1
|
Cai N, Gao X, Li W, Yang L, Zhao J, Qu J, Zhou Y. Novel trifluoromethyl ketone derivatives as oral cPLA 2/COX-2 dual inhibitors for resolution of inflammation in rheumatoid arthritis. Bioorg Chem 2024; 148:107453. [PMID: 38761708 DOI: 10.1016/j.bioorg.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Thirty-five trifluoromethyl hydrazones and seventeen trifluoromethyl oxime esters were designed and synthesized via molecular hybridization. All the target compounds were initially screened for in vitro anti-inflammatory activity by assessing their inhibitory effect on NO release in LPS-stimulated RAW264.7 cells, and the optimal compound was finally identified as 2-(3-Methoxyphenyl)-N'-((6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-ylidene)acetohydrazide (F26, IC50 = 4.55 ± 0.92 μM) with no cytotoxicity. Moreover, F26 potently reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to indomethacin. The interaction of F26 with COX-2 and cPLA2 was directly verified by the CETSA technique. F26 was found to modulate the phosphorylation levels of p38 MAPK and NF-κB p65, as well as the protein expression of IκB, cPLA2, COX-2, and iNOS in LPS-stimulated rat peritoneal macrophages. Additionally, F26 was observed to prevent the nuclear translocation of NF-κB p65 in LPS-stimulated rat peritoneal macrophages by immunofluorescence localization. Therefore, the aforementioned in vitro experiments demonstrated that F26 blocked the p38 MAPK and NF-κB pathways by binding to COX-2 and cPLA2. In the adjuvant-induced arthritis model, F26 demonstrated a significant effect in preventing arthritis symptoms and inflammatory status in rats, exerting an immunomodulatory role by regulating the homeostasis between Th17 and Treg through inhibition of the p38 MAPK/cPLA2/COX-2/PGE2 and NF-κB pathways. Encouragingly, F26 caused less acute ulcerogenicity in rats at a dose of 50 mg/kg compared to indomethacin. Overall, F26 is a promising candidate worthy of further investigation for treating inflammation and associated pain with lesser gastrointestinal irritation, as well as other symptoms in which cPLA2 and COX-2 are implicated in the pathophysiology.
Collapse
Affiliation(s)
- Nan Cai
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xiang Gao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Wenjing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.
| |
Collapse
|
2
|
Vlad IM, Nuță DC, Căproiu MT, Dumitrașcu F, Kapronczai E, Mük GR, Avram S, Niculescu AG, Zarafu I, Ciorobescu VA, Brezeanu AM, Limban C. Synthesis and Characterization of New N-acyl Hydrazone Derivatives of Carprofen as Potential Tuberculostatic Agents. Antibiotics (Basel) 2024; 13:212. [PMID: 38534647 DOI: 10.3390/antibiotics13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, NAHs represent potential solutions for developing improved treatment alternatives. Therefore, this research introduces six novel derivatives of (EZ)-N'-benzylidene-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide, synthesized using a microwave-assisted method. In more detail, we joined two pharmacophore fragments in a single molecule, represented by an NSAID-type carprofen structure and a hydrazone-type structure, obtaining a new series of NSAID-N-acyl hydrazone derivatives that were further characterized spectrally using FT-IR, NMR, and HRMS investigations. Additionally, the substances were assessed for their tuberculostatic activity by examining their impact on four strains of M. tuberculosis, including two susceptible to rifampicin (RIF) and isoniazid (INH), one susceptible to RIF and resistant to INH, and one resistant to both RIF and INH. The results of our research highlight the potential of the prepared compounds in fighting against antibiotic-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Diana Camelia Nuță
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Miron Theodor Căproiu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Florea Dumitrașcu
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - Eleonóra Kapronczai
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany János, 400028 Cluj-Napoca, Romania
| | - Georgiana Ramona Mük
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
- "St. Stephen's" Pneumoftiziology Hospital, Șos. Ștefan cel Mare 11, 020122 Bucharest, Romania
| | - Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
| | - Adelina Gabriela Niculescu
- Research Institute of the University of Bucharest, Sos. Panduri 90-92, 050095 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Irina Zarafu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Vanesa Alexandra Ciorobescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Ana Maria Brezeanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, 020956 Bucharest, Romania
| |
Collapse
|
3
|
