1
|
Nie W, Wang Y, Tian X, Liu J, Jin Z, Xu J, He M, Shen Q, Guo H, Luan T. Cucurbitacin B and Its Derivatives: A Review of Progress in Biological Activities. Molecules 2024; 29:4193. [PMID: 39275042 PMCID: PMC11397067 DOI: 10.3390/molecules29174193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The emergence of natural products has provided extremely valuable references for the treatment of various diseases. Cucurbitacin B, a tetracyclic triterpenoid compound isolated from cucurbitaceae and other plants, is the most abundant member of the cucurbitin family and exhibits a wide range of biological activities, including anti-inflammatory, anti-cancer, and even agricultural applications. Due to its high toxicity and narrow therapeutic window, structural modification and dosage form development are necessary to address these issues with cucurbitacin B. This paper reviews recent research progress in the pharmacological action, structural modification, and application of cucurbitacin B. This review aims to enhance understanding of advancements in this field and provide constructive suggestions for further research on cucurbitacin B.
Collapse
Affiliation(s)
- Wenzhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yalan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xinlu Tian
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Jinying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhanhui Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Junjie Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Miaohai He
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Qingkun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
2
|
Luo K, Dai RJ, Zeng YB, Chang WJ, Deng YL, Lv F. Triterpenoid saponins from Bupleurum marginatum and their anti-liver fibrotic activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:858-864. [PMID: 38572987 DOI: 10.1080/10286020.2024.2336150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.
Collapse
Affiliation(s)
- Ke Luo
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rong-Ji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan-Bo Zeng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wen-Jun Chang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu-Lin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Liu C, Ji J, Li C. Cucurbitacin B Inhibits the Malignancy of Esophageal Carcinoma through the KIF20A/JAK/STAT3 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:275-289. [PMID: 38291583 DOI: 10.1142/s0192415x24500125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This study intends to explore the effects of Cucurbitacin B (CuB) and KIF20A on esophageal carcinoma (ESCA). Data were downloaded from the Cancer Genome Atlas (TCGA) database. The expression properties of KIF20A have been confirmed by GEPIA and ualcan from TCGA. The expression of KIF20A was determined using western blotting in ECA109 and KYSE150 cells after transfection with KIF20A, KIF20A siRNA, or numerical control siRNA (si-NC). Then, different concentrations of CuB were used to treat ECA109 and KYSE150 cells. CCK-8 and colony formation assays were used to measure cell viability, and a Transwell assay was utilized to assess cell migration and invasion ability. N-cadherin, E-cadherin, snail, p-Janus kinase 2 (JAK2), JAK2, p-signal transducer and activator of transcription 3 (STAT3), and STAT3 expression levels were evaluated using western blot. KIF20A was higher expressed in ESCA than in normal cells, and its overexpression was associated with squamous cell carcinoma, TNM stage, and lymph nodal metastasis of ESCA patients. In ECA109 and KYSE150 cells, increased KIF20A facilitated cell proliferation, migration, and invasion, whereas the knockdown of KIF20A can reverse these effects with N-cadherin. Snail expression diminished and E-cadherin increased. Similarly, CuB treatment could inhibit cell proliferation, migration, and invasion concentration dependently. Furthermore, KIF20A accelerated the expression of p-JAK2 and p-STAT3, while the application of CuB inhibited KIF20A expression and attenuated the activation of the JAK/STAT3 pathway. These findings revealed that CuB could inhibit the growth, migration, and invasion of ESCA through downregulating the KIF20A/JAK/STAT3 signaling pathway, and CuB could serve as an essential medicine for therapeutic intervention.
Collapse
Affiliation(s)
- Chao Liu
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu 223001, P. R. China
| | - Jian Ji
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu 223001, P. R. China
| | - Chenglin Li
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu 223001, P. R. China
| |
Collapse
|
4
|
Ge JB, Jiang B, Shi TS, Li WY, Chen WJ, Zhu BL, Qin ZH. Cucurbitacin B Exerts Significant Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Model of Depression: Involvement of the Hippocampal BDNF-TrkB System. Int J Neuropsychopharmacol 2023; 26:680-691. [PMID: 37603290 PMCID: PMC10586053 DOI: 10.1093/ijnp/pyad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS Cucurbitacin B has the potential to be a novel antidepressant candidate.
Collapse
Affiliation(s)
- Jian-Bin Ge
- Department of Pharmacology and Laboratory of Aging and Nervous Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Yang H, Cheng H, Dai R, Shang L, Zhang X, Wen H. Macrophage polarization in tissue fibrosis. PeerJ 2023; 11:e16092. [PMID: 37849830 PMCID: PMC10578305 DOI: 10.7717/peerj.16092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Fibrosis can occur in all major organs with relentless progress, ultimately leading to organ failure and potentially death. Unfortunately, current clinical treatments cannot prevent or reverse tissue fibrosis. Thus, new and effective antifibrotic therapeutics are urgently needed. In recent years, a growing body of research shows that macrophages are involved in fibrosis. Macrophages are highly heterogeneous, polarizing into different phenotypes. Some studies have found that regulating macrophage polarization can inhibit the development of inflammation and cancer. However, the exact mechanism of macrophage polarization in different tissue fibrosis has not been fully elucidated. This review will discuss the major signaling pathways relevant to macrophage-driven fibrosis and profibrotic macrophage polarization, the role of macrophage polarization in fibrosis of lung, kidney, liver, skin, and heart, potential therapeutics targets, and investigational drugs currently in development, and hopefully, provide a useful review for the future treatment of fibrosis.
