1
|
Singer M, Husseiny MI. Immunological Considerations for the Development of an Effective Herpes Vaccine. Microorganisms 2024; 12:1846. [PMID: 39338520 PMCID: PMC11434158 DOI: 10.3390/microorganisms12091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Research is underway to develop a vaccine to prevent and cure infection from herpes simplex virus (HSV). It emphasizes the critical need for immunization to address public health issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine advance the field of immunology and vaccine creation, which may help in the battle against other viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to provide protection against subsequent HSV reinfection and reactivation without correlating with other immune subsets. For that reason, there is no effective vaccine that can provide protection against latent or recurrent herpes infection. This review focuses on conventional methods for evaluating the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune aspects for designing an effective vaccine against herpes.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Chaudhuri D, Datta J, Majumder S, Giri K. Peptide based vaccine designing against endemic causing mammarenavirus using reverse vaccinology approach. Arch Microbiol 2024; 206:217. [PMID: 38619666 DOI: 10.1007/s00203-024-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Chaudhuri D, Majumder S, Giri K. Repurposing of drugs targeting heparan sulphate binding site of dengue virus envelope protein: an in silico competitive binding study. Mol Divers 2024:10.1007/s11030-024-10834-8. [PMID: 38570391 DOI: 10.1007/s11030-024-10834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Dengue virus, an arbovirus, leads to millions of infections every year ultimately leading to a high rate of mortality. Highly effective and specific therapeutic option is not available till date to combat viral infection. One of the first stages in the virus lifecycle encompasses the viral entry into the host cell which is mediated by the interaction between heparan sulphate and the Dengue virus envelope protein in turn leading to the interaction between the envelope protein receptor binding domain and host cell receptors. The heparan sulphate binding site on the envelope protein was established using literature survey and the result validated using ColDock simulations. We have performed virtual screening against the heparan sulphate binding site using DrugBank database and short-listed probable inhibitors based on binding energy calculation following Molecular Dynamics (MD) simulations in this study. Two compounds (PubChem IDS 448062 and 656615) were selected for further analyses on which RAMD simulations were performed to quantitate the binding stability of both the molecules in the protein binding pocket which ultimately led to the selection of ZK-806450 molecule as the final selected compound. Competitive binding MD simulation against dengue virus envelope protein was performed for this molecule and heparan sulphate in order to ascertain the efficiency of binding of this molecule to the dengue virus envelope protein in the presence of its natural ligand molecule and found that this molecule has a higher affinity for the dengue virus envelope protein GAG binding site than heparan sulphate. This study may help in the use of this inhibitor molecule to combat dengue virus infection in foreseeable future and open a new avenue for drug repurposing methodology using competitive binding MD simulation.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
4
|
Mai H, Li J, Luo Y, Ou J, Chen G, Ye L. Anti-Herpes Simplex Virus Type 1 Activity Evaluation of Natural Derived Phloroglucinol Derivatives and Their Molecular Mechanisms Study. Chem Biodivers 2023; 20:e202301111. [PMID: 38009609 DOI: 10.1002/cbdv.202301111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
HSV-1 is a common infection that can cause cold sores. In this study, the anti-HSV-1 virus activity of three series compounds A1-A9, B1-B12, C1-C22 was screened by MTT assay, qRT-PCR assay, Western blot assay and viruses' plaque assays. The results of MTT assay disclosed that phloroglucinol derivatives C2 and C3 effectively inhibited the death of HSV-1 infected vero cells with the CC50 values of C2 and C3 were 72.64 μmol/L and 32.62 μmol/L in HaCaT cells, 137.6 μmol/L and 48.55 μmol/L in Hela cells. The IC50 values of C3 in vero cells and Hela cells were 19.26 μmol/L and 22.98 μmol/L, respectively. In the qRT-PCR experiments, it showed that C2 and C3 effectively reduced the synthesis of HSV-1 early viral gene VP16 and late viral gene gD. The Western blot results showed that both C2 and C3 inhibited the expression of HSV-1 gD protein in a concentration-dependent manner. Lastly, viruses' plaque assay results showed that C2 and C3 inhibited the production of HSV-1 progeny virus in Hela cells and HaCaT cells in a concentration-dependent manner. Taken together, these results suggest that C2 and C3 are promising candidate that warrants further attention in the development of anti-HSV-1 drugs.
