1
|
Wang L, Yuan J, Zhao R, Wang C, Li Z. Timosaponin A-III Alleviates Asthma-Induced Airway Inflammation, Th17 Cell Differentiation, and STAT3/RORγt Pathway. Immunol Invest 2025:1-16. [PMID: 39817657 DOI: 10.1080/08820139.2025.2450239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
INTRODUCTION T helper 17 (Th17) cells have a significant effect in the pathogenesis of asthma, and signal transducer and activator of transcription 3 (STAT3) pathway activation is critical for Th17 cell differentiation. Timosaponin A-III (TA3) was reported to inhibit the STAT3 pathway. Here, we investigated whether TA3 improved asthma by inhibiting the STAT3 pathway. METHODS Ovalbumin (OVA)-induced asthma murine models were developed, and TA3 (10 or 20 mg/kg) was gavage daily during OVA challenge. Murine naïve CD4+T cells were triggered for Th17 differentiation, and TA3 (5 or 10 μM) was used to treat cells during induction of Th17 differentiation. RESULTS In vivo experiments showed that TA3 decreased airway inflammation, goblet cell and smooth muscle hyperplasia, α-smooth muscle actin and collagen deposition, Th17 differentiation, and STAT3/RORγt signaling activation in mice exposed to OVA. The inhibitory effect of TA3 on STAT3/RORγt signaling activation was also observed in in vitro experiments. Compared to positive control static (a specific inhibitor of STAT3), TA3 had a similar effect on Th17 differentiation. DISCUSSION These findings indicate that TA3 may ameliorate Th17 cell differentiation by suppressing STAT3/RORγt signaling. Our data provide evidence of the potential benefits of TA3 for the treatment of asthma.
Collapse
Affiliation(s)
- Lijie Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiabo Yuan
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruiqi Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Congyao Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhuying Li
- Department of Respiratory Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Amoddeo A. In silico assessment of CAR macrophages activity against SARS-CoV-2 infection. Heliyon 2024; 10:e39689. [PMID: 39524874 PMCID: PMC11550025 DOI: 10.1016/j.heliyon.2024.e39689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage engineering with chimeric antigen receptor is a promising technique first applied to the treatment of tumours and recently suggested as a possible immunotherapeutic route against the COVID-19 disease. Four immunotherapies based on engineered macrophages have been tested in vitro revealing promising, with one of them acting without increasing the cytokines level. We present a mathematical model aimed at the evaluation of both the SARS-CoV-2 virions dynamics and the cytokines production induced, while such newly developed constructs interact with the immune system once administered. The importance of the study lies both in monitoring the dynamics of the infection and in evaluating the cytokine production, since clinical studies show that in critical COVID-19 patients an abnormal cytokines production occurs, a concern to be accounted for in designing appropriate therapeutic strategies. The mathematical model was built in the context of the continuum approach of the mass conservation, while the numerical simulations have been performed introducing parameters deduced from the experiments, using the finite element method. The model simulations allow to analyse and to compare the immune mechanisms underlying the virus dynamics, deepening the investigation for two selected immunotherapies, suggesting that a synergistic work of involved cytokines with phagocytic activity of macrophages occurs. The best SARS-CoV-2 clearance relies not only on the phagocytic capacity of the engineered macrophages, but also on the production of T-lymphocytes, pro- and anti-inflammatory cytokines which in the two cases examined in depth can decrease by 99.7 %, 99.6 % and 69 % respectively, passing from the most effective immunotherapy to the least effective one. This study is the first mathematical model that analyses the dynamics of macrophages engineered to fight the COVID-19, and paves the way for their possible exploitation against such a challenging disease, going beyond existing models involving other immune cells.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università’Mediterranea’ di Reggio Calabria, Via R. Zehender 1, Feo di Vito, I-89122, Reggio Calabria, Italy
| |
Collapse
|
3
|
Cazzola M, Page CP, Hanania NA, Calzetta L, Matera MG, Rogliani P. Asthma and Cardiovascular Diseases: Navigating Mutual Pharmacological Interferences. Drugs 2024; 84:1251-1273. [PMID: 39327397 PMCID: PMC11512905 DOI: 10.1007/s40265-024-02086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Asthma and cardiovascular disease (CVD) often co-exist. When a patient has both conditions, management requires an approach that addresses the unique challenges of each condition separately, while also considering their potential interactions. However, specific guidance on the management of asthma in patients with CVD and on the management of CVD in patients with asthma is still lacking. Nevertheless, health care providers need to adopt a comprehensive approach that includes both respiratory and CVD health. The management of CVD in patients with asthma requires a delicate balance between controlling respiratory symptoms and minimising potential cardiovascular (CV) risks. In the absence of specific guidelines for the management of patients with both conditions, the most prudent approach would be to follow established guidelines for each condition independently. Careful selection of asthma medications is essential to avoid exacerbation of CV symptoms. In addition, optimal management of CV risk factors is essential. However, close monitoring of these patients is important as there is evidence that some asthma medications may have adverse effects on CVD and, conversely, that some CVD medications may worsen asthma symptoms. On the other hand, there is also increasing evidence of the potential beneficial effects of asthma medications on CVD and, conversely, that some CVD medications may reduce the severity of asthma symptoms. We aim to elucidate the potential risks and benefits associated with the use of asthma medications in patients with CVD, and the potential pulmonary risks and benefits for patients with asthma who are prescribed CVD medications.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