Kassab AE. N-Acylhydrazone Pharmacophore's Analgesic and Anti-inflammatory Profile: Recent Advancements during the Past Ten Years. Curr Pharm Des 2024; 30:333-351. [PMID: 38303528 DOI: 10.2174/0113816128282470240117072322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Due to its important biological and pharmacological properties, in the field of medicinal chemistry and drug discovery, the N-acylhydrazone motif has shown to be extremely adaptable and promising. This scaffold has become a crucial component in the synthesis of numerous bioactive agents. N-Acylhydrazones are also interesting biological and synthetic tools due to their easy and straightforward synthesis. The current review provides a summary of the analgesic and anti-inflammatory activities of N-acylhydrazone derivatives over the past ten years. A brief discussion of structure-activity relationships is also provided which may guide researchers in medicinal chemistry to develop derivatives based on N-acylhydrazone scaffold as potent anti-inflammatory candidates.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
4
|
da Silva PR, Apolinário NDM, da Silva SÂS, Araruna MEC, Costa TB, e Silva YMSDM, da Silva TG, de Moura RO, dos Santos VL. Anti-Inflammatory Activity of N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide Derivative via sGC-NO/Cytokine Pathway. Pharmaceuticals (Basel) 2023; 16:1415. [PMID: 37895886 PMCID: PMC10610422 DOI: 10.3390/ph16101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The N-acylhydrazone function has been reported as a pharmacophore group of molecules with diverse pharmacological activities, including anti-inflammatory effects. Therefore, this study was designed to evaluate the anti-inflammatory potential of the compound N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide (JR19) in vivo. The study started with the carrageenan-induced peritonitis model, followed by an investigation of leukocyte migration using the subcutaneous air pouch test and an assessment of the antinociceptive profile using formalin-induced pain. A preliminary molecular docking study focusing on the crystallographic structures of NFκB, iNOS, and sGC was performed to determine the likely mechanism of action. The computational study revealed satisfactory interaction energies with the selected targets, and the same peritonitis model was used to validate the involvement of the nitric oxide pathway and cytokine expression in the peritoneal exudate of mice pretreated with L-NAME or methylene blue. In the peritonitis assay, JR19 (10 and 20 mg/kg) reduced leukocyte migration by 59% and 52%, respectively, compared to the vehicle group, with the 10 mg/kg dose used in subsequent assays. In the subcutaneous air pouch assay, the reduction in cell migration was 66%, and the response to intraplantar formalin was reduced by 39%, particularly during the inflammatory phase, suggesting that the compound lacks central analgesic activity. In addition, a reversal of the anti-inflammatory effect was observed in mice pretreated with L-NAME or methylene blue, indicating the involvement of iNOS and sGC in the anti-inflammatory response of JR19. The compound effectively and significantly decreased the levels of IL-6, TNF-α, IL-17, and IFN-γ, and this effect was reversed in animals pretreated with L-NAME, supporting a NO-dependent anti-inflammatory effect. In contrast, pretreatment with methylene blue only reversed the reduction in TNF-α levels. Therefore, these results demonstrate the pharmacological potential of the novel N-acylhydrazone derivative, which acts through the nitric oxide pathway and cytokine signaling, making it a strong candidate as an anti-inflammatory and immunomodulatory agent.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Nadjaele de Melo Apolinário
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Simone Ângela Soares da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Maria Elaine Cristina Araruna
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Thássia Borges Costa
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Yvnni M. S. de Medeiros e Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil;
| | - Ricardo Olímpio de Moura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| | - Vanda Lucia dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); (N.d.M.A.); (S.Â.S.d.S.); (M.E.C.A.); (T.B.C.); (Y.M.S.d.M.e.S.); (V.L.d.S.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
5
|
