1
|
Gao C, Hu W, Xu F, Lin Y, Chen J, Shi D, Xing P, Zhu J, Li X. Allosteric inhibition of PTP1B by bromocatechol-chalcone derivatives. Eur J Med Chem 2025; 282:117053. [PMID: 39561499 DOI: 10.1016/j.ejmech.2024.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Development of allosteric inhibitors may be a viable strategy to discover hypoglycemic drugs targeting PTP1B. Allosteric inhibitors occupying the BB site that is a hydrophobic pocket restrict the WPD loop in an open conformation, preventing the physiological dephosphorylation reaction. Toward the BB site, sixty bromocatechol-chalcone derivatives were designed and synthesized as allosteric inhibitors of PTP1B against diabetes mellitus. The most potent compound LXQ-87 (C8) inhibited PTP1B noncompetitively with an IC50 value of 1.061 ± 0.202 μM. Oral administration of LXQ-87 reduces the fasting blood glucose level and improves glucose tolerance and dyslipidemia in BKS db/db mice suffering from T2DM. LXQ-87 alleviates insulin resistance and promotes cellular glucose uptake by directly binding to intracellular PTP1B.
Collapse
Affiliation(s)
- Chenxia Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Wenpeng Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Feng Xu
- The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, PR China
| | - Yuxi Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, PR China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Jiqiang Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China; Shandong Linghai Biotechnology Co., Ltd, Jinan, 250299, Shandong, PR China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
2
|
Zhang X, Xu R, Wang T, Li J, Sun Y, Cui S, Xing Z, Lyu X, Yang G, Jiao L, Li W. PTP1B Modulates Carotid Plaque Vulnerability in Atherosclerosis Through Rab5-PDGFRβ-Mediated Endocytosis Disruption and Apoptosis. CNS Neurosci Ther 2024; 30:e70071. [PMID: 39517122 PMCID: PMC11549062 DOI: 10.1111/cns.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) is a protein tyrosine phosphatase and modulates platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) signaling in vascular smooth muscle cells (VSMCs) via endocytosis. However, the related molecular pathways that participated in the interaction of endo-lysosome and the trafficking of PDGFR are largely unknown. This study aims to determine the subcellular regulating mechanism of PTP1B to the endo-lysosome degradation of PDGFR in atherosclerotic carotid plaques, thereby offering a potential therapeutic target for the stabilization of carotid plaques. METHODS The immunohistochemical staining technique was employed to assess the expression levels of both PDGFR-β and Caspase 3 in stable and vulnerable carotid plaques. Tunnel staining was utilized to quantify the apoptosis of carotid plaques. Live-cell imaging was employed to observe endocytic motility, while cell apoptosis was evaluated through Propidium Iodide staining. In an in vivo experiment, ApoE-/- mice were administered a PTP1B inhibitor to investigate the impact of PTP1B on atherosclerosis. RESULTS The heightened expression of PDGFR-β correlates with apoptosis in patients with vulnerable carotid plaques. At the subcellular level of VSMCs, PDGFR-β plays a pivotal role in sustaining a balanced endocytosis system motility, regulated by the expression of Rab5, a key regulator of endocytic motility. And PTP1B modulates PDGFR-β signaling via Rab5-mediated endocytosis. Additionally, disrupted endocytic motility influences the interplay between endosomes and lysosomes, which is crucial for controlling PDGFR-β trafficking. Elevated PTP1B expression induces cellular apoptosis and impedes migration and proliferation of carotid VSMCs. Ultimately, mice with PTP1B deficiency exhibit a reduction in atherosclerosis. CONCLUSION Our results illustrate that PTP1B induces disruption in endocytosis and apoptosis of VSMCs through the Rab5-PDGFRβ pathway, suggesting a potential association with the heightened vulnerability of carotid plaques.
