1
|
Dong B, Zhang Y, Gao H, Liu J, Li J. Machine Learning Developed a MYC Expression Feature-Based Signature for Predicting Prognosis and Chemoresistance in Pancreatic Adenocarcinoma. Biochem Genet 2024; 62:4191-4214. [PMID: 38245886 DOI: 10.1007/s10528-023-10625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
MYC has been identified to profoundly influence a wide range of pathologic processes in cancers. However, the prognostic value of MYC-related genes in pancreatic adenocarcinoma (PAAD) remains unclarified. Gene expression data and clinical information of PAAD patients were obtained from The Cancer Genome Atlas (TCGA) database (training set). Validation sets included GSE57495, GSE62452, and ICGC-PACA databases. LASSO regression analysis was used to develop a risk signature for survival prediction. Single-cell sequencing data from GSE154778 and CRA001160 datasets were analyzed. Functional studies were conducted using siRNA targeting RHOF and ITGB6 in PANC-1 cells. High MYC expression was found to be significantly associated with a poor prognosis in patients with PAAD. Additionally, we identified seven genes (ADGRG6, LINC00941, RHOF, SERPINB5, INSYN2B, ITGB6, and DEPDC1) that exhibited a strong correlation with both MYC expression and patient survival. They were then utilized to establish a risk model (MYCsig), which showed robust predictive ability. Furthermore, MYCsig demonstrated a positive correlation with the expression of HLA genes and immune checkpoints, as well as the chemotherapy response of PAAD. RHOF and ITGB6, expressed mainly in malignant cells, were identified as key oncogenes regulating chemosensitivity through EMT. Downregulation of RHOF and ITGB6 reduced cell proliferation and invasion in PANC-1 cells. The developed MYCsig demonstrates its potential in enhancing the management of patients with PAAD by facilitating risk assessment and predicting response to adjuvant chemotherapy. Additionally, our study identifies RHOF and ITGB6 as novel oncogenes linked to EMT and chemoresistance in PAAD.
Collapse
Affiliation(s)
- Biao Dong
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Han Gao
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Jia Liu
- Department of Precision Medicine, Accb Biotech. Ltd, Beijing, China
| | - Jiankun Li
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
2
|
S A, Chakraborty A, Patnaik S. SOX4/HDAC2 Axis Enhances Cell Survivability and Reduces Apoptosis by Activating AKT/MAPK Signaling in Colorectal Cancer. Dig Dis Sci 2024; 69:835-850. [PMID: 38240850 DOI: 10.1007/s10620-023-08215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 03/25/2024]
Abstract
BACKGROUND Increased SOX4 (SRY-related HMG-box) activity aids cellular transformation and metastasis. However, its specific functions and downstream targets remain to be completely elusive in colorectal cancer (CRC). AIMS To investigate the role of SOX4 in CRC progression and the underlying mechanism. METHODS In the current study, online available datasets of CRC patients were explored to check the expression status of SOX4. To investigate the further functions, SOX4 was overexpressed and knocked down in CRC cells. Colony formation assay, flowcytometry analysis, and MTT assay were used to check for proliferation and apoptosis. Acridine orange staining was done to check the role of SOX4 in autophagy induction. Furthermore, western blot, qRT-PCR, and bioinformatic analysis was done to elucidate the downstream molecular mechanism of SOX4. RESULTS GEPIA database showed enhanced expression of SOX4 mRNA in CRC tumor, and the human protein atlas (HPA) showed strong staining of SOX4 protein in tumor when compared to the normal tissue. Ectopic expression of SOX4 enhanced colony formation ability as well as rescued cells from apoptosis. SOX4 overexpressed cells showed the formation of acidic vesicular organelles (AVOs) which indicated autophagy. Further results revealed the activation of p-AKT/MAPK molecules upon overexpression of SOX4. SOX4 expression was found to be positively correlated with histone deacetylase 2 (HDAC2). Knockdown of SOX4 or HDAC2 inhibition induced apoptosis, revealed by decrease in BCL2 and increase in BAX expression, and inactivated the p-AKT/MAPK signaling. CONCLUSION The study uncovers that SOX4/HDAC2 axis improves cell survivability and reduces apoptosis via activation of the p-AKT/MAPK pathway.