Collapse
Affiliation(s)
- Huidan Yang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Rongrong Dai
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Lili Shang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoying Zhang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
6
|
Alafnan A, Khalifa NE, Hussain T, Osman ME. Cucurbitacin-B instigates intrinsic apoptosis and modulates Notch signaling in androgen-dependent prostate cancer LNCaP cells. Front Pharmacol 2023; 14:1206981. [PMID: 37448964 PMCID: PMC10338038 DOI: 10.3389/fphar.2023.1206981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Among numerous triterpenoids of the Cucurbitaceae family, Cucurbitacin-B (Cur-B) is being explored for its pharmacological attributes. Reports from previous studies have explicitly shown that Cur-B possesses substantial anticancer effects. The present report focuses on exploring the anticancer attributes of Cur-B against androgen-dependent PCa LNCaP cells. Methods: LNCaP cells were exposed to commercially available purified Cur-B at varying concentrations that were selected as 5, 10, 15, 20, and 25 µM for some time of 24 h to perform various experimental studies. Results: Cytotoxicity evaluation revealed that Cur-B impeded the LNCaP cell's viability at 5 µM (p <0.05) which increased considerably at a concentration of 25 µM (p <0.001). Cur-B was also efficacious in inducing the changes within nu-clear morphology followed by a concomitant increase in the activities of key caspases including caspase-3, -8, and -9 intriguingly in a dose-dependent trend. Cur-B treatment not only resulted in the augmentation of intracellular ROS levels within LNCaP cells at 5 µM (p <0.05) but also in-creased significantly at 25 µM concentration (p <0.001). Elevation in the ROS levels was also found to be correlated with dissipated mitochondrial membrane potential (ΔΨm) which culminated in the onset of significant apoptosis at 25 µM concentration (p <0.001). Cur-B exposure also resulted in the downregulation of cyclin D1, cyclin-dependent kinase 4 (CDK4) followed by amplified levels of p21Cip1 mRNA. Importantly, exposure of Cur-B competently reduced the expression of the Notch signaling cascade which may be the plausible cause behind Cur-B-instigated apoptotic cell death and cell cycle arrest in LNCaP cells. Discussion: These observations thus, explicitly indicated that Cur-B could be plausibly further explored as potent therapeutics against androgen-dependent PCa.
Collapse
Affiliation(s)
- Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Nasrin E. Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
7
|
Lv L, Wang D, Yin J, Yang T, Huang B, Cao Y, Lu J. Downregulation of miR-20b-5p Contributes to the Progression of Liver Fibrosis via the STAT3 Signaling Pathway In Vivo and In Vitro. Dig Dis Sci 2023; 68:487-496. [PMID: 35947307 DOI: 10.1007/s10620-022-07660-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Activated hepatic stellate cells (HSCs) are primarily involved in liver fibrosis and portal hypertension (PHT). We aimed to investigate the effect of miR-20b-5p on HSCs, liver fibrosis, and PHT. METHODS MiR-20b-5p expression in HSCs and in mouse liver fibrosis was determined by qPCR. Further, the effects of miR-20b-5p mimic on HSCs migration, proliferation, and apoptosis were investigated in vitro. A dual-luciferase reporter assay was performed to confirm the direct interaction between miR-20b-5p and STAT3. In vivo, mouse liver fibrosis was established by common bile duct ligation and intervened by agomiR-20b-5p. Sirius red staining and hydroxyproline content were used to evaluate collagen deposition. The α-SMA expression in the liver was detected by IHC and Western blotting. The STAT3 signaling pathway and its downregulated cytokines as well as portal pressure and angiogenesis were explored. RESULTS MiR-20b-5p was significantly downregulated during HSCs activation and in mouse liver fibrosis. The functional analyses demonstrated that miR-20b-5p inhibited cell proliferation, activation, and promoted apoptosis in HSCs in vitro. Moreover, miR-20b-5p regulated STAT3 expression by binding to the 3'UTR of its miRNA directly. Overexpression of miR-20b-5p facilitated HSC activation and proliferation by inhibiting the STAT3 signaling pathway. MiR-20b-5p overexpression suppressed the STAT3 and its downstream cytokines and ameliorated liver fibrosis in mice. The intra- and inter-hepatic angiogenesis were also effectively inhibited. The inhibition of liver fibrosis and neoangiogenesis contributed to the decrease of portal pressure. CONCLUSIONS MiR-20b-5p plays an important role in the fibrosis and angiogenesis of liver fibrosis by targeting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ling Lv
- Department of Disease Control and Prevention, Tangdu Hospital, Fourth Military Medical University, 569 Xin Si Road, Xi'an, 710038, China
| | - Dong Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jikai Yin