Collapse
Affiliation(s)
- Haiyan Mai
- The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, P. R. China
| | - Junjian Li
- Zhaoqing Hospital, The Third Affiliated Hospital of Sun Yat-sen University, No.1 Yanyang Road, Dinghu District, Zhaoqing, P. R. China
| | - Yuyan Luo
- The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, P. R. China
| | - Jiayi Ou
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| |
Collapse
|
5
|
Ali SL, Ali A, Alamri A, Baiduissenova A, Dusmagambetov M, Abduldayeva A. Genomic annotation for vaccine target identification and immunoinformatics-guided multi-epitope-based vaccine design against Songling virus through screening its whole genome encoded proteins. Front Immunol 2023; 14:1284366. [PMID: 38090579 PMCID: PMC10715409 DOI: 10.3389/fimmu.2023.1284366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Songling virus (SGLV), a newly discovered tick-borne orthonairovirus, was recently identified in human spleen tissue. It exhibits cytopathic effects in human hepatoma cells and is associated with clinical symptoms including headache, fever, depression, fatigue, and dizziness, but no treatments or vaccines exist for this pathogenic virus. In the current study, immunoinformatics techniques were employed to identify potential vaccine targets within SGLV by comprehensively analyzing SGLV proteins. Four proteins were chosen based on specific thresholds to identify B-cell and T-cell epitopes, validated through IFN-γ epitopes. Six overlap MHC-I, MHC-II, and B cell epitopes were chosen to design a comprehensive vaccine candidate, ensuring 100% global coverage. These structures were paired with different adjuvants for broader protection against international strains. Vaccine constructions' 3D models were high-quality and validated by structural analysis. After molecular docking, SGLV-V4 was selected for further research due to its lowest binding energy (-66.26 kcal/mol) and its suitable immunological and physiochemical properties. The vaccine gene is expressed significantly in E. coli bacteria through in silico cloning. Immunological research and MD simulations supported its molecular stability and robust immune response within the host cell. These findings can potentially be used in designing safer and more effective experimental SGLV-V4 vaccines.
Collapse
Affiliation(s)
- S. Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aliya Baiduissenova
- Department of Microbiology and Virology, Astana Medical University, Astana, Kazakhstan
| | - Marat Dusmagambetov
- Department of Microbiology and Virology, Astana Medical University, Astana, Kazakhstan
| | | |
Collapse
|
6
|
Kakakhel S, Ahmad A, Mahdi WA, Alshehri S, Aiman S, Begum S, Shams S, Kamal M, Imran M, Shakeel F, Khan A. Annotation of Potential Vaccine Targets and Designing of mRNA-Based Multi-Epitope Vaccine against Lumpy Skin Disease Virus via Reverse Vaccinology and Agent-Based Modeling. Bioengineering (Basel) 2023; 10:bioengineering10040430. [PMID: 37106617 PMCID: PMC10135540 DOI: 10.3390/bioengineering10040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Lumpy skin disease is a fatal emerging disease of cattle, which has started to gain extensive attention due to its rapid incursions across the globe. The disease epidemic causes economic loss and cattle morbidity. Currently, there are no specific treatments and safe vaccines against the lumpy skin disease virus (LSDV) to halt the spread of the disease. The current study uses genome-scan vaccinomics analyses to prioritize promiscuous vaccine candidate proteins of the LSDV. These proteins were subjected to top-ranked B- and T-cell epitope prediction based on their antigenicity, allergenicity, and toxicity values. The shortlisted epitopes were connected using appropriate linkers and adjuvant sequences to design multi-epitope vaccine constructs. Three vaccine constructs were prioritized based on their immunological and physicochemical properties. The model constructs were back-translated to nucleotide sequences and codons were optimized. The Kozak sequence with a start codon along with MITD, tPA, Goblin 5′, 3′ UTRs, and a poly(A) tail sequences were added to design a stable and highly immunogenic mRNA vaccine. Molecular docking followed by MD simulation analysis predicted significant binding affinity and stability of LSDV-V2 construct within bovine immune receptors and predicted it to be the top-ranked candidate to stimulate the humeral and cellular immunogenic responses. Furthermore, in silico restriction cloning predicted feasible gene expression of the LSDV-V2 construct in a bacterial expression vector. It could prove worthwhile to validate the predicted vaccine models experimentally and clinically against LSDV.