Collapse
MESH Headings
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Animals
- Apoptosis/physiology
- Humans
- Endocytosis/physiology
- Mice
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- rab5 GTP-Binding Proteins/metabolism
- rab5 GTP-Binding Proteins/genetics
- Male
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Female
- Mice, Inbred C57BL
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Middle Aged
- Aged
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Xiao Zhang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Ran Xu
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Tao Wang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Jiayao Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Yixin Sun
- First HospitalPeking UniversityBeijingChina
- Health Science CenterPeking UniversityBeijingChina
| | - Shengyan Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
| | - Zixuan Xing
- Health Science CenterXi'an Jiaotong UniversityShanxiChina
| | | | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Liqun Jiao
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- China International Neuroscience Institute (China‐INI)BeijingChina
- Department of Interventional NeuroradiologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Chen C, Xu R, Guo C, Li X, Zhao Y, Luo D. Lanostane triterpenoids from Ganoderma calidophilum exhibit potent anti-tumor activity by inhibiting PTP1B. Chem Biol Interact 2024; 403:111253. [PMID: 39341486 DOI: 10.1016/j.cbi.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
The species Ganoderma calidophilum represents a distinct variety within the genus Ganoderma and used by the indigenous Li ethnic group as a medicinal agent for the prevention and treatment of cancer. However, the precise biological activity and role of G. calidophilum in antitumor treatment remain largely unresolved. Several lanostane triterpenoids have been isolated from G. calidophilum. The enzyme activity analysis revealed that four lanostane triterpenoids exhibited PTP1B inhibition activity, with minimal inhibition towards SHP2, SHP1, PTPN5, PTPRA, STEP and TCPTP. Molecular docking analysis demonstrated that these compounds primarily bind to the substrate recognition and entry regions of PTP1B. Further analysis indicated that among them, ganoderic aldehyde A (GAA) is a selective and non-competitive PTP1B inhibitor. GAA inhibited the proliferation, colony formation and migration of C33A and MDA-MB-231 cells in a dose-dependent manner. GAA has the capacity to induce apoptosis in a cell-type-specific manner, both in a caspase-dependent and -independent manner. PTP1B siRNA significantly reduced the cytotoxic effect of GAA, while overexpression of PTP1B significantly increased cell growth after GAA treatment. These findings confirm that PTP1B is a functional target of GAA. Research into the mechanisms of action of GAA has revealed that it could inhibit the activation of AKT by inhibiting PTP1B, while simultaneously activating p38, which promotes cell death. It is possible to develop specific PTP1B inhibitors based on the lanosterol triterpene skeleton. G. calidophilum has the potential to be developed into functional foods or drugs with the aim of preventing and treating cancer.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Hebei University, 071002, Baoding, Hebei, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, 071002, Baoding, Hebei, China
| | - Ruixuan Xu
- College of Life Science, Hebei University, 071002, Baoding, Hebei, China
| | - Chenxiao Guo
- College of Life Science, Hebei University, 071002, Baoding, Hebei, China
| | - Xiangke Li
- College of Life Science, Hebei University, 071002, Baoding, Hebei, China
| | - Youxing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101, Haikou, China.
| | - Duqiang Luo
- College of Life Science, Hebei University, 071002, Baoding, Hebei, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, 071002, Baoding, China.
| |
Collapse
|
4
|
Liu N, Cui X, Guo T, Wei X, Sun Y, Liu J, Zhang Y, Ma W, Yan W, Chen L. Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner. Antioxidants (Basel) 2024; 13:1246. [PMID: 39456499 PMCID: PMC11505556 DOI: 10.3390/antiox13101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant Scutellaria baicalensis Georgi, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body Glp1r ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca2+/CaMKII-AMPK-GLUT4 signal pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Weina Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an 710061, China
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
5
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Li M, Li H, Min X, Sun J, Liang B, Xu L, Li J, Wang SH, Xu X. Identification of 1,3,4-Thiadiazolyl-Containing Thiazolidine-2,4-dione Derivatives as Novel PTP1B Inhibitors with Antidiabetic Activity. J Med Chem 2024; 67:8406-8419. [PMID: 38723203 DOI: 10.1021/acs.jmedchem.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Forty-one 1,3,4-thiadiazolyl-containing thiazolidine-2,4-dione derivatives (MY1-41) were designed and synthesized as protein tyrosine phosphatase 1B (PTP1B) inhibitors with activity against diabetes mellitus (DM). All synthesized compounds (MY1-41) presented potential PTP1B inhibitory activities, with half-maximal inhibitory concentration (IC50) values ranging from 0.41 ± 0.05 to 4.68 ± 0.61 μM, compared with that of the positive control lithocholic acid (IC50 = 9.62 ± 0.14 μM). The most potent compound, MY17 (IC50 = 0.41 ± 0.05 μM), was a reversible, noncompetitive inhibitor of PTP1B. Circular dichroism spectroscopy and molecular docking were employed to analyze the binding interaction between MY17 and PTP1B. In HepG2 cells, MY17 treatment could alleviate palmitic acid (PA)-induced insulin resistance by upregulating the expression of phosphorylated insulin receptor substrate and protein kinase B. In vivo, oral administration of MY17 could reduce the fasting blood glucose level and improve glucose tolerance and dyslipidemia in mice suffering from DM.
Collapse
Affiliation(s)
- Mengyue Li
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Huiyun Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaofeng Min
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Jinping Sun
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Bingwen Liang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
9
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|