Collapse
Affiliation(s)
- Anupriya S
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | - Averi Chakraborty
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
3
|
Huang YK, Cheng WC, Kuo TT, Yang JC, Wu YC, Wu HH, Lo CC, Hsieh CY, Wong SC, Lu CH, Wu WL, Liu SJ, Li YC, Lin CC, Shen CN, Hung MC, Lin JT, Yeh CC, Sher YP. Inhibition of ADAM9 promotes the selective degradation of KRAS and sensitizes pancreatic cancers to chemotherapy. NATURE CANCER 2024; 5:400-419. [PMID: 38267627 DOI: 10.1038/s43018-023-00720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Ting-Ting Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Chien Lo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ying Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sze-Ching Wong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ling Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Chun-Chieh Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Hosseini SA, Ghatrehsamani M, Yaghoobi H, Elahian F, Mirzaei SA. Epigenetic disruption of histone deacetylase-2 accelerated apoptotic signaling and retarded malignancy in gastric cells. Epigenomics 2024; 16:277-292. [PMID: 38356395 DOI: 10.2217/epi-2023-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
6
|
Ravn-Boess N, Roy N, Hattori T, Bready D, Donaldson H, Lawson C, Lapierre C, Korman A, Rodrick T, Liu E, Frenster JD, Stephan G, Wilcox J, Corrado AD, Cai J, Ronnen R, Wang S, Haddock S, Sabio Ortiz J, Mishkit O, Khodadadi-Jamayran A, Tsirigos A, Fenyö D, Zagzag D, Drube J, Hoffmann C, Perna F, Jones DR, Possemato R, Koide A, Koide S, Park CY, Placantonakis DG. The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability. Cell Rep 2023; 42:113374. [PMID: 37938973 PMCID: PMC10841603 DOI: 10.1016/j.celrep.2023.113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of β-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.
Collapse
Affiliation(s)
- Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nainita Roy
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hayley Donaldson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Lawson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cathryn Lapierre
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Aryeh Korman
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tori Rodrick
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Enze Liu
- Department of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alexis D Corrado
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Sabio Ortiz
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Orin Mishkit
- Preclinical Imaging Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Aris Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Zagzag
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Drube
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | | | - Drew R Jones
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Richard Possemato
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Y Park
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Du X, Wang H, Xu J, Zhang Y, Chen T, Li G. Profiling and integrated analysis of transcriptional addiction gene expression and prognostic value in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204676. [PMID: 37171044 PMCID: PMC10188332 DOI: 10.18632/aging.204676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
Transcriptional dysregulation caused by genomic and epigenetic alterations in cancer is called "transcriptional addiction". Transcriptional addiction is an important pathogenic factor of tumor malignancy. Hepatocellular carcinoma (HCC) genomes are highly heterogeneous, with many dysregulated genes. Our study analyzed the possibility that transcriptional addiction-related genes play a significant role in HCC. All data sources for conducting this study were public cancer databases and tissue microarrays. We identified 38 transcriptional addiction genes, and most were differentially expressed genes. Among patients of different groups, there were significant differences in overall survival rates. Both nomogram and risk score were independent predictors of HCC outcomes. Transcriptional addiction gene expression characteristics determine the sensitivity of patients to immunotherapy, cisplatin, and sorafenib. Besides, HDAC2 was identified as an oncogene, and its expression was correlated with patient survival time. Our study conclusively demonstrated that transcriptional addiction is crucial in HCC. We provided biomarkers for predicting the prognosis of HCC patients, which can more precisely guide the patient's treatment.