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Yang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Huang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanlong Cao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianguo Lu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
9
|
Liu J, Wang F, Luo F. The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms. Biomolecules 2023; 13:biom13010119. [PMID: 36671504 PMCID: PMC9855819 DOI: 10.3390/biom13010119] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
There are four members of the JAK family and seven of the STAT family in mammals. The JAK/STAT molecular pathway could be activated by broad hormones, cytokines, growth factors, and more. The JAK/STAT signaling pathway extensively mediates various biological processes such as cell proliferation, differentiation, migration, apoptosis, and immune regulation. JAK/STAT activation is closely related to growth and development, homeostasis, various solid tumors, inflammatory illness, and autoimmune diseases. Recently, with the deepening understanding of the JAK/STAT pathway, the relationship between JAK/STAT and the pathophysiology of fibrotic diseases was noticed, including the liver, renal, heart, bone marrow, and lung. JAK inhibitor has been approved for myelofibrosis, and subsequently, JAK/STAT may serve as a promising target for fibrosis in other organs. Therefore, this article reviews the roles and mechanisms of the JAK/STAT signaling pathway in fibrotic diseases.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-18980601355
| |
Collapse
|
10
|
Dai S, Wang C, Zhao X, Ma C, Fu K, Liu Y, Peng C, Li Y. Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res 2023; 187:106587. [PMID: 36460279 DOI: 10.1016/j.phrs.2022.106587] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Cucurbitacin B (CuB, C32H46O8), the most abundant and active member of cucurbitacins, which are highly oxidized tetracyclic triterpenoids. Cucurbitacins are widely distributed in a variety of plants and mainly isolated from plants in the Cucurbitaceae family. CuB is mostly obtained from the pedicel of Cucumis melo L. Modern pharmacological studies have confirmed that CuB has a broad range of pharmacological activities, with significant therapeutic effects on a variety of diseases including inflammatory diseases, neurodegenerative diseases, diabetes mellitus, and cancers. In this study the PubMed, Web of Science, Science Direct, and China National Knowledge Infrastructure (CNKI) databases were searched from 1986 to 2022. After inclusion and exclusion criteria were applied, 98 out of 2484 articles were selected for a systematic review to comprehensively summarize the pharmacological activity, toxicity, and pharmacokinetic properties of CuB. The results showed that CuB exhibits potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective, and anti-cancer activities mainly via regulating various signaling pathways, such as the Janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3), nuclear factor erythroid 2-related factor-2/antioxidant responsive element (Nrf2/ARE), nuclear factor (NF)-κB, AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, cancerous inhibitor of protein phosphatase-2A/protein phosphatase-2A (CIP2A/PP2A), Wnt, focal adhesion kinase (FAK), Notch, and Hippo-Yes-associated protein (YAP) pathways. Studies of its toxicity and pharmacokinetic properties showed that CuB has non-specific toxicity and low bioavailability. In addition, derivatives and clinical applications of CuB are discussed in this paper.
Collapse
Affiliation(s)
- Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - XingTao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Chu X, Zhang L, Zhou Y, Fang Q. Cucurbitacin B alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress. Biosci Biotechnol Biochem 2022; 86:zbac065. [PMID: 35689827 DOI: 10.1093/bbb/zbac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Cucurbitacin B (CuB) has been demonstrated to possess anti-inflammatory and antioxidative properties. However, the effect of CuB on cerebral ischemia/reperfusion (I/R) injury was unclear. In this work, we found that CuB significantly elevated cell viability, decreased lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, and proinflammatory factor levels in oxygen-glucose deprivation/reoxygenation-exposed PC12 cells, reduced cerebral infarction volume and neuronal apoptosis, inhibited oxidative stress and inflammation, and improved neurological function in mice with middle cerebral artery occlusion-induced cerebral I/R injury. Meanwhile, CuB decreased levels of NLRP3, cleaved caspase-1, and cleaved interleukin-1β, which were upregulated by I/R injury. Moreover, upregulation of NLRP3 dramatically reversed the effects of CuB on NLRP3 inflammasome activation, cell viability, and levels of proinflammatory factors in vitro. In conclusion, this study demonstrated that CuB attenuated cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress.
