). Additionally, the difference in OS by PD-L1 status was larger in the desert versus excluded phenotype [median OS in PD-L1 positive vs negative: 27.1 vs 67.2 months (desert), and 48.2 vs 78.1 months (excluded)]. Results show that PD-L1 expression was highly associated with immune phenotype, but both covariates should be evaluated when determining prognosis.
Collapse
|
11
|
Trametinib improves Treg selectivity of anti-CCR4 antibody by regulating CCR4 expression in CTLs in oral squamous cell carcinoma. Sci Rep 2022; 12:21678. [PMID: 36522365 PMCID: PMC9755268 DOI: 10.1038/s41598-022-22773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Regulatory T-cells (Tregs) play a major role in suppressing anti-tumor immune responses. Mogamulizumab, an anti-CC chemokine receptor type 4 (CCR4) monoclonal antibody, depletes effector Tregs (eTregs). However, the clinical efficacy of mogamulizumab was limited in phase Ia/Ib studies for solid tumors (NCT01929486); the finding suggests that mogamulizumab may also deplete beneficial CCR4+CD8+ T-cells in patients. Therefore, we focused on CTLs and aimed to identify a way to protect CCR4+ CTLs. Here, we evaluated the association of CCR4 expression in cytotoxic T-lymphocytes (CTLs) with antigen and cytokine stimulations and kinase inhibition using cytomegalovirus antigen instead of tumor antigen. CCR4 expression in CTLs was induced by antigen stimulation (mean 3.14-29.0%), enhanced by transforming growth factor-β1 (TGF-β1) (mean 29.0-51.2%), and downregulated by trametinib with (mean 51.2-11.4%) or without TGF-β1 treatment (mean 29.0-6.98%). Phosphorylation of ERK in CD8+ T-cells was suppressed by trametinib. Regarding the effect on immunological function of CTL, trametinib reduced cytokine production but not affected cytotoxicity. Importantly, trametinib alleviated CTL reduction by anti-CCR4 antibody without affecting eTreg depletion because CCR4 expression in eTregs was not downregulated. In conclusion, combination therapy with trametinib may improve the clinical efficacy of mogamulizumab.
Collapse
|
12
|
Xu QS, Shen ZZ, Yuan LQ. Identification and validation of a novel cuproptosis-related lncRNA signature for prognosis and immunotherapy of head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:968590. [PMID: 36467424 PMCID: PMC9712781 DOI: 10.3389/fcell.2022.968590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 10/08/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and heterogeneous malignancy with a dismal overall survival rate. Nevertheless, the effective biomarkers remain ambiguous and merit further investigation. Cuproptosis is a novel defined pathway of programmed cell death that contributes to the progression of cancers. Meanwhile, long non-coding RNAs (lncRNAs) play a crucial role in the biological process of tumors. Nevertheless, the prognostic value of cuproptosis-related lncRNAs in HNSCC is still obscure. This study aimed to develop a new cuproptosis-related lncRNAs (CRLs) signature to estimate survival and tumor immunity in patients with HNSCC. Herein, 620 cuproptosis-related lncRNAs were identified from The Cancer Genome Atlas database through the co-expression method. To construct a risk model and validate the accuracy of the results, the samples were divided into two cohorts randomly and equally. Subsequently, a prognostic model based on five CRLs was constructed by the Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) algorithm. In addition, the prognostic potential of the five-CRL signature was verified via Cox regression, survival analysis, the receiver operating characteristic (ROC) curve, nomogram, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score (RS) and immune landscape, somatic gene mutation, and drug sensitivity. Finally, we gathered six clinical samples and different HNSCC cell lines to validate our bioinformatics results. Overall, the proposed novel five-CRL signature can predict prognosis and assess the efficacy of immunotherapy and targeted therapies to prolong the survival of patients with HNSCC.