Collapse
Affiliation(s)
- Xiaowei Du
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Wang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Zhang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingsong Chen
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao Li
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Tan D, Jiang W, Hu R, Li Z, Ou T. Detection of the ADGRG6 hotspot mutations in urine for bladder cancer early screening by ARMS-qPCR. Cancer Med 2023. [PMID: 37081791 DOI: 10.1002/cam4.5879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In bladder cancer, recurrent ADGRG6 enhancer hotspot mutations (chr. 6: 142,706,206 G>A, chr. 6:142,706,209 C>T) were reported at a high mutation rate of approximately 50%. Thus, ADGRG6 enhancer mutation status might be a candidate for diagnostic biomarker. METHODS To improve test efficacy, an amplification refractory mutation system combined with quantitative real-time PCR (ARMS-qPCR) assay was developed to detect the ADGRG6 mutations in a patient as a clinical diagnostic test. To validate the performance of the ARMS-qPCR assay, artificial plasmids, cell DNA reference standard were used as templates, respectively. To test the clinical diagnostic ability, we detected the cell free DNA (cfDNA) and sediment DNA (sDNA) of 30 bladder cancer patients' urine by ARMS-qPCR comparing with Sanger sequencing, followed by the droplet digital PCR to confirm the results. We also tested the urine of 100 healthy individuals and 90 patients whose diagnoses urinary tract infections or urinary stones but not bladder cancer. RESULTS Sensitivity of 100% and specificity of 96.7% were achieved when the mutation rate of the artificial plasmid was 1%, and sensitivity of 96.7% and specificity of 100% were achieved when the mutation frequency of the reference standard was 0.5%. Sanger sequencing and ARMS-qPCR both detected 30 cases of bladder cancer with 93.3% agreement. For the remaining unmatched sites, ARMS-qPCR results were consistent with droplet digital PCR. Among 100 healthy individuals, three of them carried hotspot mutations by way of ARMS-qPCR. Of 90 patients with urinary tract infections or urinary stones, no mutations were found by ARMS-qPCR. Based on clinical detection, the ARMS-qPCR assay's sensitivity is 83.3%, specificity is 98.4%. CONCLUSION We here present a novel urine test for ADGRG6 hotspot mutations with high accuracy and sensitivity, which may potentially serve as a rapid and non-invasive tool for bladder cancer early screening and follow-up relapse monitoring.
Collapse
Affiliation(s)
- Dan Tan
- Medical Laboratory of Shenzhen Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- The Affiliated Shenzhen Luohu Hospital of Shantou University Medical College, Shantou University, Shantou, 515063, China
| | - Wenqi Jiang
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
| | - Rixin Hu
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
| | - Zhuoran Li
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
| | - Tong Ou
- Medical Laboratory of Shenzhen Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- Shenzhen Following Precision Medical Research Institute of Luohu Hospital Group, Shenzhen, 518000, Guangdong, China
- The Affiliated Shenzhen Luohu Hospital of Shantou University Medical College, Shantou University, Shantou, 515063, China
| |
Collapse
|
9
|
Ji J, Yang M, Jia J, Wu Q, Cong R, Cui H, Zhu B, Chu X. A novel variant in NBAS identified from an infant with fever-triggered recurrent acute liver failure disrupts the function of the gene. Hum Genome Var 2023; 10:13. [PMID: 37055399 PMCID: PMC10102179 DOI: 10.1038/s41439-023-00241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Mutations in the neuroblastoma amplified sequence (NBAS) gene correlate with infantile acute liver failure (ALF). Herein, we identified a novel NBAS mutation in a female infant diagnosed with recurrent ALF. Whole-exome and Sanger sequencing revealed that the proband carried a compound heterozygous mutation (c.938_939delGC and c.1342 T > C in NBAS). NBAS c.938_939delGC was presumed to encode a truncated protein without normal function, whereas NBAS c.1342 T > C encoded NBAS harboring the conserved Cys448 residue mutated to Arg448 (p.C448R). The proportion of CD4 + T cells decreased in the patient's peripheral CD45 + cells, whereas that of CD8 + T cells increased. Moreover, upon transfecting the same amount of DNA expression vector (ectopic expression) encoding wild-type NBAS and p.C448R NBAS, the group transfected with the p.C448R NBAS-expressing vector expressed less NBAS mRNA and protein. Furthermore, ectopic expression of the same amount of p.C448R NBAS protein as the wild-type resulted in more intracellular reactive oxygen species and the induction of apoptosis and expression of marker proteins correlating with endoplasmic reticulum stress in more cultured cells. This study indicated that p.C448R NBAS has a function different from that of wild-type NBAS and that the p.C448R NBAS mutation potentially affects T-cell function and correlates with ALF.