Collapse
Affiliation(s)
- Xiuli Chu
- Department of Neurology, First Affiliated Hospital, Soochow University, 899 Pinghai street, Suzhou, China
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yajun Zhou
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital, Soochow University, 899 Pinghai street, Suzhou, China
| |
Collapse
|
13
|
Cao J, Li L, Xiong L, Wang C, Chen Y, Zhang X. Research on the mechanism of berberine in the treatment of COVID-19 pneumonia pulmonary fibrosis using network pharmacology and molecular docking. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100252. [PMID: 35403089 PMCID: PMC8895682 DOI: 10.1016/j.phyplu.2022.100252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 05/14/2023]
Abstract
Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BP, biological process
- Berberine
- CC, cellular component
- CCL2, chemokine ligand2
- COVID-19
- COVID-19 pneumonia
- COVID-19, corona virus disease 2019
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal cell transformation
- FOXM1, forkhead box M1
- Fsp1, fibroblast-specific protein 1
- GO, gene ontology
- HIF-1, hypoxia inducible factor
- IBD, inflammatory bowel disease
- IL-12, interleukin 12
- IL-6, interleukin 6
- JAK, Janus kinase
- KEGG, Kyoto encyclopedia of genes and genomes
- LR-MSCs, mesenchymal stem cells
- MF, molecular function
- MMP14, matrix metalloproteinase 14
- MMP7, matrix metalloproteinase 7
- Molecular docking
- NF-κB, nuclear transcription factor
- NOS, nitric oxide synthase
- Network pharmacology
- OTUB1, deubiquitinase
- PAI-1, plasminogen activator inhibitor 1
- PPI, protein-protein interaction
- Pulmonary fibrosis
- STAT3, transcription activator
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- sIL-6R, interleukin 6 receptor
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Junfeng Cao
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lianglei Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, No.783 Xindu Road, Xindu District, Chengdu, Sichuan 610500, China
| | - Li Xiong
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, No.783 Xindu Road, Xindu District, Chengdu, Sichuan 610500, China
| |
Collapse
|
14
|
Alkreathy HM, Esmat A. Lycorine Ameliorates Thioacetamide-Induced Hepatic Fibrosis in Rats: Emphasis on Antioxidant, Anti-Inflammatory, and STAT3 Inhibition Effects. Pharmaceuticals (Basel) 2022; 15:ph15030369. [PMID: 35337166 PMCID: PMC8955817 DOI: 10.3390/ph15030369] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a foremost medical concern worldwide. In Saudi Arabia, numerous risk factors contribute to its high rates. Lycorine—a natural alkaloid—has antioxidant, anti-inflammatory, and antitumor activates. It has been reported to inhibit STAT3 in cancer. Therefore, this study aimed at investigating the possible antifibrotic effect of lycorine against thioacetamide (TAA)-induced liver fibrosis in rats and at elucidating the possible mechanisms. Liver fibrosis was induced by TAA (200 mg/kg i.p.), three per week for four weeks. Treatment with lycorine (0.5 and 1 mg/kg/d) amended TAA-induced rise of serum transaminases that was confirmed histopathologically. Moreover, it ameliorated liver fibrosis in a dose-dependent manner, as indicated by hindering the TAA-induced increase of hepatic hydroxyproline content, α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-β1) expressions. TAA-induced oxidative stress was amended by lycorine treatment via restoring reduced glutathione and diminishing lipid peroxidation. Moreover, lycorine ameliorated hepatic inflammation by preventing the rise of inflammatory cytokines. Notably, lycorine inhibited STAT3 activity, as evidenced by the decreased phospho-STAT3 expression, accompanied by the elevation of the hepatic Bax/Bcl-2 ratio. In conclusion, lycorine hinders TAA-induced liver fibrosis in rats, due to—at least partly—its antioxidative and anti-inflammatory properties, along with its ability to inhibit STAT3 signaling.
Collapse
Affiliation(s)
- Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence:
| |
Collapse
|
15
|
La Manna S, De Benedictis I, Marasco D. Proteomimetics of Natural Regulators of JAK-STAT Pathway: Novel Therapeutic Perspectives. Front Mol Biosci 2022; 8:792546. [PMID: 35047557 PMCID: PMC8762217 DOI: 10.3389/fmolb.2021.792546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
The JAK-STAT pathway is a crucial cellular signaling cascade, including an intricate network of Protein-protein interactions (PPIs) responsible for its regulation. It mediates the activities of several cytokines, interferons, and growth factors and transduces extracellular signals into transcriptional programs to regulate cell growth and differentiation. It is essential for the development and function of both innate and adaptive immunities, and its aberrant deregulation was highlighted in neuroinflammatory diseases and in crucial mechanisms for tumor cell recognition and tumor-induced immune escape. For its involvement in a multitude of biological processes, it can be considered a valuable target for the development of drugs even if a specific focus on possible side effects associated with its inhibition is required. Herein, we review the possibilities to target JAK-STAT by focusing on its natural inhibitors as the suppressor of cytokine signaling (SOCS) proteins. This protein family is a crucial checkpoint inhibitor in immune homeostasis and a valuable target in immunotherapeutic approaches to cancer and immune deficiency disorders.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
16
|
Yuan R, Zhao W, Wang QQ, He J, Han S, Gao H, Feng Y, Yang S. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res 2021; 170:105748. [PMID: 34217831 DOI: 10.1016/j.phrs.2021.105748] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Pyroptosis, a type of programmed cell death (PCD), is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Cucurbitacin B (CuB), extracted from muskmelon pedicel, is a natural bioactive product that could effectively exert anti-tumor activities in lung cancer. However, the exact molecular mechanisms and the direct targets of CuB in non-small cell lung cancer (NSCLC) remain to be discovered. Here, we firstly found that CuB exerted an anti-tumor effect via pyroptosis in NSCLC cells and NSCLC mice models. Next, based on the molecular docking and cellular thermal shift assay (CETSA), we identified that CuB directly bound to Toll-like receptor 4 (TLR4) to activate the NLRP3 inflammasome, which further caused the separation of N- and C-terminals of Gasdermin D (GSDMD) to execute pyroptosis. Moreover, CuB enhanced the mitochondrial reactive oxygen species (ROS), mitochondrial membrane protein Tom20 accumulation, and cytosolic calcium (Ca2+) release, leading to pyroptosis in NSCLC cells. Silencing of TLR4 inhibited CuB-induced pyroptosis and decreased the level of ROS and Ca2+ in A549 cells. In vivo study showed that CuB treatment suppressed lung tumor growth in mice via pyroptosis without dose-dependent manner, and CuB at 0.75 mg/kg had a better anti-tumor effect compared to the Gefitinib group. Taken together, our findings revealed the mechanisms and targets of CuB triggering pyroptosis in NSCLC, thus supporting the notion of developing CuB as a promising therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Renyikun Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wentong Zhao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China.