4
|
Iguchi K, Yamamoto Y, Uchiyama M, Masaoka H, Nakamura M, Shizuka H, Imazuru T, Shimokawa T. Graft protective effects and donor-specific antibody suppression by CD4 +CD25 +Foxp3 + regulatory T cell induced by HMG-CoA reductase inhibitor rosuvastatin in a murine heart transplant model. J Cardiothorac Surg 2024; 19:368. [PMID: 38918849 PMCID: PMC11197312 DOI: 10.1186/s13019-024-02888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND We previously demonstrated that the hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor (statins) play an important role in the regulation of alloimmune responses. However, little is known regarding the effects of statin on allograft protection or donor-specific antibodies (DSA). In this study, we investigated the graft-protective and immunomodulatory effects of rosuvastatin in a model of fully major histocompatibility complex-mismatched murine cardiac allograft transplantation. METHODS CBA mice underwent transplantation of C57BL/6 (B6) hearts and received 50 and 500 μg/kg/day of rosuvastatin from the day of transplantation until seven days after the completion of transplantation. To confirm the requirement for regulatory T cells (Tregs), we administered an anti-interleukin-2 receptor alpha antibody (PC-61) to rosuvastatin-treated CBA recipients. Additionally, histological and fluorescent staining, cell proliferation analysis, flow cytometry, and DSA measurements were performed. RESULTS CBA recipients with no treatment rejected B6 cardiac graft acutely (median survival time [MST], 7 days). CBA mice treated with 500 μg/kg/day of rosuvastatin prolonged allograft survival (MSTs, 77 days). Fluorescent staining studies showed that rosuvastatin-treated recipients had strong aggregation of CD4+Foxp3+ cells in the myocardium and around the coronary arteries of cardiac allografts two weeks after grafting. Flow cytometry studies performed two weeks after transplantation showed an increased number of splenic CD4+CD25+Foxp3+ T cells in rosuvastatin-treated recipients. The addition of rosuvastatin to mixed leukocyte cultures suppressed cell proliferation by increasing the number of CD4+CD25+Foxp3+ Tregs. Additionally, Tregs suppressed DSA production in rosuvastatin-treated recipients. CONCLUSION Rosuvastatin treatment may be a complementary graft-protective strategy for suppressing DSA production in the acute phase, driven by the promotion of splenic and graft-infiltrating CD4+CD25+Foxp3+ Tregs.
Collapse
Affiliation(s)
- Kazuhito Iguchi
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yasuto Yamamoto
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masateru Uchiyama
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Hisanori Masaoka
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masahiro Nakamura
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroyuki Shizuka
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomohiro Imazuru
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tomoki Shimokawa
- Department of Cardiovascular Surgery, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
5
|
Park C, Jang JH, Kim C, Lee Y, Lee E, Yang HM, Park RW, Park HS. Real-World Effectiveness of Statin Therapy in Adult Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:399-408.e6. [PMID: 37866433 DOI: 10.1016/j.jaip.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Blood lipids affect airway inflammation in asthma. Although several studies have suggested anti-inflammatory effects of statins on asthmatic airways, further studies are needed to clarify the long-term effectiveness of statins on asthma control and whether they are an effective treatment option. OBJECTIVE To evaluate the long-term effectiveness of statins in the chronic management of adult asthma in real-world practice. METHODS Electronic medical record data spanning 28 years, collected from the Ajou University Medical Center in Korea, were used to conduct a retrospective study. Clinical outcomes were compared between patients with asthma who had maintained statin use (the statin group) and those not taking statins, whose blood lipid tests were always normal (the non-statin group). We performed propensity score matching and calculated hazard ratios with 95% CIs using the Cox proportional hazards model. Severe asthma exacerbation was the primary outcome; asthma exacerbation, asthma-related hospitalization, and new-onset type 2 diabetes mellitus and hypertension were secondary outcomes. RESULTS After 1:1 propensity score matching, the statin and non-statin groups each included 545 adult patients with asthma. The risk of severe asthma exacerbations and asthma exacerbations was significantly lower in the statin group than in the non-statin group (hazard ratios [95% CI] = 0.57 [0.35-0.90] and 0.71 [0.52-0.96], respectively). There were no significant differences in the risk of asthma-related hospitalization or new-onset type 2 diabetes mellitus or hypertension between groups (0.76 [0.53-1.09], 2.33 [0.94-6.59], and 1.71 [0.95-3.17], respectively). CONCLUSION Statin use is associated with a lower risk of asthma exacerbation, with better clinical outcomes in adult asthma.