Collapse
Affiliation(s)
- Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng-Zhong Shen
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Ichiki Y, Fukuyama T, Ueno M, Kanasaki Y, Goto H, Takahashi M, Mikami S, Kobayashi N, Nakanishi K, Hayashi S, Ishida T. Immune profile analysis of peripheral blood and tumors of lung cancer patients treated with immune checkpoint inhibitors. Transl Lung Cancer Res 2022; 11:2192-2207. [PMID: 36519023 PMCID: PMC9742629 DOI: 10.21037/tlcr-22-421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/13/2022] [Indexed: 04/08/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have become central to lung cancer drug therapy, and establishing biomarkers that can predict effects and adverse events (AEs) is awaited. We prospectively analyzed the association between the immune-related molecular expression in peripheral blood mononuclear cells (PBMCs) and lung cancer tissues, and the effects of ICI monotherapy. METHODS Twenty-one patients with advanced non-small cell lung cancer (NSCLC) who received ICI monotherapy were included. Changes in the expression of immune-related molecules in PBMCs before and after the administration of ICI were analyzed by flow cytometry. The major histocompatibility complex (MHC) class I and programmed cell death-ligand 1 (PD-L1) expression of cancer cells, and the PD-L1, CD8 and CD103 expression of tumor infiltrating immune cells in lung cancer tissue before the administration of ICI were confirmed by immunohistochemistry (IHC). RESULTS Twenty-one patients were investigated, including 11 adenocarcinoma and 10 squamous cell carcinoma cases. Anti-programmed cell death protein-1 (PD-1) antibody (n=18) and anti-PD-L1 antibody (n=3) were administered. The clinical responses were graded as follows: complete response (CR) (n=1), partial response (PR) (n=7), stable disease (SD) (n=10) and progressive disease (PD) (n=3). Among immune-related molecules expressed in PBMCs, the CD103+ CD39+ CD8+ T cell change after administration closely correlated with the clinical response. In the univariate analyses of the factors associated with progression-free survival (PFS), CD103+ CD39+ CD8+ cell change after administration was identified as a significant prognostic factor, while the CD103+ CD39+ CD8+ cell change after administration and Brinkman index were independent prognostic factors in a multivariate analysis of the factors associated with PFS. CONCLUSIONS The CD103+ CD39+ CD8+ cell change after administration may predict the efficacy of ICIs.
Collapse
Affiliation(s)
- Yoshinobu Ichiki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
- Second Department of Surgery, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Mari Ueno
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Yoshiro Kanasaki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Hidenori Goto
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Mai Takahashi
- Department of Respiratory Medicine, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, Kitamoto, Japan
| | - Kozo Nakanishi
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Shinichi Hayashi
- Department of Respiratory Medicine, National Hospital Organization, Saitama Hospital, Wako, Japan
| | - Tsuyoshi Ishida
- Department of Diagnostic Pathology, National Hospital Organization, Saitama Hospital, Wako, Japan
| |
Collapse
|
14
|
Giampietri C, Scatozza F, Crecca E, Vigiano Benedetti V, Natali PG, Facchiano A. Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies. J Transl Med 2022; 20:467. [PMID: 36224560 PMCID: PMC9559014 DOI: 10.1186/s12967-022-03670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy has dramatically improved cancer treatment by inhibiting or activating specific cell receptors, thus unleashing the host anti-tumor response. However, the engagement of the three main immune checkpoints so far identified, CTLA4, PD-1 and PD-L1, is effective in a fraction of patients, therefore novel targets must be identified and tested. METHODS We focused our attention on the following nine highly relevant immune checkpoint (ICR) receptors: CTLA4, PD1, PD-L1, LAG3, TIM3, OX40, GITR, 4-1BB and TIGIT. All of them are targets of existing drugs currently under clinical scrutiny in several malignancies. Their expression levels were evaluated in patient tissues of 31 different cancer types vs. proper controls, in a total of 15,038 individuals. This analysis was carried out by interrogating public databases available on GEPIA2 portal and UALCAN portal. By the Principal Component Analysis (PCA) their ability to effectively discriminate patients form controls was then investigated. Expression of the nine ICRs was also related to overall survival in 31 cancer types and expressed as Hazard Ratio, on the GEPIA2 portal and validated, for melanoma patients, in patients-datasets available on PROGgene V2 portal. RESULTS Significant differential expression was observed for each ICR molecule in many cancer types. A 7-molecules profile was found to specifically discriminate melanoma patients from controls, while two different 6-molecules profiles discriminate pancreatic cancer patients and Testicular Germ Cell Tumors from matched controls. Highly significant survival improvement was found to be related to the expression levels of all nine ICRs in a wide spectrum of malignancies. For melanoma analysis, the relation with survival observed in TCGA datasets was validated in independent GSE melanoma datasets. CONCLUSION Analysis the nine ICR molecules demonstrates that their expression patterns may be considered as markers of disease and strong survival predictors in a variety of malignancies frequently associated to poor prognosis. Thus, the present findings are strongly advocating that exploratory clinical trials are worth to be performed, using available drugs, targeting these molecules.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Francesca Scatozza
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Elena Crecca
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Virginia Vigiano Benedetti
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | | | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy.