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| |
Collapse
|
17
|
Ji D, Zhao Q, Qin Y, Tong H, Wang Q, Yu M, Mao C, Lu T, Qiu J, Jiang C. Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway. Cell Biol Int 2021; 45:1866-1875. [PMID: 33835632 DOI: 10.1002/cbin.11607] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/26/2023]
Abstract
Liver fibrosis is a primary threat to public health, owing to limited therapeutic options. Germacrone (GM) has been shown to exert various curative effects against human diseases, including liver injury. The aim of this study was to investigate the pharmacological effects of GM in the pathophysiology of hepatic fibrosis and determine its potential mechanisms of action. A liver fibrosis rat model was established via carbon tetrachloride (CCl4 ) treatment, and LX-2 cells were stimulated with TGF-β1. The effects of GM on liver fibrosis and its relationship with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway were investigated. In the CCl4 fibrosis-induced rat model, GM improved histological damage, inhibited the activity of hepatic α-smooth muscle actin and improved serum alanine aminotransferase and aspartate aminotransferase levels in a dose-dependent manner. GM potently inhibited hepatic stellate cells (HSCs) growth and epithelial-mesenchymal transition (EMT) progression, as reflected by the altered expression of proliferative (Ki-67, PCNA and cleaved caspase-3) and EMT-related (E-cadherin and vimentin) proteins. In TGF-β1-stimulated LX-2 cells, GM significantly inhibited the survival and activation of HSCs and induced cell apoptosis. GM also suppressed the migration ability and reversed the EMT process in HSCs. Following GM treatment, the phosphorylation of the PI3K, AKT and mTOR proteins was reduced in the liver of CCl4 -treated rats and TGF-β1-stimulated LX-2 cells, indicating that GM may attenuate hepatic fibrosis via the PI3K/AKT/mTOR signalling pathway. These outcomes highlight the anti-fibrotic effects of GM and suggest that it is a potential therapeutic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- De Ji
- Department of Chinese Medicinal Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Chinese Medicinal Resources, Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, China
| | - Yuwen Qin
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Chinese Medicinal Resources, Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, China
| | - Huangjin Tong
- Department of Chinese Medicinal Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiaohan Wang
- Department of Chinese Medicinal Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengting Yu
- Department of Chinese Medicinal Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- Department of Chinese Medicinal Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- Department of Chinese Medicinal Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinchun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chengxi Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Chinese Medicinal Resources, Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, China
| |
Collapse
|
18
|
Wang JP, Li TZ, Huang XY, Geng CA, Shen C, Sun JJ, Xue D, Chen JJ. Synthesis and anti-fibrotic effects of santamarin derivatives as cytotoxic agents against hepatic stellate cell line LX2. Bioorg Med Chem Lett 2021; 41:127994. [PMID: 33775837 DOI: 10.1016/j.bmcl.2021.127994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Liver fibrosis is a final result of extensive deposition of extracellular matrix (ECM) and starts with the activation and proliferation of hepatic stellate cells (HSCs). Our previous study showed that eudesmane sesquiterpenoid santamarin had cytotoxicity against hepatic stellate cell line LX2 (HSC-LX2) with IC50 values of 16.5 ± 0.7 μM. To explore the structure-activity relationships, twenty-six derivatives were synthesized by modifying the hydroxyl group, double-bond and unsaturated lactone. Cytotoxicity evaluation suggested that eight derivatives (6, 9, 13, 17, 20 and 25-27) increased activity against HSC-LX2. Especially, derivatives 17, 20 and 25 displayed obvious cytotoxicity with IC50 values of 6.4 ± 0.4, 4.6 ± 0.1, and 3.5 ± 0.1 μM, which were 3 to 5-fold higher than santamarin. Preliminary mechanisms study revealed that the active compound 20 exhibited more than 8-fold and 6-fold enhancement of inhibitory effect on the deposition of human hyaluronic acid (HA) and human laminin (HL) with IC50 values of 7.6 ± 0.6 and 3.3 ± 1.2 μM.
Collapse
Affiliation(s)
- Jin-Ping Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Cheng Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Jin-Jin Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China.