Collapse
Affiliation(s)
- Sehrish Kakakhel
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Sara Aiman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Sara Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
- Correspondence:
| |
Collapse
|
7
|
Malik S, Sah R, Ahsan O, Muhammad K, Waheed Y. Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines (Basel) 2023; 11:325. [PMID: 36851203 PMCID: PMC9959597 DOI: 10.3390/vaccines11020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) is a great concern of the global health community due to its linked infection of inconspicuous nature and resultant serious medical consequences. Seropositive patients may develop ocular disease or genital herpes as characteristic infectious outcomes. Moreover, the infectious nature of HSV is so complex that the available therapeutic options have been modified in certain ways to cure it. However, no permanent and highly effective cure has been discovered. This review generates insights into the available prophylactic and therapeutic interventions against HSV. A methodological research approach is used for study design and data complication. Only the latest data from publications are acquired to shed light on updated therapeutic approaches. These studies indicate that the current antiviral therapeutics can suppress the symptoms and control viral transmission up to a certain level, but cannot eradicate the natural HSV infection and latency outcomes. Most trials that have entered the clinical phase are made part of this review to understand what is new within the field. Some vaccination approaches are also discussed. Moreover, some novel therapeutic options that are currently in research annals are given due consideration for future development. The data can enable the scientific community to direct their efforts to fill the gaps that remain unfilled in terms of therapies for HSV. The need is to integrate scientific efforts to produce a proper cure against HSV to control the virus spread, resistance, and mutation in future disease management.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Omar Ahsan
- Department of Medicine, School of Health Sciences, Foundation University Islamabad, DHA Phase I, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
8
|
Aiman S, Alhamhoom Y, Ali F, Rahman N, Rastrelli L, Khan A, Farooq QUA, Ahmed A, Khan A, Li C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques- a bioinformatics and immunoinformatics approach. Front Immunol 2022; 13:985450. [PMID: 36091024 PMCID: PMC9452969 DOI: 10.3389/fimmu.2022.985450] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022] Open
Abstract
The emerging monkeypox virus (MPXV) is a zoonotic orthopoxvirus that causes infections in humans similar to smallpox. Since May 2022, cases of monkeypox (MPX) have been increasingly reported by the World Health Organization (WHO) worldwide. Currently, there are no clinically validated treatments for MPX infections. In this study, an immunoinformatics approach was used to identify potential vaccine targets against MPXV. A total of 190 MPXV-2022 proteins were retrieved from the ViPR database and subjected to various analyses including antigenicity, allergenicity, toxicity, solubility, IFN-γ, and virulence. Three outer membrane and extracellular proteins were selected based on their respective parameters to predict B-cell and T-cell epitopes. The epitopes are conserved among different strains of MPXV and the population coverage is 100% worldwide, which will provide broader protection against various strains of the virus globally. Nine overlapping MHC-I, MHC-II, and B-cell epitopes were selected to design multi-epitope vaccine constructs linked with suitable linkers in combination with different adjuvants to enhance the immune responses of the vaccine constructs. Molecular modeling and structural validation ensured high-quality 3D structures of vaccine constructs. Based on various immunological and physiochemical properties and docking scores, MPXV-V2 was selected for further investigation. In silico cloning revealed a high level of gene expression for the MPXV-V2 vaccine within the bacterial expression system. Immune and MD simulations confirmed the molecular stability of the MPXV-V2 construct, with high immune responses within the host cell. These results may aid in the development of experimental vaccines against MPXV with increased potency and improved safety.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fawad Ali
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
- *Correspondence: Noor Rahman, ; Chunhua Li,
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Qurat ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Abbas Ahmed
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asif Khan
- Education department, Qurtaba University of Science and Information Technology (QUSIT) Peshawar, Peshawar, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- *Correspondence: Noor Rahman, ; Chunhua Li,
| |
Collapse
|
9
|
Mehmood A, Nawab S, Wang Y, Chandra Kaushik A, Wei DQ. Discovering potent inhibitors against the Mpro of the SARS-CoV-2. A medicinal chemistry approach. Comput Biol Med 2022; 143:105235. [PMID: 35123137 PMCID: PMC8789387 DOI: 10.1016/j.compbiomed.2022.105235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The global pandemic caused by a single-stranded RNA (ssRNA) virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still at its peak, with new cases being reported daily. Although the vaccines have been administered on a massive scale, the frequent mutations in the viral gene and resilience of the future strains could be more problematic. Therefore, new compounds are always needed to be available for therapeutic approaches. We carried out the present study to discover potential drug compounds against the SARS-CoV-2 main protease (Mpro). A total of 16,000 drug-like small molecules from the ChemBridge database were virtually screened to obtain the top hits. As a result, 1032 hits were selected based on their docking scores. Next, these structures were prepared for molecular docking, and each small molecule was docked into the active site of the Mpro. Only compounds with solid interactions with the active site residues and the highest docking score were subjected to molecular dynamics (MD) simulation. The post-simulation analyses were carried out using the in-built GROMACS tools to gauge the stability, flexibility, and compactness. Principal component analysis (PCA) and hydrogen bonding were also calculated to observe trends and affinity of the drugs towards the target. Among the five top compounds, C1, C3, and C6 revealed strong interaction with the target's active site and remained highly stable throughout the simulation. We believe the predicted compounds in this study could be potential inhibitors in the natural system and can be utilized in designing therapeutic strategies against the SARS-CoV-2.