Liao J, Yang J, Li X, Hu C, Zhu W, Zhou Y, Zou Y, Guo M, Chen Z, Li X, Dai J, Xu Y, Zheng Z, Chen P, Cho WJ, Liang G, Tang Q. Discovery of the Diphenyl 6-Oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide Analogue J27 for the Treatment of Acute Lung Injury and Sepsis by Targeting JNK2 and Inhibiting the JNK2-NF-κB/MAPK Pathway. J Med Chem 2023; 66:12304-12323. [PMID: 37643372 DOI: 10.1021/acs.jmedchem.3c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Acute lung injury (ALI) and sepsis are both serious and complex conditions associated with high mortality, yet there are no effective treatments. Herein, we designed and synthesized a series of diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogues exhibiting anti-inflammatory activity. The optimal compound J27 decreased the release of TNF-α and IL-6 in mouse and human cells J774A.1 and THP-1 (IL-6 IC50 = 0.22 μM) through the NF-κB/MAPK pathway. J27 demonstrated remarkable protection against ALI and sepsis in vivo and exhibited good safety in subacute toxicity experiments. Pharmacokinetic study indicated that J27 had good bioavailability (30.74%). To our surprise, J27 could target JNK2 with a totally new molecular skeleton compared with the only few JNK2 inhibitors reported. Moreover, there is no report that JNK2 inhibitors could apply for ALI and sepsis. Therefore, this work provides a new lead structure for the study of JNK2 inhibitors and a new target of JNK2 to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
6
|
Du J, Liu P, Zhu Y, Wang G, Xing S, Liu T, Xia J, Dong S, Lv N, Li Z. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation. Eur J Med Chem 2023; 246:114956. [PMID: 36450214 DOI: 10.1016/j.ejmech.2022.114956] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Herein, two series of tryptanthrin derivatives with benzenesulfonamide substituents were designed and synthesized to discover novel anti-inflammatory agents. The anti-inflammatory activities of all derivatives were screened by evaluating their inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells. Among them, compound 8j exhibited the best NO inhibitory activity (IC50 = 1.25 ± 0.21 μM), with no obvious toxicity. Further evaluation showed that 8j could also significantly reduce the levels of pro-inflammatory cytokines interleukin-1β (IL-1β, IC50 = 8.48 ± 0.23 μM) and tumor necrosis factor-α (TNF-α, IC50 = 11.53 ± 0.35 μM) and downregulate the LPS-induced expression of iNOS and COX-2. Reverse docking of 8j suggested p38α as the molecular target, which is a well-known crucial player in the p38 MAPK signaling pathway that controls the transcription of pro-inflammatory mediators. Cellular thermal shift assay showed that 8j efficiently stabilized p38α in LPS-treated RAW264.7 cells. Western blot showed that inflammatory response was inhibited by 8j through inhibiting the phosphorylation of p38α and MK2 in the p38 MAPK signaling pathway. Finally, In vivo studies showed that 8j could significantly ameliorate the degree of foot swelling and knee joint pathology in adjuvant-induced arthritis (AIA) rats and reduce levels of TNF-α and IL-1β in serum, achieving the effect of protecting synovial tissue and ameliorating arthritis. These findings suggested that 8j may be a promising compound for further development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Yanan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tongtong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Lv
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Silva GF, da Silva JS, de Alencar AKN, de Moraes Carvalho da Silva M, Montagnoli TL, de Souza Rocha B, de Freitas RHCN, Sudo RT, Fraga CAM, Zapata-Sudo G. Novel p38 Mitogen-Activated Protein Kinase Inhibitor Reverses Hypoxia-Induced Pulmonary Arterial Hypertension in Rats. Pharmaceuticals (Basel) 2022; 15:ph15070900. [PMID: 35890198 PMCID: PMC9316801 DOI: 10.3390/ph15070900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling is strongly implicated in cardiovascular remodeling in pulmonary hypertension (PH) and right ventricle (RV) failure. The effects of a newly designed p38 inhibitor, LASSBio-1824, were investigated in experimentally induced PH. Male Wistar rats were exposed to hypoxia and SU5416 (SuHx), and normoxic rats were used as controls. Oral treatment was performed for 14 days with either vehicle or LASSBio-1824 (50 mg/kg). Pulmonary vascular resistance and RV structure and function were assessed by echocardiography and catheterization. Histological, immunohistochemical and Western blot analysis of lung and RV were performed to investigate cardiovascular remodeling and inflammation. Treatment with LASSBio-1824 normalized vascular resistance by attenuating vessel muscularization and endothelial dysfunction. In the heart, treatment decreased RV systolic pressure, hypertrophy and collagen content, improving cardiac function. Protein content of TNF-α, iNOS, phosphorylated p38 and caspase-3 were reduced both in lung vessels and RV tissues after treatment and a reduced activation of transcription factor c-fos was found in cardiomyocytes of treated SuHx rats. Therefore, LASSBio-1824 represents a potential candidate for remodeling-targeted treatment of PH.