Collapse
Affiliation(s)
- ChulHyoung Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea; Office of Biostatistics, Medical Research Collaboration Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Hyoung-Mo Yang
- Department of Cardiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Wang Y, Huang T, Gu J, Lu L. Targeting the metabolism of tumor-infiltrating regulatory T cells. Trends Immunol 2023:S1471-4906(23)00109-6. [PMID: 37442660 DOI: 10.1016/j.it.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Although targeting the tumor metabolism is performed in cooperation with immunotherapy in the era of precision oncology, ignorance of immune cells' metabolism has resulted in unstable antitumor responses. Tumor-infiltrating regulatory T cells (TI-Tregs) are unique, overcoming the hypoxic, acidic, and nutrient-deficient tumor microenvironments (TMEs) and maintaining immunosuppressive functions. However, secondary autoimmunity caused by systemic Treg depletion remains the 'Sword of Damocles' for current Treg-targeted therapies. In this opinion piece, we propose that metabolically reprogrammed TI-Tregs might represent an obstacle to cancer therapies. Indeed, metabolism-based Treg-targeted therapy might provide higher selectivity for clearing TI-Tregs than traditional kinase/checkpoint inhibitors and chemokine/chemokine receptor blockade; it might also restore the efficacy of targeting the tumor metabolism and eliminate certain metabolic barriers to immunotherapy.
Collapse
Affiliation(s)
- Yiming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother 2023; 164:114959. [PMID: 37267637 DOI: 10.1016/j.biopha.2023.114959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) causes chronic respiratory inflammation in allergic individuals. Long-term exposure to particulate matter 2.5 (PM2.5; particles 2.5 µm or less in diameter) can aggravate respiratory damage. Bergapten (5-methoxysporalen) is a furocoumarin mostly found in bergamot essential oil and has significant antioxidant, anticancer, and anti-inflammatory activity. This study created a model in which CARAS was exacerbated by PM2.5 exposure, in BALB/c mice and explored the potential of bergapten as a therapeutic agent. The bergapten medication increased ovalbumin (OVA)-specific immunoglobulin (Ig) G2a level in serum and decreased OVA-specific IgE and IgG1 expression. Clinical nasal symptoms diminished significantly, with weakened inflammatory reaction in both the nasal mucosa and lungs. Furthermore, bergapten controlled the T helper (Th)1 to Th2 ratio by increasing cytokines associated with Th1-like interleukin (IL)-12 and interferon gamma and decreasing the Th2 cytokines IL-4, IL-5, and IL-13. Factors closely related to the balance between regulatory T cells and Th17 (such as IL-10, IL-17, Forkhead box protein P3, and retinoic-related orphan receptor gamma) were also regulated. Notably, pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-alpha were reduced by bergapten, which suppressed the activation of both the signal transducer and activator of transcription 3 signaling pathway and the mitogen-activated protein kinase signaling pathway. Therefore, bergapten might have potential as a therapeutic agent for CARAS.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| |
Collapse
|
9
|
Amoddeo A. A mathematical model and numerical simulation for SARS-CoV-2 dynamics. Sci Rep 2023; 13:4575. [PMID: 36941368 PMCID: PMC10027279 DOI: 10.1038/s41598-023-31733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Since its outbreak the corona virus-19 disease has been particularly aggressive for the lower respiratory tract, and lungs in particular. The dynamics of the abnormal immune response leading to lung damage with fatal outcomes is not yet fully understood. We present a mathematical model describing the dynamics of corona virus disease-19 starting from virus seeding inside the human respiratory tract, taking into account its interaction with the components of the innate immune system as classically and alternatively activated macrophages, interleukin-6 and -10. The numerical simulations have been performed for two different parameter values related to the pro-inflammatory interleukin, searching for a correlation among components dynamics during the early stage of infection, in particular pro- and anti-inflammatory polarizations of the immune response. We found that in the initial stage of infection the immune machinery is unable to stop or weaken the virus progression. Also an abnormal anti-inflammatory interleukin response is predicted, induced by the disease progression and clinically associated to tissue damages. The numerical results well reproduce experimental results found in literature.