Collapse
Affiliation(s)
- Aamir Mehmood
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, China
| | - Sadia Nawab
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody , School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Aman Chandra Kaushik
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
10
|
Ismail S, Abbasi SW, Yousaf M, Ahmad S, Muhammad K, Waheed Y. Design of a Multi-Epitopes Vaccine against Hantaviruses: An Immunoinformatics and Molecular Modelling Approach. Vaccines (Basel) 2022; 10:vaccines10030378. [PMID: 35335010 PMCID: PMC8953224 DOI: 10.3390/vaccines10030378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a multi-epitope-based vaccine against hantavirus. A set of 340 experimentally reported epitopes were retrieved from Virus Pathogen Database and Analysis Resource (ViPR) and subjected to different analyses such as antigenicity, allergenicity, solubility, IFN gamma, toxicity, and virulent checks. Finally, 10 epitopes which cleared all the filters used were linked with each other through specific GPGPG linkers to construct a multi-antigenic epitope vaccine. The designed vaccine was then joined to three different adjuvants-TLR4-agonist adjuvant, β-defensin, and 50S ribosomal protein L7/L12-using an EAAAK linker to boost up immune-stimulating responses and check the potency of vaccine with each adjuvant. The designed vaccine structures were modelled and subjected to error refinement and disulphide engineering to enhance their stability. To understand the vaccine binding affinity with immune cell receptors, molecular docking was performed between the designed vaccines and TLR4; the docked complex with a low level of global energy was then subjected to molecular dynamics simulations to validate the docking results and dynamic behaviour. The docking binding energy of vaccines with TLR4 is -29.63 kcal/mol (TLR4-agonist), -3.41 kcal/mol (β-defensin), and -11.03 kcal/mol (50S ribosomal protein L7/L12). The systems dynamics revealed all three systems to be highly stable with a root-mean-square deviation (RMSD) value within 3 Å. To test docking predictions and determine dominant interaction energies, binding free energies of vaccine(s)-TLR4 complexes were calculated. The net binding energy of the systems was as follows: TLR4-agonist vaccine with TLR4 (MM-GBSA, -1628.47 kcal/mol and MM-PBSA, -37.75 kcal/mol); 50S ribosomal protein L7/L12 vaccine with TLR4 complex (MM-GBSA, -194.62 kcal/mol and MM-PBSA, -150.67 kcal/mol); β-defensin vaccine with TLR4 complex (MM-GBSA, -9.80 kcal/mol and MM-PBSA, -42.34 kcal/mol). Finally, these findings may aid experimental vaccinologists in developing a very potent hantavirus vaccine.
Collapse
Affiliation(s)
- Saba Ismail
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, The Mall, Rawalpindi 46000, Pakistan;
| | - Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (K.M.); (Y.W.)
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
- Correspondence: (K.M.); (Y.W.)
| |
Collapse
|
11
|
Rostaminia S, Aghaei SS, Farahmand B, Nazari R, Ghaemi A. Computational Design and Analysis of a Multi-epitope Against Influenza A virus. Int J Pept Res Ther 2021; 27:2625-2638. [PMID: 34539293 PMCID: PMC8435298 DOI: 10.1007/s10989-021-10278-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
Influenza A viruses are among the most studied viruses, however no effective prevention against influenza infection has been developed. So, designing an effective vaccine against Influenza A virus is a critical issue in the field of medical biotechnology. For this reason, to combat this disease, we have designed a novel multi-epitope vaccine candidate based on the several conserved and potential linear B-cell and T-cell binding epitopes by using the in silico approach. This vaccine consists of an ER signal conserved sequence, the PADRE conserved epitope and two conserved epitopes of Influenza matrix protein 2. T-cell binding epitopes from Matrix protein 2 were predicted by in silico tools of epitope prediction. The selected epitopes were joined by flexible linkers and physicochemical properties, toxicity, and allergenecity were investigated. The designed vaccine was antigenic, immunogenic, and non-allergenic with suitable physicochemical properties and has higher solubility. The final multi-epitope construct was modeled, confirmed by different programs and the molecular interactions with immune receptors were considered. The molecular docking assay indicated the interactions with immune-stimulatory toll-like receptor 3 (TLR3) and major histocompatibility complex class I (MHCI). The HADDOCK and H DOCK servers were used to make docking analysis, respectively. The docking analysis indicated a strong and stable binding interaction between the vaccine construct with major histocompatibility complex (MHC) class I and toll-like receptor 3. Overall, the findings suggest that the current vaccine may be a promising vaccine to prevent Influenza infection.