Collapse
Affiliation(s)
- Grazielle Fernandes Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Jaqueline Soares da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Allan Kardec Nogueira de Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
| | - Marina de Moraes Carvalho da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Bruna de Souza Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Rosana Helena Coimbra Nogueira de Freitas
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
| | - Roberto Takashi Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.A.M.F.); or (G.Z.-S.); Tel./Fax: +55-21-39386478 (C.A.M.F.); +55-21-39386505 (G.Z.-S.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.A.M.F.); or (G.Z.-S.); Tel./Fax: +55-21-39386478 (C.A.M.F.); +55-21-39386505 (G.Z.-S.)
| |
Collapse
|
8
|
Synthesis, biological evaluation and docking studies of Methylene bearing cyanopyrimidine derivatives possessing a hydrazone moiety as potent Lysine specific demethylase-1 (LSD1) inhibitors: A promising anticancer agents. Bioorg Chem 2022; 126:105885. [DOI: 10.1016/j.bioorg.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
9
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
10
|
Machado TR, Machado TR, Pascutti PG. The p38 MAPK Inhibitors and Their Role in Inflammatory Diseases. ChemistrySelect 2021. [DOI: 10.1002/slct.202100406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thamires R. Machado
- Laboratory for Molecular Modeling and Dynamics Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão 21941-590 Rio de Janeiro RJ Brazil
| | - Thayná R. Machado
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR) Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Pedro G. Pascutti
- Laboratory for Molecular Modeling and Dynamics Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão 21941-590 Rio de Janeiro RJ Brazil
| |
Collapse
|
11
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
12
|
Lo Bello F, Hansbro PM, Donovan C, Coppolino I, Mumby S, Adcock IM, Caramori G. New drugs under development for COPD. Expert Opin Emerg Drugs 2020; 25:419-431. [DOI: 10.1080/14728214.2020.1819982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
13
|
Roberts BL, Ma ZX, Gao A, Leisten ED, Yin D, Xu W, Tang W. Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders. ACS Chem Biol 2020; 15:1487-1496. [PMID: 32255606 DOI: 10.1021/acschembio.0c00140] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteolysis targeting chimeras (PROTACs) have emerged as useful chemical probes and potential therapeutics by taking advantage of the ubiquitin-proteasome system to degrade intracellular disease-associated proteins. PROTACs are heterobifunctional molecules composed of a target protein ligand, E3 ubiquitin ligase ligand, and a linker between them. The generation of efficient PROTACs requires screening of many parameters, especially the lengths and types of the linkers. We report our proof-of-concept study using a two-stage strategy to facilitate the development of PROTACs against the estrogen receptor (ER). In stage one, a library of close to 100 PROTACs was synthesized by simply mixing a library of ERα ligands containing a hydrazide functional group at different positions with a preassembled library of E3 ligase ligands bearing different types and lengths of linkers with a terminal aldehyde group in a 1:1 ratio. Cell-based screening occurred without further purification, because the formation of the acylhydrazone linkage is highly efficient and produces water as the only byproduct. Compound A3 was the most potent ER degrader in two ER+ cell lines (DC50= ∼ 10 nM, Dmax= ≥ 95%). Stage two involved transformation to a more stable amide linker to generate a more drug-like molecule. The new compound, AM-A3, showed comparable biological activity (DC50 = 1.1 nM, Dmax = 98%) and induced potent antiproliferation (IC50= 13.2 nM, Imax= 69%) in MCF-7. This proof-of -concept study demonstrates that the two-stage strategy can significantly facilitate the development of PROTACs against ER without the tedious process of making large numbers of PROTACs one by one. It has the potential to be expanded to many other targets.
Collapse
Affiliation(s)
- Brett L. Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zhi-Xiong Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Eric D. Leisten
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dan Yin
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
New 2-amino-pyridinyl-N-acylhydrazones: Synthesis and identification of their mechanism of anti-inflammatory action. Biomed Pharmacother 2020; 123:109739. [PMID: 31918210 DOI: 10.1016/j.biopha.2019.109739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS The main aim of this paper was the synthesis and the evaluation of the anti-inflammatory activity of LASSBio-1828 (an amino-pyridinyl-N-acylhydrazone) and its respective hydrochloride, based on a p38α MAPK inhibitor (LASSBio-1824) previously synthesized by our group. MAIN METHODS The compounds were tested regarding their cell viability effect and on acute models of inflammation such as formalin-induced licking test, cell migration and inflammatory mediators quantification. KEY FINDINGS Treatment with the compounds inhibited p38α, reduced inflammatory pain, cell migration and inflammatory mediators that participate on the MAPK pathway such as TNF-α and IL-1β. SIGNIFICANCE Taken together, these results suggest that the synthesis of the corresponding hydrochloride of LASSBio-1828 enhanced its potency as a p38 inhibitor, and also that this compound could be considered a good anti-inflammatory drug candidate after further studies.