| |
Collapse
|
15
|
Hua Y, Sun X, Luan K, Wang C. Prognostic signature related to the immune environment of oral squamous cell carcinoma. Open Life Sci 2022; 17:1135-1147. [PMID: 36185403 PMCID: PMC9482419 DOI: 10.1515/biol-2022-0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) prognosis remains poor. Here we aimed to identify an effective prognostic signature for predicting the survival of patients with OSCC. Gene-expression and clinical data were obtained from the Cancer Genome Atlas database. Immune microenvironment-associated genes were identified using bioinformatics. Subtype and risk-score analyses were performed for these genes. Kaplan–Meier analysis and immune cell infiltration level were explored in different subtypes and risk-score groups. The prognostic ability, independent prognosis, and clinical features of the risk score were assessed. Furthermore, immunotherapy response based on the risk score was explored. Finally, a conjoint analysis of the subtype and risk-score groups was performed to determine the best prognostic combination. We found 11 potential prognostic genes and constructed a risk-score model. The subtype cluster 2 and a high-risk group showed the worst overall survival; differences in survival status might be due to the different immune cell infiltration levels. The risk score showed good performance, independent prognostic value, and valuable clinical application. Higher risk scores showed higher Tumor Immune Dysfunction and Exclusion scores, indicating that patients with a high-risk score were less likely to benefit from immunotherapy. Finally, conjoint analysis for the subgroups and risk groups showed the best predictive ability.
Collapse
Affiliation(s)
- Yingjie Hua
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Xuehui Sun
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Kefeng Luan
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Changlei Wang
- Department of Stomatology, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| |
Collapse
|
16
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
17
|
Tao BY, Liu YY, Liu HY, Zhang ZH, Guan YQ, Wang H, Shi Y, Zhang J. Prognostic Biomarker KIF18A and Its Correlations With Immune Infiltrates and Mitosis in Glioma. Front Genet 2022; 13:852049. [PMID: 35591854 PMCID: PMC9110815 DOI: 10.3389/fgene.2022.852049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Glioma is globally recognised as one of the most frequently occurring primary malignant brain tumours, making the identification of glioma biomarkers critically significant. The protein KIF18A (Kinesin Family Member 18A) is a member of the kinesin superfamily of microtubule-associated molecular motors and has been shown to participate in cell cycle and mitotic metaphase and anaphase. This is the first investigation into the expression of KIF18A and its prognostic value, potential biological functions, and effects on the immune system and mitosis in glioma patients. Methods: Gene expression and clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on data obtained from The Cancer Genome Atlas (TCGA), with additional bioinformatics analyses performed. Statistical analysis was conducted in R software. Clinical samples were used to evaluate the expression of KIF18A via immunohistochemical staining. In addition, the expression level of KIF18A was validated on U87 cell line. Results: Our results highlighted that KIF18A plays a key role as an independent prognostic factor in patients with glioma. KIF18A was highly expressed in glioma tissues, and KIF18A expression was associated with age, World Health Organization grade, isocitrate dehydrogenase (IDH) status, 1p/19q codeletion, primary therapy outcome, and overall survival (OS). Enrichment analysis revealed that KIF18A is closely correlated with the cell cycle and mitosis. Single sample gene set enrichment analysis (ssGSEA) analysis revealed that KIF18A expression was related to the immune microenvironment. The increased expression of KIF18A in glioma was verified in clinical samples and U87 cell line. Conclusion: The identification of KIF18A as a new biomarker for glioma could help elucidate how changes in the glioma cell and immune microenvironment promote glioma malignancy. With further analysis, KIF18A may serve as an independent prognostic indicator for human glioma.