Collapse
Affiliation(s)
- Samaneh Rostaminia
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, P.O.Box: 1316943551, Tehran, Iran
| | - Raziye Nazari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, P.O.Box: 1316943551, Tehran, Iran
| |
Collapse
|
12
|
Olotu FA, Soliman MES. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein-Barr virus. Biomed J 2021; 44:317-337. [PMID: 34154948 PMCID: PMC8358216 DOI: 10.1016/j.bj.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ongoing search for viable treatment options to curtail Epstein Barr Virus (EBV) pathogenicity has necessitated a paradigmatic shift towards the design of peptide-based vaccines. Potential B-cell and T-cell epitopes were predicted for nine antigenic EBV proteins that mediate epithelial cell-attachment and spread, capsid self-assembly, DNA replication and processivity. METHODS Predictive algorithms incorporated in the Immune Epitope Database (IEDB) resources were used to determine potential B-cell epitopes based on their physicochemical attributes. These were combined with a string-kernel method and an antigenicity predictive AlgPred tool to enhance accuracy in the end-point selection of highly potential antigenic EBV B-cell epitopes. NetCTL 1.2 algorithms enabled the prediction of probable T-cell epitopes which were structurally modeled and subjected to blind peptide-protein docking with HLA-A*02:01. All-atom molecular dynamics (MD) simulation and Molecular Mechanics Generalized-Born Surface Area methods were used to investigate interaction dynamics and affinities of predicted T-cell peptide-protein complexes. RESULTS Computational predictions and sequence overlapping analysis yielded 18 linear (continuous) and discontinuous (conformational) subunit epitopes from the antigenic proteins with characteristic surface accessibility, flexibility and antigenicity, and predictive scores above the threshold value (1) set. A novel site was identified on HLA-A*02:01 with preferential affinity binding for modeled BMRF2, BXLF1 and BGLF4 T-cell epitopes. Interaction dynamics and energies were also computed in addition to crucial residues that mediated complex formation and stability. CONCLUSION This study implemented an integrative meta-analytical approach to model highly probable B-cell and T-cell epitopes as potential peptide-vaccine candidates for the treatment of EBV-related diseases.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
13
|
Mehmood A, Kaushik AC, Wang Q, Li CD, Wei DQ. Bringing Structural Implications and Deep Learning-Based Drug Identification for KRAS Mutants. J Chem Inf Model 2021; 61:571-586. [PMID: 33513018 DOI: 10.1021/acs.jcim.0c00488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Colorectal cancer is considered one of the leading causes of death that is linked with the Kirsten Rat Sarcoma (KRAS) harboring codons 13 and 61 mutations. The objective for this study is to search for clinically important codon 61 mutations and analyze how they affect the protein structural dynamics. Additionally, a deep-learning approach is used to carry out a similarity search for potential compounds that might have a comparatively better affinity. Public databases like The Cancer Genome Atlas and Genomic Data Commons were accessed for obtaining the data regarding mutations that are associated with colon cancer. Multiple analysis such as genomic alteration landscape, survival analysis, and systems biology-based kinetic simulations were carried out to predict dynamic changes for the selected mutations. Additionally, a molecular dynamics simulation of 100 ns for all the seven shortlisted codon 61 mutations have been conducted, which revealed noticeable deviations. Finally, the deep learning-based predicted compounds were docked with the KRAS 3D conformer, showing better affinity and good docking scores as compared to the already existing drugs. Taking together the outcomes of systems biology and molecular dynamics, it is observed that the reported mutations in the SII region are highly detrimental as they have an immense impact on the protein sensitive sites' native conformation and overall stability. The drugs reported in this study show increased performance and are encouraged to be used for further evaluation regarding the situation that ascends as a result of KRAS mutations.