Collapse
|
15
|
Li X, Wu Z, Xu L, Chi CL, Chen BQ. Design, synthesis, and antitumor evaluation of novel naphthalimide derivatives. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02471-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Synthesis, structure and biological activity of diphenyltin complexes based on O,N,O-tridentate ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Alifu Z, Nizhamu M, Ablajan K. Efficient synthesis of N′-benzylidene-2-hydroxymethylbenzohydrazides from the one-pot reaction of phthalide, hydrazine and aldehydes. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03863-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Synthesis, anticancer activity and mechanism of iron chelator derived from 2,6-diacetylpyridine bis(acylhydrazones). J Inorg Biochem 2019; 193:1-8. [DOI: 10.1016/j.jinorgbio.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
19
|
de Oliveira RG, Guerra FS, Mermelstein CDS, Fernandes PD, Bastos ITDS, Costa FN, Barroso RCR, Ferreira FF, Fraga CAM. Synthesis and pharmacological evaluation of novel isoquinoline N-sulphonylhydrazones designed as ROCK inhibitors. J Enzyme Inhib Med Chem 2018; 33:1181-1193. [PMID: 30044647 PMCID: PMC6060383 DOI: 10.1080/14756366.2018.1490732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
In this study, we synthesized a new congener series of N-sulphonylhydrazones designed as candidate ROCK inhibitors using the molecular hybridization of the clinically approved drug fasudil (1) and the IKK-β inhibitor LASSBio-1524 (2). Among the synthesized compounds, the N-methylated derivative 11 (LASSBio-2065) showed the best inhibitory profile for both ROCK isoforms, with IC50 values of 3.1 and 3.8 µM for ROCK1 and ROCK2, respectively. Moreover, these compounds were also active in the scratch assay performed in human breast cancer MDA-MB 231 cells and did not display toxicity in MTT and LDH assays. Molecular modelling studies provided insights into the possible binding modes of these N-sulphonylhydrazones, which present a new molecular architecture capable of being optimized and developed as therapeutically useful ROCK inhibitors.
Collapse
Affiliation(s)
- Ramon Guerra de Oliveira
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Sélos Guerra
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia dos Santos Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Dias Fernandes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fanny Nascimento Costa
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Paulo, Brazil
| | | | - Fabio Furlan Ferreira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Paulo, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Guimarães ET, Dos Santos TB, Silva DKC, Meira CS, Moreira DRM, da Silva TF, Salmon D, Barreiro EJ, Soares MBP. Potent immunosuppressive activity of a phosphodiesterase-4 inhibitor N-acylhydrazone in models of lipopolysaccharide-induced shock and delayed-type hypersensitivity reaction. Int Immunopharmacol 2018; 65:108-118. [PMID: 30312879 DOI: 10.1016/j.intimp.2018.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Immunosuppressive drugs are widely used for the treatment of immune-mediated diseases and inflammation, but the toxicity and side effects of the available immunosuppressors make the search of new agents of great relevance. Here, we evaluated the immunomodulatory activity of an N-acylhydrazone derivative, (E)-N'-(3,4-dimethoxybenzylidene)-4-methoxybenzohydrazide (LASSBio-1386), a phosphodiesterase-4 (PDE-4) inhibitor. LASSBio-1386 inhibited lymphocyte activation in a concentration-dependent fashion, decreasing lymphoproliferation and IFN-γ and IL-2 production stimulated by anti-CD3/CD28 mAbs or concanavalin A (Con A) and inducing cell-cycle arrest in the G0/G1 phase. These effects were not blocked by RU486, a glucocorticoid receptor (GR) antagonist, indicating an effect independent of glucocorticoid receptor activation. Combination index-isobologram analysis indicates a synergistic effect between LASSBio-1386 and dexamethasone in lymphoproliferation inhibition. LASSBio-1386 presented immunomodulatory action in macrophage cultures, as observed by a significant and concentration-dependent decrease in NO and TNF-α production, an effect achieved by reducing IĸB expression and NF-κB activation. In the mouse model of endotoxic shock, LASSBio-1386 at 50 and 100 mg/kg protected 50 and 85% of mice against LPS-induced lethality, respectively. In agreement to its in vitro action, treatment with 100 mg/kg of LASSBio-1386 reduced TNF-α and IL-1β serum levels, while increased IL-6 and IL-10. Finally, LASSBio-1386 reduced the paw edema in a BSA-induced delayed-type hypersensitivity model. These findings demonstrate the immunomodulatory and immunosuppressant effects of LASSBio-1386 and indicate this molecule is a promising pharmacologic agent for immune-mediated diseases.