Collapse
Affiliation(s)
- Bing-Yan Tao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yu-Yang Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hong-Yu Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Ze-Han Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yun-Qian Guan
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Mair F, Erickson JR, Frutoso M, Konecny AJ, Greene E, Voillet V, Maurice NJ, Rongvaux A, Dixon D, Barber B, Gottardo R, Prlic M. Extricating human tumour immune alterations from tissue inflammation. Nature 2022; 605:728-735. [PMID: 35545675 PMCID: PMC9132772 DOI: 10.1038/s41586-022-04718-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/01/2022] [Indexed: 12/17/2022]
Abstract
Immunotherapies have achieved remarkable successes in the treatment of cancer, but major challenges remain1,2. An inherent weakness of current treatment approaches is that therapeutically targeted pathways are not restricted to tumours, but are also found in other tissue microenvironments, complicating treatment3,4. Despite great efforts to define inflammatory processes in the tumour microenvironment, the understanding of tumour-unique immune alterations is limited by a knowledge gap regarding the immune cell populations in inflamed human tissues. Here, in an effort to identify such tumour-enriched immune alterations, we used complementary single-cell analysis approaches to interrogate the immune infiltrate in human head and neck squamous cell carcinomas and site-matched non-malignant, inflamed tissues. Our analysis revealed a large overlap in the composition and phenotype of immune cells in tumour and inflamed tissues. Computational analysis identified tumour-enriched immune cell interactions, one of which yields a large population of regulatory T (Treg) cells that is highly enriched in the tumour and uniquely identified among all haematopoietically-derived cells in blood and tissue by co-expression of ICOS and IL-1 receptor type 1 (IL1R1). We provide evidence that these intratumoural IL1R1+ Treg cells had responded to antigen recently and demonstrate that they are clonally expanded with superior suppressive function compared with IL1R1- Treg cells. In addition to identifying extensive immunological congruence between inflamed tissues and tumours as well as tumour-specific changes with direct disease relevance, our work also provides a blueprint for extricating disease-specific changes from general inflammation-associated patterns.
Collapse
Affiliation(s)
- Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Jami R Erickson
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Marie Frutoso
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Andrew J Konecny
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Evan Greene
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Valentin Voillet
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, NPC (HCRISA), Cape Town, South Africa
| | - Nicholas J Maurice
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Anthony Rongvaux
- Department of Immunology, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Douglas Dixon
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, USA
- Department of Periodontics, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN, USA
| | - Brittany Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
- University of Lausanne and Lausanne University Hospital, Switzerland, Lausanne, Switzerland
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
In Situ PD-L1 Expression in Oral Squamous Cell Carcinoma Is Induced by Heterogeneous Mechanisms among Patients. Int J Mol Sci 2022; 23:ijms23084077. [PMID: 35456895 PMCID: PMC9029520 DOI: 10.3390/ijms23084077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
The expression of programmed death ligand-1 (PD-L1) is controlled by complex mechanisms. The elucidation of the molecular mechanisms of PD-L1 expression is important for the exploration of new insights into PD-1 blockade therapy. Detailed mechanisms of the in situ expression of PD-L1 in tissues of oral squamous cell carcinomas (OSCCs) have not yet been clarified. We examined the mechanisms of PD-L1 expression focusing on the phosphorylation of downstream molecules of epidermal growth factor (EGF) and interferon gamma (IFN-γ) signaling in vitro and in vivo by immunoblotting and multi-fluorescence immunohistochemistry (MF-IHC), respectively. The in vitro experiments demonstrated that PD-L1 expression in OSCC cell lines is upregulated by EGF via the EGF receptor (EGFR)/PI3K/AKT pathway, the EGFR/STAT1 pathway, and the EGFR/MEK/ERK pathway, and by IFN-γ via the JAK2/STAT1 pathway. MF-IHC demonstrated that STAT1 and EGFR phosphorylation was frequently shown in PD-L1-positive cases and STAT1 phosphorylation was correlated with lymphocyte infiltration and EGFR phosphorylation. Moreover, the phosphorylation pattern of the related molecules in PD-L1-positive cells differed among the cases investigated. These findings indicate that PD-L1 expression mechanisms differ depending on the tissue environment and suggest that the examination of the tissue environment and molecular alterations of cancer cells affecting PD-L1 expression make it necessary for each patient to choose the appropriate combination drugs for PD-1 blockade cancer treatment.