Collapse
Affiliation(s)
- Aamir Mehmood
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Li Lake Avenue, Wuxi, Jiangsu 214122, China
| | - Qiankun Wang
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Cheng-Dong Li
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
14
|
Kaushik AC, Mehmood A, Dai X, Wei DQ. A comparative chemogenic analysis for predicting Drug-Target Pair via Machine Learning Approaches. Sci Rep 2020; 10:6870. [PMID: 32322011 PMCID: PMC7176722 DOI: 10.1038/s41598-020-63842-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
A computational technique for predicting the DTIs has now turned out to be an indispensable job during the process of drug finding. It tapers the exploration room for interactions by propounding possible interaction contenders for authentication through experiments of wet-lab which are known for their expensiveness and time consumption. Chemogenomics, an emerging research area focused on the systematic examination of the biological impact of a broad series of minute molecular-weighting ligands on a broad raiment of macromolecular target spots. Additionally, with the advancement in time, the complexity of the algorithms is increasing which may result in the entry of big data technologies like Spark in this field soon. In the presented work, we intend to offer an inclusive idea and realistic evaluation of the computational Drug Target Interaction projection approaches, to perform as a guide and reference for researchers who are carrying out work in a similar direction. Precisely, we first explain the data utilized in computational Drug Target Interaction prediction attempts like this. We then sort and explain the best and most modern techniques for the prediction of DTIs. Then, a realistic assessment is executed to show the projection performance of several illustrative approaches in various situations. Ultimately, we underline possible opportunities for additional improvement of Drug Target Interaction projection enactment and also linked study objectives.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
15
|
Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles' heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med 2020; 121:103749. [PMID: 32568687 PMCID: PMC7151553 DOI: 10.1016/j.compbiomed.2020.103749] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
This paper continues a recent study of the spike protein sequence of the COVID-19 virus (SARS-CoV-2). It is also in part an introductory review to relevant computational techniques for tackling viral threats, using COVID-19 as an example. Q-UEL tools for facilitating access to knowledge and bioinformatics tools were again used for efficiency, but the focus in this paper is even more on the virus. Subsequence KRSFIEDLLFNKV of the S2′ spike glycoprotein proteolytic cleavage site continues to appear important. Here it is shown to be recognizable in the common cold coronaviruses, avian coronaviruses and possibly as traces in the nidoviruses of reptiles and fish. Its function or functions thus seem important to the coronaviruses. It might represent SARS-CoV-2 Achilles’ heel, less likely to acquire resistance by mutation, as has happened in some early SARS vaccine studies discussed in the previous paper. Preliminary conformational analysis of the receptor (ACE2) binding site of the spike protein is carried out suggesting that while it is somewhat conserved, it appears to be more variable than KRSFIEDLLFNKV. However compounds like emodin that inhibit SARS entry, apparently by binding ACE2, might also have functions at several different human protein binding sites. The enzyme 11β-hydroxysteroid dehydrogenase type 1 is again argued to be a convenient model pharmacophore perhaps representing an ensemble of targets, and it is noted that it occurs both in lung and alimentary tract. Perhaps it benefits the virus to block an inflammatory response by inhibiting the dehydrogenase, but a fairly complex web involves several possible targets. This paper “drills down” into the studies of the author's previous COVID-19 paper. Designing vaccine and drugs must seek to avoid escape mutations. Subsequence KRSFIEDLLFNKV seems recognizable across many coronaviruses. The ACE2 binding domain is a target, but shows variation. A steroid dehydrogenase is argued to remain an interesting model pharmacophore.
Collapse
Affiliation(s)
- B Robson
- Ingine Inc. Cleveland Ohio USA, The Dirac Foundation, Oxfordshire, UK.
| |
Collapse
|
16
|
Khan MT, Ali S, Zeb MT, Kaushik AC, Malik SI, Wei DQ. Gibbs Free Energy Calculation of Mutation in PncA and RpsA Associated With Pyrazinamide Resistance. Front Mol Biosci 2020; 7:52. [PMID: 32328498 PMCID: PMC7160322 DOI: 10.3389/fmolb.2020.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
A central approach for better understanding the forces involved in maintaining protein structures is to investigate the protein folding and thermodynamic properties. The effect of the folding process is often disturbed in mutated states. To explore the dynamic properties behind mutations, molecular dynamic (MD) simulations have been widely performed, especially in unveiling the mechanism of drug failure behind mutation. When comparing wild type (WT) and mutants (MTs), the structural changes along with solvation free energy (SFE), and Gibbs free energy (GFE) are calculated after the MD simulation, to measure the effect of mutations on protein structure. Pyrazinamide (PZA) is one of the first-line drugs, effective against latent Mycobacterium tuberculosis isolates, affecting the global TB control program 2030. Resistance to this drug emerges due to mutations in pncA and rpsA genes, encoding pyrazinamidase (PZase) and ribosomal protein S1 (RpsA) respectively. The question of how the GFE may be a measure of PZase and RpsA stabilities, has been addressed in the current review. The GFE and SFE of MTs have been compared with WT, which were already found to be PZA-resistant. WT structures attained a more stable state in comparison with MTs. The physiological effect of a mutation in PZase and RpsA may be due to the difference in energies. This difference between WT and MTs, depicted through GFE plots, might be useful in predicting the stability and PZA-resistance behind mutation. This study provides useful information for better management of drug resistance, to control the global TB problem.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | | | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