Collapse
Affiliation(s)
- Elisalva Teixeira Guimarães
- Núcleo de Estudo e Pesquisa em Histopatologia, Departamento de Ciências da Vida, Universidade Estadual da Bahia, CEP 41150-000 Salvador, BA, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | - Tatiana Barbosa Dos Santos
- Núcleo de Estudo e Pesquisa em Histopatologia, Departamento de Ciências da Vida, Universidade Estadual da Bahia, CEP 41150-000 Salvador, BA, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | - Dahara Keyse Carvalho Silva
- Núcleo de Estudo e Pesquisa em Histopatologia, Departamento de Ciências da Vida, Universidade Estadual da Bahia, CEP 41150-000 Salvador, BA, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil
| | | | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro, CEP 21941-971 Rio de Janeiro, RJ, Brazil
| | - Didier Salmon
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, CEP 21941-590 Rio de Janeiro, RJ, Brazil
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro, CEP 21941-971 Rio de Janeiro, RJ, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), CEP 40296-710 Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, CEP 41253-190 Salvador, BA, Brazil.
| |
Collapse
|
21
|
N-Acylhydrazones as drugs. Bioorg Med Chem Lett 2018; 28:2797-2806. [DOI: 10.1016/j.bmcl.2018.07.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 01/09/2023]
|
22
|
Moraes ADTDO, Miranda MDSD, Jacob ÍTT, Amorim CADC, Moura ROD, Silva SÂSD, Soares MBP, Almeida SMVD, Souza TRCDL, Oliveira JFD, Silva TGD, Melo CMLD, Moreira DRM, Lima MDCAD. Synthesis, in vitro and in vivo biological evaluation, COX-1/2 inhibition and molecular docking study of indole-N-acylhydrazone derivatives. Bioorg Med Chem 2018; 26:5388-5396. [PMID: 30293795 DOI: 10.1016/j.bmc.2018.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 12/20/2022]
Abstract
The objective of this work was to obtain and evaluate anti-inflammatory in vitro, in vivo and in silico potential of novel indole-N-acylhydrazone derivatives. In total, 10 new compounds (3a-j) were synthesized in satisfactory yields, through a condensation reaction in a single synthesis step. In the lymphoproliferation assay, using mice splenocytes, 3a and 3b showed inhibition of lymphocyte proliferation of 62.7% (±3.5) and 50.7% (±2), respectively, while dexamethasone presented an inhibition of 74.6% (±2.4). Moreover, compound 3b induced higher Th2 cytokines production in mice splenocytes cultures. The results for COX inhibition assays showed that compound 3b is a selective COX-2 inhibitor, but with less potency when compared to celecoxib, and compound 3a not presented selectivity towards COX-2. The molecular docking results suggest compounds 3a and 3b interact with the active site of COX-2 in similar conformations, but not with the active site of COX-1, and this may be the main reason to the COX-2 selectivity of compound 3b. In vivo carrageenan-induced paw edema assays were adopted for the confirmation of the anti-inflammatory activity. Compound 3b showed better results in suppressing edema at all tested concentrations and was able to induce an edema inhibition of 100% after 5 h of carrageenan injection at the 30 mg kg-1 dosage, corroborating with the COX inhibition and lymphoproliferation results. I addition to our experimental results, in silico analysis suggest that compounds 3a and 3b present a well-balanced profile between pharmacodynamics and pharmacokinetics. Thus, our preliminary results revealed the potentiality of a new COX-2 selective derivative in the modulation of the inflammatory process.
Collapse
Affiliation(s)
| | | | - Íris Trindade Tenório Jacob
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos (DANTI), 50670-901 Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Universidade Estadual da Paraíba (UEPB), Departamento de Farmácia, 58429-500 Campina Grande, PB, Brazil
| | | | - Milena Botelho Pereira Soares
- Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz/Laboratório de Engenharia Tecidual e Imunofarmacologia, 40296-710 Salvador, BA, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Universidade de Pernambuco (UPE), Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), 55290-000 Garanhuns, PE, Brazil
| | | | | | | | | | - Diogo Rodrigo Magalhães Moreira
- Fundação Oswaldo Cruz, Centro de Pesquisa Gonçalo Moniz/Laboratório de Engenharia Tecidual e Imunofarmacologia, 40296-710 Salvador, BA, Brazil
| | | |
Collapse
|