Collapse
|
20
|
Takahara T, Tsuyuki T, Satou A, Wada E, Sakurai K, Ueda R, Tsuzuki T. TGFB1 mRNA expression is associated with poor prognosis and specific features of inflammation in ccRCC. Virchows Arch 2022; 480:635-643. [PMID: 35112134 DOI: 10.1007/s00428-021-03256-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
To determine whether TGFB1 affects the immune microenvironment of ccRCC, we investigated the association between TGFB1 expression and clinicopathological features. Tissue microarray was generated from 158 total or partial nephrectomy samples and 12 tumor-adjacent normal kidney tissue. TGFB1 expression was assessed by RNA in situ hybridization and quantified using ImageJ software. TGFB1 was significantly upregulated in ccRCC tissue than in normal kidney tissues (P = 1.03 × 10-9). Tumors with a high WHO/ISUP grade had higher TGFB1 expression levels (P = 7.05 × 10-3). Of 139 patients with localized ccRCC and whose follow-up data were available, those in the TGFB1-high group displayed significantly shorter relapse-free survival than those in the TGFB1-low group (P = 0.0251). TGFB1 expression was significantly upregulated in patients who developed distant metastasis after surgery (n = 12) than in patients without metastasis (n = 127; P = 0.00167). TGFB1 expression positively correlated with the number of PD-L1-positive cells in the tumor stroma (P = 0.0206, ρ = 0.163). Furthermore, TGFB1 expression was associated with the formation of tertiary lymphoid structures. TGF-β1 is a prognostic indicator of worse outcome for ccRCC and might be a therapeutic target in advanced ccRCC. Our data provide new insights into the association between tumor biology and tumor microenvironment in ccRCC.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan.
| | - Takuji Tsuyuki
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Eriko Wada
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Kaneko Sakurai
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| |
Collapse
|
21
|
Feng X, Zhang T, Chou J, Liu L, Miller LD, Sullivan CA, Browne JD. Comprehensive gene cluster analysis of head and neck squamous cell carcinoma TCGA RNA-seq data defines B cell immunity-related genes as a robust survival predictor. Head Neck 2022; 44:443-452. [PMID: 34841601 PMCID: PMC8766919 DOI: 10.1002/hed.26944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The authors aimed to define novel gene expression signatures that are associated with patients' survival with head and neck squamous cell carcinoma (HNSCC). METHODS TCGA RNA-seq data were used for gene expression clusters extraction from 499 tumor samples by the "EPIG" method. Tumor samples were then partitioned into lower and higher than median level groups for survival relevant analysis by Kaplan-Meier estimator. RESULTS We found that two gene clusters (_1, _2) are favorably, while two (_3, _4) are unfavorably, associated with patients' survival with HNSCC. Notably, most genes on the top lists of cluster_2 are associated with B cells. A gene expression signature with combined genes from cluster_2 and _4 was further determined to be associated with HNSCC survival rate. CONCLUSION Our work strongly supported a favorable role of B cells in patients' survival with HNSCC and identified a novel coexpressed gene signature as prognostic biomarker for patients' survival with HNSCC estimation.