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
19
|
Zeng Y, Wang J, Huang Q, Ren Y, Li T, Zhang X, Yao R, Sun J. Cucurbitacin IIa: A review of phytochemistry and pharmacology. Phytother Res 2021; 35:4155-4170. [PMID: 33724593 DOI: 10.1002/ptr.7077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Cucurbitacin IIa was first found in plants and it belongs to tetracyclo triterpenoids. It is one of the most important active components in cucurbitaceae plants. Studies have found that cucurbitacin IIa has a variety of pharmacological effects, such as antitumor, antiinflammatory, antibacterial, antihepatitis B virus, inhibition of human immunodeficiency virus replication, and antidepressant effect. However, the underlying mechanisms, intracellular targets, and structure-activity relationships of cucurbitacin IIa remain to be completely elucidated. This review summarizes the current advances concerning the phytochemistry and pharmacology of cucurbitacin IIa. Electronic databases such as PubMed, Web of Science, Google Scholar, Science Direct, and CNKI were used to find relevant information about cucurbitacin IIa using keywords such as "Cucurbitacin IIa," "Pharmacology," and "Phytochemistry." These pharmacological effects involve the actin cytoskeleton aggregation, the regulation of JAK2/STAT3, ERBB-MAPK, CaMKII α/CREB/BDNF signal pathways, as well as the regulation of survivin, caspases, and other cell cycles, apoptosis, autophagy-related cytokines, and kinases. It has high development and use value.
Collapse
Affiliation(s)
- Yijia Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingna Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renchuan Yao
- Sichuan Provincial Engineering Research Center for Fermented Traditional Chinese Medicine, Jianyang, China
| | - Jilin Sun
- Sichuan Fu Zheng Pharmaceutical Co. Ltd., Jianyang, China
| |
Collapse
|
20
|
Aljohani OS. Phytochemical evaluation of Cucumis prophetarum: protective effects against carrageenan-induced prostatitis in rats. Drug Chem Toxicol 2020; 45:1461-1469. [PMID: 33092416 DOI: 10.1080/01480545.2020.1838538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytochemical study of the MeOH extract of Cucumis prophetarum fruits (family Cucurbitaceae) by using different chromatographic techniques led to the isolation of three metabolites; spinasterol (1), cucurbitacin B (2), and 2-O-β-D-glucopyranosylcucurbitacin E (3). Their chemical structures were created on the basis of physical, chemical, spectroscopic data 1D (1H and 13C NMR), and 2D NMR (HSQC and HMBC), as well as similarity with literature data. Cucurbitacin B (Cu-B) (2) was found to be the major constituent. Potential protective activities of MeOH extract, CHCl3, and EtOAc fractions and Cu-B were evaluated against carrageenan-induced prostatic inflammation in rats. Acute toxicity was assessed by evaluating LD50. Pretreatment with CHCl3 fraction and Cu-B ameliorated the rise in the prostate index and obviously protected against histopathological changes. Further, MeOH, extract, CHCl3, and EtOAc fractions as well as Cu-B significantly protected against oxidative stress in prostatic tissues. The anti-inflammatory activities of the extract, fractions and Cu-B were confirmed by ameliorating the rise in prostatic content of the inflammatory mediators TNF-α, IL-1β, COX-2, and iNOS induced by carrageenan. In addition, the rise in the chemotactic factors were myeloperoxidase (MPO), F4-80, and monocyte chemoattractant protein-1 (MCP-1) was significantly hampered. In conclusion, three known compounds (1-3) were isolated from Cucumis prophetarum fruits. Cu-B (2) was the major identified compound. Particularly, CHCl3 fraction and isolated Cu-B exhibited potent anti-inflammatory activity against carrageenan-induced prostatitis. The anti-inflammatory activity can be attributed, at least partly, to inhibition of neutrophil and macrophage infiltration into prostatic tissues.