17
|
Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med 2020; 119:103670. [PMID: 32209231 PMCID: PMC7094376 DOI: 10.1016/j.compbiomed.2020.103670] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
This paper concerns study of the genome of the Wuhan Seafood Market isolate believed to represent the causative agent of the disease COVID-19. This is to find a short section or sections of viral protein sequence suitable for preliminary design proposal for a peptide synthetic vaccine and a peptidomimetic therapeutic, and to explore some design possibilities. The project was originally directed towards a use case for the Q-UEL language and its implementation in a knowledge management and automated inference system for medicine called the BioIngine, but focus here remains mostly on the virus itself. However, using Q-UEL systems to access relevant and emerging literature, and to interact with standard publically available bioinformatics tools on the Internet, did help quickly identify sequences of amino acids that are well conserved across many coronaviruses including 2019-nCoV. KRSFIEDLLFNKV was found to be particularly well conserved in this study and corresponds to the region around one of the known cleavage sites of the SARS virus that are believed to be required for virus activation for cell entry. This sequence motif and surrounding variations formed the basis for proposing a specific synthetic vaccine epitope and peptidomimetic agent. The work can, nonetheless, be described in traditional bioinformatics terms, and readily reproduced by others, albeit with the caveat that new data and research into 2019-nCoV is emerging and evolving at an explosive pace. Preliminary studies using molecular modeling and docking, and in that context the potential value of certain known herbal extracts, are also described. Bioinformatics studies are carried out on the COVID-19 virus. A sequence motif KRSFIEDLLFNKV is of particular interest. Based on the above, synthetic peptides are designed. Preliminary considerations are also given to non-peptide organic molecules.
Collapse
Affiliation(s)
- B Robson
- Ingine Inc., Cleveland, Ohio, USA; The Dirac Foundation, Oxfordshire, UK.
| |
Collapse
|
18
|
Kaushik AC, Mehmood A, Dai X, Wei DQ. Pan-Cancer Analysis and Drug Formulation for GPR139 and GPR142. Front Pharmacol 2020; 11:521245. [PMID: 33679382 PMCID: PMC7933564 DOI: 10.3389/fphar.2020.521245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 11/23/2020] [Indexed: 02/03/2023] Open
Abstract
GPR (G protein receptor) 139 and 142 are novel foundling GPCRs (G protein-coupled receptors) in the class "A" of the GPCRs family and are suitable targets for various biological conditions. To engage these targets, validated pharmacophores and 3D QSAR (Quantitative structure-activity relationship) models are widely used because of their direct fingerprinting capability of the target and an overall accuracy. The current work initially analyzes GPR139 and GPR142 for its genomic alteration via tumor samples. Next to that, the pharmacophore is developed to scan the 3D database for such compounds that can lead to potential agonists. As a result, several compounds have been considered, showing satisfactory performance and a strong association with the target. Additionally, it is gripping to know that the obtained compounds were observed to be responsible for triggering pan-cancer. This suggests the possible role of novel GPR139 and GPR142 as the substances for initiating a physiological response to handle the condition incurred as a result of cancer.
Collapse
Affiliation(s)
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I, Guangdong, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Xiaofeng Dai, Dong-Qing Wei,
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I, Guangdong, China
- *Correspondence: Xiaofeng Dai, Dong-Qing Wei,
| |
Collapse
|
19
|
Li M, Liao Z, Xu Z, Zou X, Wang Y, Peng H, Li Y, Ou X, Deng Y, Guo Y, Gan W, Peng T, Chen D, Cai M. The Interaction Mechanism Between Herpes Simplex Virus 1 Glycoprotein D and Host Antiviral Protein Viperin. Front Immunol 2019; 10:2810. [PMID: 31921110 PMCID: PMC6917645 DOI: 10.3389/fimmu.2019.02810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Viperin is an interferon-inducible protein that responsible for a variety of antiviral responses to different viruses. Our previous study has shown that the ribonuclease UL41 of herpes simplex virus 1 (HSV-1) can degrade the mRNA of viperin to promote HSV-1 replication. However, it is not clear whether other HSV-1 encoded proteins can regulate the function of viperin. Here, one novel viperin associated protein, glycoprotein D (gD), was identified. To verify the interaction between gD and viperin, gD and viperin expression plasmids were firstly co-transfected into COS-7 cells, and fluorescence microscope showed they co-localized at the perinuclear region, then this potential interaction was confirmed by co-immunoprecipitation (Co-IP) assays. Moreover, confocal microscopy demonstrated that gD and viperin co-localized at the Golgi body and lipid droplets. Furthermore, dual-luciferase reporter and Co-IP assays showed gD and viperin interaction leaded to the increase of IRF7-mediated IFN-β expression through promoting viperin and IRAK1 interaction and facilitating K63-linked IRAK1 polyubiquitination. Nevertheless, gD inhibited TRAF6-induced NF-κB activity by decreasing the interaction of viperin and TRAF6. In addition, gD restrained viperin-mediated interaction between IRAK1 and TRAF6. Eventually, gD and viperin interaction was corroborated to significantly inhibit the proliferation of HSV-1. Taken together, this study would open up new avenues toward delineating the function and physiological significance of gD and viperin during HSV-1 replication cycle.