Collapse
Affiliation(s)
- Xin Feng
- Departments of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tan Zhang
- Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeff Chou
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Liang Liu
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher A. Sullivan
- Departments of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James D. Browne
- Departments of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
22
|
Yang S, Feng T, Li H. KLF5, a Novel Therapeutic Target in Squamous Cell Carcinoma. DNA Cell Biol 2021; 40:1503-1512. [PMID: 34931868 DOI: 10.1089/dna.2021.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Squamous cell carcinomas (SCCs) are the most common ectodermal cancers, and result in more than 300,000 deaths per year. The Krüppel-like family of transcription factors play a critical role in cancer pathogenesis. The Krüppel-like factor 5 gene (KLF5), which is a member of Krüppel-like family, has been reported to promote cancer cell proliferation and tumorigenesis. In this review, we discuss the roles of KLF5 in different SCCs and the mechanisms by which KLF5 transcriptionally regulates its target gene expression in the pathogenesis and progression of SCCs. Due to its significant functions in cell proliferation and differentiation, KLF5 could be a novel diagnostic biomarker and therapeutic target for the treatment of SCCs.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ting Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
23
|
De Keukeleire SJ, Vermassen T, Hilgert E, Creytens D, Ferdinande L, Rottey S. Immuno-Oncological Biomarkers for Squamous Cell Cancer of the Head and Neck: Current State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:1714. [PMID: 33916646 PMCID: PMC8038541 DOI: 10.3390/cancers13071714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The era of immune checkpoint inhibitors has altered the therapeutic landscape in squamous cell cancer of the head and neck (SCCHN). Our knowledge about the tumor microenvironment has fueled the research in SCCHN, leading to several well-known and less-known prognostic and predictive biomarkers. The clinical staging, p16/HPV status, and PD-L1 expression are currently the main tools for assessing the patients' diagnosis and prognosis. However, several novel biomarkers have been thoroughly investigated, some reaching actual significant clinical contributions. The untangling of the immune infiltrate with the subtyping of tissue-associated tumor infiltrating lymphocytes, tumor-associated macrophages, and circulating blood-based biomarkers are an interesting avenue to be further explored and prospectively assessed. Although PD-L1 expression remains the most important response predictor for immune checkpoint inhibitors, several flaws impede proper assessment such as technical issues, different scoring protocol, and intra-, inter-, and temporal heterogeneity. In addition, the construction of an immune-related gene panel has been proposed as a prognostic and predictive stratification but lacks consensus. Recently, the role of microbioma have also been explored regarding its systemic and antitumor immunity. This review gives a comprehensive overview of the aforementioned topics in SCCHN. To this end, the integration of these clinically advantageous biomarkers via construction of an immunogram or nomogram could be an invaluable tool for SCCHN in future prospects.
Collapse
Affiliation(s)
- Stijn J. De Keukeleire
- Department of Medical Oncology, University Hospital Ghent, 9000 Ghent, Belgium; (T.V.); (S.R.)
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (E.H.); (D.C.); (L.F.)
- Drug Research Unit Ghent, University Hospital Ghent, 9000 Ghent, Belgium
| | - Tijl Vermassen
- Department of Medical Oncology, University Hospital Ghent, 9000 Ghent, Belgium; (T.V.); (S.R.)
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (E.H.); (D.C.); (L.F.)
- Drug Research Unit Ghent, University Hospital Ghent, 9000 Ghent, Belgium
| | - Elien Hilgert
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (E.H.); (D.C.); (L.F.)
- Centre for Medical Genetics Ghent (CMGG), University Hospital Ghent, 9000 Ghent, Belgium
| | - David Creytens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (E.H.); (D.C.); (L.F.)
- Department of Pathology, University Hospital Ghent, 9000 Ghent, Belgium
| | - Liesbeth Ferdinande
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (E.H.); (D.C.); (L.F.)
- Department of Pathology, University Hospital Ghent, 9000 Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, University Hospital Ghent, 9000 Ghent, Belgium; (T.V.); (S.R.)
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (E.H.); (D.C.); (L.F.)