Collapse
Affiliation(s)
- Omar Saad Aljohani
- Faculty of Pharmacy, Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Cytotoxic sesquiterpenoids against hepatic stellate cell line LX2 from Artemisia lavandulaefolia. Bioorg Chem 2020; 103:104107. [DOI: 10.1016/j.bioorg.2020.104107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
|
22
|
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020; 888:173578. [PMID: 32976828 DOI: 10.1016/j.ejphar.2020.173578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The discovery of drugs to treat liver fibrosis has long been a challenge over the past decades due to its complicated pathogenesis. As a primary approach for drug development, natural products account for 30% of clinical drugs used for disease treatment. Therefore, natural products are increasingly important for their medicinal value in liver fibrosis therapy. In this part of the review, special focus is placed on the effect and mechanism of natural compounds, including alkaloids, terpenoids, glycosides, coumarins and others. A total of 36 kinds of natural compounds demonstrate significant antifibrotic effects in various liver fibrosis models in vivo and in hepatic stellate cells (HSCs) in vitro. Revealing the mechanism will provide further basis for clinical conversion, as well as accelerate drug discovery. The mechanism was further summarized with the finding of network regulation by several natural products, such as oxymatrine, paeoniflorin, ginsenoside Rg1 and taurine. Moreover, there are still improvements needed in investigating clinical efficacy, determining mechanisms, and combining applications, as well as semisynthesis and modification. Therefore, natural products area promising resource for agents that protect against liver fibrosis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
23
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Yang L, Ao Q, Zhong Q, Li W, Li W. SIRT1/IGFBPrP1/TGF β1 axis involved in cucurbitacin B ameliorating concanavalin A-induced mice liver fibrosis. Basic Clin Pharmacol Toxicol 2020; 127:371-379. [PMID: 32452080 DOI: 10.1111/bcpt.13446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
The present study investigated the improving effect of cucurbitacin B on liver fibrosis induced by concanavalin A in mice and explored its possible mechanism. AST, ALT and TB were detected by kits. ELISA was performed to detect the levels of IL 5, IL 6, IL 13 and TNF-α in serum. Haematoxylin-eosin (HE) staining and Masson's trichrome staining were used to evaluate pathological changes. Western blotting was performed to observe expression levels of sirtuin (SIRT) 1, insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) and TGF β1. The activity of SIRT 1 also was detected. Results showed that cucurbitacin B could effectively improve the abnormal liver function, inhibit liver fibrosis and suppress releases of inflammatory factors in mice induced by concanavalin A. Furthermore, cucurbitacin B could down-regulate the expressions of TGF β1 and IGFBPrP1, increase the expression and activity of SIRT 1. Interestingly, when SIRT1 activity was inhibited by EX 527, a selective inhibitor of SIRT 1, the preventive effect of cucurbitacin B was significantly attenuated. Taken together, the above results showed that cucurbitacin B could significantly suppress releases of inflammatory cytokines and improve liver fibrosis induced by concanavalin A in mice, and those may be achieved through SIRT1/IGFBPrP1/TGF β1 axis.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacy, The Ninth Hospital of Nanchang, Nanchang, China
| | - Qinfang Ao
- Clinical Laboratory, The Ninth Hospital of Nanchang, Nanchang, China
| | - Qingmei Zhong
- Department of Pathology, The Ninth Hospital of Nanchang, Nanchang, China
| | - Wen Li
- Viral Hepatitis/Liver Failure Laboratory, The Ninth Hospital of Nanchang, Nanchang, China
| | - Wenhong Li
- Faculty of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
25
|
Bisserier M, Milara J, Abdeldjebbar Y, Gubara S, Jones C, Bueno-Beti C, Chepurko E, Kohlbrenner E, Katz MG, Tarzami S, Cortijo J, Leopold J, Hajjar RJ, Sassi Y, Hadri L. AAV1.SERCA2a Gene Therapy Reverses Pulmonary Fibrosis by Blocking the STAT3/FOXM1 Pathway and Promoting the SNON/SKI Axis. Mol Ther 2019; 28:394-410. [PMID: 31879190 DOI: 10.1016/j.ymthe.2019.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Inhibition of pulmonary fibrosis (PF) by restoring sarco/endoplasmic reticulum calcium ATPase 2a isoform (SERCA2a) expression using targeted gene therapy may be a potentially powerful new treatment approach for PF. Here, we found that SERCA2a expression was significantly decreased in lung samples from patients with PF and in the bleomycin (BLM) mouse model of PF. In the BLM-induced PF model, intratracheal aerosolized adeno-associated virus serotype 1 (AAV1) encoding for human SERCA2a (AAV1.hSERCA2a) reduces lung fibrosis and associated vascular remodeling. SERCA2a gene therapy also decreases right ventricular pressure and hypertrophy in both prevention and curative protocols. In vitro, we observed that SERCA2a overexpression inhibits fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition induced by transforming growth factor β (TGF-β1). Thus, pro-fibrotic gene expression is prevented by blocking nuclear factor κB (NF-κB)/interleukin-6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3) activation. This effect is signaled toward an inhibitory mechanism of small mother against decapentaplegic (SMAD)/TGF-β signaling through the repression of OTU deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1) and Forkhead box M1 (FOXM1). Interestingly, this cross-inhibition leads to an increase of SKI and SnoN expression, an auto-inhibitory feedback loop of TGF-β signaling. Collectively, our results demonstrate that SERCA2a gene transfer attenuates bleomycin (BLM)-induced PF by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI Axis. Thus, SERCA2a gene therapy may be a potential therapeutic target for PF.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Javier Milara
- Health Research Institute INCLIVA, Valencia, Spain; Pharmacy Unit, University Clinic Hospital, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Yassine Abdeldjebbar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Gubara
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carly Jones
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Bueno-Beti
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael G Katz
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sima Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Julio Cortijo
- Health Research Institute INCLIVA, Valencia, Spain; Pharmacy Unit, University Clinic Hospital, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Jane Leopold