Collapse
Affiliation(s)
- Juhua Ji
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, 226001, Nantong, Jiangsu, China
| | - JunJun Jia
- Qinshen Traditional Chinese Medicine (TCM) Outpatient Department, 20052, Shanghai, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Ruochen Cong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Medical Research Center, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Baofeng Zhu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Jo H, Shim K, Kim HU, Jung HS, Jeoung D. HDAC2 as a Target for developing Anti-cancer Drugs. Comput Struct Biotechnol J 2023; 21:2048-2057. [PMID: 36968022 PMCID: PMC10030825 DOI: 10.1016/j.csbj.2023.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Histone deacetylases (HDACs) deacetylate histones H3 and H4. An imbalance between histone acetylation and deacetylation can lead to various diseases. HDAC2 is present in the nucleus. It plays a critical role in modifying chromatin structures and regulates the expression of various genes by functioning as a transcriptional regulator. The roles of HDAC2 in tumorigenesis and anti-cancer drug resistance are discussed in this review. Several reports suggested that HDAC2 is a prognostic marker of various cancers. The roles of microRNAs (miRNAs) that directly regulate the expression of HDAC2 in tumorigenesis are also discussed in this review. This review also presents HDAC2 as a valuable target for developing anti-cancer drugs.
Collapse
|
11
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Sun J, Zhao X, Jiang H, Yang T, Li D, Yang X, Jia A, Ma Y, Qian Z. ARHGAP9 inhibits colorectal cancer cell proliferation, invasion and EMT via targeting PI3K/AKT/mTOR signaling pathway. Tissue Cell 2022; 77:101817. [DOI: 10.1016/j.tice.2022.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
|
13
|
Progesterone activates GPR126 to promote breast cancer development via the Gi pathway. Proc Natl Acad Sci U S A 2022; 119:e2117004119. [PMID: 35394864 PMCID: PMC9169622 DOI: 10.1073/pnas.2117004119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The steroid hormone progesterone is highly involved in different physiological–pathophysiological processes, including bone formation and cancer progression. Understanding the working mechanisms, especially identifying the receptors of progesterone hormones, is of great value. In the present study, we identified GPR126 as a membrane receptor for both progesterone and 17-hydroxyprogesterone and triggered its downstream G protein signaling. We further characterized the residues of GPR126 that interact with these two ligands and found that progesterone promoted the progression of a triple-negative breast cancer model through GPR126-dependent Gi-SRC signaling. Therefore, developing antagonists targeting GPR126-Gi may provide an alternative therapeutic option for patients with triple-negative breast cancer. GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.
Collapse
|
14
|
Liu D, Hu Z, Jiang J, Zhang J, Hu C, Huang J, Wei Q. Five hypoxia and immunity related genes as potential biomarkers for the prognosis of osteosarcoma. Sci Rep 2022; 12:1617. [PMID: 35102149 PMCID: PMC8804019 DOI: 10.1038/s41598-022-05103-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma accounts for a frequently occurring cancer of the primary skeletal system. In osteosarcoma cells, a hypoxic microenvironment is commonly observed that drives tumor growth, progression, and heterogeneity. Hypoxia and tumor-infiltrating immune cells might be closely related to the prognosis of osteosarcoma. In this study, we aimed to determine the biomarkers and therapeutic targets related to hypoxia and immunity through bioinformatics methods to improve the clinical prognosis of patients. We downloaded the gene expression data of osteosarcoma samples and normal samples in the UCSC Xena database and GTEx database, respectively, and downloaded the validation dataset (GSE21257) in the GEO database. Subsequently, we performed GO enrichment analysis and KEGG pathway enrichment analysis on the data of the extracted osteosarcoma hypoxia-related genes. Through univariate COX regression analysis, lasso regression analysis, multivariate COX regression analysis, etc., we established a predictive model for the prognosis of osteosarcoma. Five genes, including ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A, were found by screening. In particular, we analyzed the immune cell composition of each gene based on the five genes through the CIBERSORT algorithm and verified each gene at the cell and tissue level. Our findings are valuable for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Dachang Liu
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Ziwei Hu
- Guangxi Medical University, Nanning, 530021, China
| | - Jie Jiang
- Department of Spine and Osteopathic Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Junlei Zhang
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chunlong Hu
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jian Huang
- Guangxi Medical University, Nanning, 530021, China
| | - Qingjun Wei
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
15
|
Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ, Wu ZS, Zhang JY, Liu XK, Zhou W, Zhang XM, Wu JR. A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med 2021; 16:121. [PMID: 34809653 PMCID: PMC8607619 DOI: 10.1186/s13020-021-00534-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Compound kushen injection (CKI), a Chinese patent drug, is widely used in the treatment of various cancers, especially neoplasms of the digestive system. However, the underlying mechanism of CKI in pancreatic cancer (PC) treatment has not been totally elucidated. METHODS Here, to overcome the limitation of conventional network pharmacology methods with a weak combination with clinical information, this study proposes a network pharmacology approach of integrated bioinformatics that applies a weighted gene co-expression network analysis (WGCNA) to conventional network pharmacology, and then integrates molecular docking technology and biological experiments to verify the results of this network pharmacology analysis. RESULTS The WGCNA analysis revealed 2 gene modules closely associated with classification, staging and survival status of PC. Further CytoHubba analysis revealed 10 hub genes (NCAPG, BUB1, CDK1, TPX2, DLGAP5, INAVA, MST1R, TMPRSS4, TMEM92 and SFN) associated with the development of PC, and survival analysis found 5 genes (TSPOAP1, ADGRG6, GPR87, FAM111B and MMP28) associated with the prognosis and survival of PC. By integrating these results into the conventional network pharmacology study of CKI treating PC, we found that the mechanism of CKI for PC treatment was related to cell cycle, JAK-STAT, ErbB, PI3K-Akt and mTOR signalling pathways. Finally, we found that CDK1, JAK1, EGFR, MAPK1 and MAPK3 served as core genes regulated by CKI in PC treatment, and were further verified by molecular docking, cell proliferation assay, RT-qPCR and western blot analysis. CONCLUSIONS Overall, this study suggests that the optimized network pharmacology approach is suitable to explore the molecular mechanism of CKI in the treatment of PC, which provides a reference for further investigating biomarkers for diagnosis and prognosis of PC and even the clinical rational application of CKI.
Collapse
Affiliation(s)
- Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Hong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zi-Qi Meng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiao-Tian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying-Ying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lei-Ming You
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia-Qi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Pei-Zhi Ye
- National Cancer Center/National Clinical Research Center for Cancer/Chinese Medicine Department of the Caner Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Shan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing-Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin-Kui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiao-Meng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia-Rui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
16
|
Cui H, Yu W, Yu M, Luo Y, Yang M, Cong R, Chu X, Gao G, Zhong M. GPR126 regulates colorectal cancer cell proliferation by mediating HDAC2 and GLI2 expression. Cancer Sci 2021; 112:1798-1810. [PMID: 33629464 PMCID: PMC8088945 DOI: 10.1111/cas.14868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The G‐protein‐coupled receptor 126 (GPR126) may play an important role in tumor development, although its role remains poorly understood. We found that GPR126 had higher expression in most colorectal cancer cell lines than in normal colon epithelial cell lines, and higher expression levels in colorectal cancer tissues than in normal adjacent colon tissues. GPR126 knockdown induced by shRNA inhibited cell viability and colony formation in HT‐29, HCT116, and LoVo cells, decreased BrdU incorporation into newly synthesized proliferating HT‐29 cells, led to an arrest of cell cycle progression at the G1 phase in HCT‐116 and HT‐29 cells, and suppressed tumorigenesis of HT‐29, HCT116, and LoVo cells in nude mouse xenograft models. GPR126 knockdown engendered decreased transcription and translation of histone deacetylase 2 (HDAC2), previously implicated in the activation of GLI1 and GLI2 in the Hedgehog signaling pathway. Ectopic expression of HDAC2 in GPR126‐silenced cells restored cell viability and proliferation, GLI2 luciferase reporter activity, partially recovered GLI2 expression, and reduced the cell cycle arrest. HDAC2 regulated GLI2 expression and, along with GLI2, it bound to the PTCH1 promoter, as evidenced by a chip assay with HT‐29 cells. Purmorphamine, a hedgehog agonist, largely restored the cell viability and expression of GLI2 proteins in GPR126‐silenced HT‐29 cells, whereas GANT61, a hedgehog inhibitor, further enhanced the GPR126 knockdown‐induced inhibitory effects. Our findings demonstrate that GPR126 regulates colorectal cancer cell proliferation by mediating the expression of HDAC2 and GLI2, therefore it may represent a suitable therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Hengxiang Cui
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Yu
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Minhao Yu
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Ruochen Cong
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chu
- Medical Research Center, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ganglong Gao
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|