- Drug Research Unit Ghent, University Hospital Ghent, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Seliger B, Massa C, Yang B, Bethmann D, Kappler M, Eckert AW, Wickenhauser C. Immune Escape Mechanisms and Their Clinical Relevance in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21197032. [PMID: 32987799 PMCID: PMC7582858 DOI: 10.3390/ijms21197032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has been recently approved for the treatment of relapsed and metastatic human papilloma virus (HPV) positive and negative head and neck squamous cell carcinoma (HNSCC). However, the response of patients is limited and the overall survival remains short with a low rate of long-term survivors. There exists growing evidence that complex and partially redundant immune escape mechanisms play an important role for the low efficacy of immunotherapies in this disease. These are caused by diverse complex processes characterized by (i) changes in the expression of immune modulatory molecules in tumor cells, (ii) alterations in the frequency, composition and clonal expansion of immune cell subpopulations in the tumor microenvironment and peripheral blood leading to reduced innate and adaptive immune responses, (iii) impaired homing of immune cells to the tumor site as well as (iv) the presence of immune suppressive soluble and physical factors in the tumor microenvironment. We here summarize the major immune escape strategies of HNSCC lesions, highlight pathways, and molecular targets that help to attenuate HNSCC-induced immune tolerance, affect the selection and success of immunotherapeutic approaches to overcome resistance to immunotherapy by targeting immune escape mechanisms and thus improve the HNSCC patients’ outcome.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.M.); (B.Y.)
- Fraunhofer Institute of Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence:
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.M.); (B.Y.)
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (C.M.); (B.Y.)
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (D.B.); (C.W.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.K.); (A.W.E.)
| | - Alexander Walter Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.K.); (A.W.E.)
- Klinik für Mund-, Kiefer- und Plastische Gesichtschirurgie, Universitätsklinik der Paracelsus Medizinischen Privatuniversität; 90471 Nürnberg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (D.B.); (C.W.)
| |
Collapse
|
25
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Suzuki S, Ogawa T, Sano R, Takahara T, Inukai D, Akira S, Tsuchida H, Yoshikawa K, Ueda R, Tsuzuki T. Immune-checkpoint molecules on regulatory T-cells as a potential therapeutic target in head and neck squamous cell cancers. Cancer Sci 2020; 111:1943-1957. [PMID: 32304268 PMCID: PMC7293074 DOI: 10.1111/cas.14422] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Immune-checkpoint inhibitors improve the survival of head and neck squamous cell carcinoma (HNSCC) patients. Although recent studies have demonstrated that the tumor immune microenvironment (TIME) has critical roles in immunotherapy, the precise mechanisms involved are unclear. Therefore, further investigations of TIME are required for the improvement of immunotherapy. The frequency of effector regulatory T-cells (eTregs) and the expression of immune-checkpoint molecules (ICM) on eTregs and conventional T-cells (Tconvs) both in peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) from HNSCC patients were analyzed by flow cytometry and their distributions were evaluated by multi-color immunofluorescence microscopy. High frequency eTreg infiltration into HNSCC tissues was observed and high expressions of CD25, FOXP3, stimulatory-ICM (4-1BB, ICOS, OX40 and GITR) and inhibitory-ICM (programmed cell death-1 [PD-1] and cytotoxic T-lymphocyte-associated protein-4 [CTLA-4]) were found on invasive eTregs. In contrast, the expression of stimulatory-ICM on Tconvs was low and the expression of inhibitory-ICM was high. In addition, ICM-ligands (programmed cell death-1 [PD-L1], galectin-9 and CEACAM-1) were frequently expressed on cancer cells. PD-L1 and galectin-9 were also expressed on macrophages. PD-1+ T-cells interacted with PD-L1+ cancer cells or PD-L1+ macrophages. This suggested that in TIL, eTregs are highly activated, but Tconvs are exhausted or inactivated by eTregs and immune-checkpoint systems, and ICM and eTregs are strongly involved in the creation of an immunosuppressive environment in HNSCC tissues. These suggested eTreg targeting drugs are expected to be a combination partner with immune-checkpoint inhibitors that will improve immunotherapy of HNSCC.
Collapse
Affiliation(s)
- Susumu Suzuki
- Research Creation Support Centre, Aichi Medical University, Nagakute, Japan.,Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rui Sano
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Daisuke Inukai
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Satou Akira
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiromi Tsuchida
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Research Creation Support Centre, Aichi Medical University, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|