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol 2019; 75:105765. [PMID: 31336335 DOI: 10.1016/j.intimp.2019.105765] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is the most common pathological feature of most chronic liver diseases, and its continuous deterioration gradually develops into liver cirrhosis and eventually leads to liver cancer. At present, there are many kinds of drugs used to treat liver fibrosis. However, Western drugs tend to only target single genes/proteins and induce many adverse reactions. Most of the mechanisms and active ingredients of traditional Chinese medicine (TCM) are not clear, and there is a lack of unified diagnosis and treatment standards. Natural products, which are characterized by structural diversity, low toxicity, and origination from a wide range of sources, have unique advantages and great potential in anti-liver fibrosis. This article summarizes the work done over the previous decade, on the active ingredients in natural products that are reported to have anti-hepatic fibrosis effects. The effective anti-hepatic fibrosis ingredients identified can be generally divided into flavonoids, saponins, polysaccharides and alkaloids. Mechanisms of anti-liver fibrosis include inhibition of liver inflammation, anti-lipid peroxidation injury, inhibition of the activation and proliferation of hepatic stellate cells (HSCs), modulation of the synthesis and secretion of pro-fibrosis factors, and regulation of the synthesis and degradation of the extracellular matrix (ECM). This review provides suggestions for the development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Liang Shan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhenni Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Leilei Ci
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen Shuai
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Basha SZ, Mohamed GA, Abdel-Naim AB, Hasan A, Abdel-Lateff A. Cucurbitacin E glucoside from Citrullus colocynthis inhibits testosterone-induced benign prostatic hyperplasia in mice. Drug Chem Toxicol 2019; 44:533-543. [PMID: 31298051 DOI: 10.1080/01480545.2019.1635149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disorder in men aged over 60 years and significantly contributes to the distressing lower urinary tract symptoms. Cucurbitacins are triterpene derivatives with diverse medicinal uses including prostate diseases. Cucurbitacin E glucoside was evaluated against testosterone-induced prostatic hyperplasia in mice. Our data indicate that it significantly inhibited the increase in prostate weight and prostate index. The compound ameliorated histopathological changes in prostatic architecture and inhibited the increase in glandular epithelial length induced by testosterone. These results were confirmed by decreased expression of cyclin D1 in prostatic tissues compared to those obtained from the testosterone-alone group. Also, it showed significant antioxidant activity as evidenced by inhibiting lipid peroxides accumulation, glutathione depletion and superoxide exhaustion. Further, it exhibited anti-inflammatory activity as it decreased cyclooxygenase-2 and interleukin-1β protein expression in prostatic tissues. Masson's trichrome staining of prostate sections indicated obvious antifibrotic activity that was supported by decreased α-smooth muscle actin expression. In conclusion, Cucurbitacin E glucoside inhibits testosterone-induced experimental BPH in mice due to, at least partly, its antiproliferative, antioxidant, anti-inflammatory, and antifibrotic effects.
Collapse
Affiliation(s)
- Salsabeel Z Basha
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
28
|
Yuan RQ, Qian L, Yun WJ, Cui XH, Lv GX, Tang WQ, Cao RC, Xu H. Cucurbitacins extracted from Cucumis melo L. (CuEC) exert a hypotensive effect via regulating vascular tone. Hypertens Res 2019; 42:1152-1161. [PMID: 30962520 DOI: 10.1038/s41440-019-0258-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/17/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
As an effective medicine for jaundice in traditional Chinese medicine, Cucumis melo L. has been widely used in China. However, its effect on vascular function is still unclear. In this study, we extracted the compounds of Cucumis melo L., and the major ingredients were identified as cucurbitacins (CuEC, cucurbitacins extracted from Cucumis melo L.), especially cucurbitacin B. We replicated the toxicity in mice by intraperitoneal injection of a high dose of CuEC (2 mg/kg) and demonstrated that the cause of death was CuEC-induced impairment of the endothelial barrier and, thus, increased vascular permeability via decreasing VE-cadherin conjunction. The administration of low doses of CuEC (1 mg/kg) led to a decline in systolic blood pressure (SBP) without causing toxicity in mice. More importantly, CuEC dramatically suppressed angiotensin II (Ang II)-induced SBP increase. Further studies demonstrated that CuEC facilitated acetylcholine-mediated vasodilation in mesenteric arteries of mice. In vitro studies showed that CuEC induced vasodilation in a dose-dependent manner in mesenteric arteries of both mice and rats. Pretreatment with CuEC inhibited phenylephrine-mediated vasoconstriction. In summary, a moderate dose of CuEC reduced SBP by improving blood vessel tension. Therefore, our study provides new experimental evidence for developing new antihypertensive drugs.
Collapse
Affiliation(s)
- Ru-Qiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei-Jing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Hui Cui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang-Xin Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wei-Qi Tang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ri-Chang Cao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
29
|
Contribution of STAT3 to Inflammatory and Fibrotic Diseases and Prospects for its Targeting for Treatment. Int J Mol Sci 2018; 19:ijms19082299. [PMID: 30081609 PMCID: PMC6121470 DOI: 10.3390/ijms19082299] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) 3 plays a central role in the host response to injury. It is activated rapidly within cells by many cytokines, most notably those in the IL-6 family, leading to pro-proliferative and pro-survival programs that assist the host in regaining homeostasis. With persistent activation, however, chronic inflammation and fibrosis ensue, leading to a number of debilitating diseases. This review summarizes advances in our understanding of the role of STAT3 and its targeting in diseases marked by chronic inflammation and/or fibrosis with a focus on those with the largest unmet medical need.
Collapse
|