Collapse
Affiliation(s)
- Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zongmin Liao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,Department of Scientific Research and Education, Yuebei People's Hospital, Shaoguan, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hao Peng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Weidong Gan
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou, China
| | - Daixiong Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Mehmood A, Khan MT, Kaushik AC, Khan AS, Irfan M, Wei DQ. Structural Dynamics Behind Clinical Mutants of PncA-Asp12Ala, Pro54Leu, and His57Pro of Mycobacterium tuberculosis Associated With Pyrazinamide Resistance. Front Bioeng Biotechnol 2019; 7:404. [PMID: 31921809 PMCID: PMC6914729 DOI: 10.3389/fbioe.2019.00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 11/15/2022] Open
Abstract
Pyrazinamide (PZA) is one of the main FDA approved drugs to be used as the first line of defense against Mycobacterium Tuberculosis (MTB). It is activated into pyrazinoic acid (POA) via MTB's pncA gene-encoded pyrazinamidase (PZase). Mutations are most commonly responsible for PZA-resistance in nearly 70% of the resistant samples. In the present work, MTB positive samples were chosen for PZA drug susceptibility testing (DST) against critical concentration (100 ug/ml) of PZA. The resistant samples were subjected to pncA sequencing. As a result, 36 various mutations have been observed in the PZA resistant samples, uploaded to the NCBI (GeneBank accession no. MH461111). Here we report the mechanism of PZA resistance behind the three mutants (MTs), Asp12Ala, Pro54Leu, and His57Pro in comparison with the wild type (WT) through molecular dynamics simulation to unveil how these mutations affect the overall conformational stability. The post-simulation analyses revealed notable deviations as compared to the WT structure. Molecular docking studies of PZA with MTs and WT, pocket volume inspection and overall shape complementarity analysis confirmed the deleterious nature of these mutations and gave an insight into the mechanism behind PZA-resistance. These analyses provide vital information regarding MTB drug resistance and could be extremely useful in therapy management and overcoming its global burden.
Collapse
Affiliation(s)
- Aamir Mehmood
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Irfan
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Dong-Qing Wei
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
CytoMegaloVirus Infection Database: A Public Omics Database for Systematic and Comparable Information of CMV. Interdiscip Sci 2019; 12:169-177. [PMID: 31813095 DOI: 10.1007/s12539-019-00350-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
CytoMegaloVirus (CMV) is known to cause infection in humans and may remain dormant throughout the life span of an individual. CMV infection has been reported to be fatal in patients with weak immunity. It is transmitted through blood, saliva, urine, semen and breast milk. Although medications are available to treat the infected patients, there is no cure for CMV. This concern prompted us to construct a comprehensive database having exhaustive information regarding CMV, its infections and therapies to be available on a single platform. Thus, we propose a newly designed database that includes all the information from various public resources such as biological databases, virus taxonomy databanks, viral databases, and drug bank, integrated into this database, named as cytomegalovirus database (CMVdb). It features all the relevant data regarding the strains of CMV, genes, expressed proteins, the genomic sequence of CMV and drugs used in the treatment of cytomegalovirus infection. CMVdb has a unique feature of in-house data analysis, so all the data obtained from various resources are processed within the system. The user interface is more responsive because of the integrated platform that will highly facilitate the researchers. Based on CMVdb functionality and quality of the data, it will accelerate the research and development in the field of infectious diseases and immunology with a special focus on CMV. The obtained data would be useful in designing better therapeutic strategies and agents for the treatment of CMV infections. The proposed database (CMVdb) is freely accessible at http://shaktisahislab.com/include/CMV/ or http://weislab.com/WeiDOCK/include/content/CMV/.
Collapse
|