Collapse
Affiliation(s)
- Antonino Amoddeo
- Department of Civil, Energy, Environment and Materials Engineering, Università 'Mediterranea' di Reggio Calabria, Via Graziella 1, Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
10
|
Simvastatin Reduces NETosis to Attenuate Severe Asthma by Inhibiting PAD4 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1493684. [PMID: 36778209 PMCID: PMC9911252 DOI: 10.1155/2023/1493684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Objective Patients with severe asthma respond poorly to corticosteroids, and their care accounts for more than 60% of the total costs attributed to asthma. Neutrophils form neutrophil extracellular traps (NETs), which play a crucial role in severe asthma. Statins have shown anti-inflammatory effects by reducing NETosis. In this study, we investigate if simvastatin can attenuate severe asthma by reducing NETosis and the underlying mechanism. Methods Mice were concomitantly sensitized with ovalbumin (OVA), house dust mite (HDM), and lipopolysaccharide (LPS) during sensitization to establish a mouse model of severe asthma with neutrophil predominant inflammation (OVA+LPS mice) and treated with or without simvastatin. In inflammatory response, proportions of Th2, Th17, and Treg cells in lung tissue were detected by flow cytometry, and the levels of cytokines, dsDNA, and MPO-DNA in bronchoalveolar lavage fluid (BALF) were analyzed by ELISA. Citrullinated histone H3 (CitH3) and peptidyl arginine deiminase 4 (PAD4) in lung tissue were determined by Western blot and immunofluorescence imaging. PAD4 mRNA was determined by quantitative PCR (qPCR). HL-60 cells were differentiated into neutrophil-like cells by 1.25% DMSO. The neutrophil-like cells were treated with or without LPS, and simvastatin was then stimulated with PMA. CitH3 and PAD4 expressions were determined. Results Sensitization with OVA, HDM, and LPS resulted in neutrophilic inflammation and the formation of NETs in the lungs. Simvastatin treatment reduced the inflammation score, cytokine levels, total cells, and neutrophil counts in the BALF and reduced proportions of Th2 and Th17 but increased Treg cells in lungs of OVA+LPS mice. Simvastatin-treated OVA+LPS mice show reduced NET formation in BALF and lung tissue compared to control mice. Adoptive transfer of neutrophils was sufficient to restore NETosis and neutrophilic inflammation in simvastatin-treated OVA+LPS mice. Simvastatin reduced PAD4 mRNA and protein expression in lung tissues and neutrophils isolated from lungs of OVA+LPS mice and consequent NET formation. In vitro, simvastatin reduced LPS-induced PAD4 upregulation and NETosis in HL-60-differentiated neutrophil-like cells. Furthermore, PAD4-overexpressed lentiviral transduction was sufficient to restore PAD4 protein expression and NETosis in simvastatin-treated HL-60-differentiated neutrophil-like cells. Conclusions Simvastatin reduces Th17-mediated neutrophilic inflammation and airway hyperreactivity by reducing PAD4 expression and inhibiting NETosis in a mouse model of severe asthma. Severe asthmatic patients with high levels of circulating NETs or sputum NETs may show improved responses to statin treatment.
Collapse
|
11
|
Britt RD, Porter N, Grayson MH, Gowdy KM, Ballinger M, Wada K, Kim HY, Guerau-de-Arellano M. Sterols and immune mechanisms in asthma. J Allergy Clin Immunol 2023; 151:47-59. [PMID: 37138729 PMCID: PMC10151016 DOI: 10.1016/j.jaci.2022.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The field of sterol and oxysterol biology in lung disease has recently gained attention, revealing a unique need for sterol uptake and metabolism in the lung. The presence of cholesterol transport, biosynthesis, and sterol/oxysterol-mediated signaling in immune cells suggests a role in immune regulation. In support of this idea, statin drugs that inhibit the cholesterol biosynthesis rate-limiting step enzyme, hydroxymethyl glutaryl coenzyme A reductase, show immunomodulatory activity in several models of inflammation. Studies in human asthma reveal contradicting results, whereas promising retrospective studies suggest benefits of statins in severe asthma. Here, we provide a timely review by discussing the role of sterols in immune responses in asthma, analytical tools to evaluate the role of sterols in disease, and potential mechanistic pathways and targets relevant to asthma. Our review reveals the importance of sterols in immune processes and highlights the need for further research to solve critical gaps in the field.
Collapse
Affiliation(s)
- Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Department of Pediatrics, The Ohio State University, Columbus
| | - Ned Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mitchell H. Grayson
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Megan Ballinger
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Kara Wada
- Department of Otolaryngology, Wexner Medical Center, Columbus
| | - Hye-Young Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Columbus
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
- Department of Neuroscience, The Ohio State University, Columbus
| |
Collapse
|
12
|
Saheb Sharif-Askari N, Alabed M, Selvakumar B, Mdkhana B, Salam Bayram O, Kalaji Z, Hafezi S, Elemam NM, Saheb Sharif-Askari F, Halwani R. Simvastatin reduced infiltration of memory subsets of T lymphocytes in the lung tissue during Th2 allergic inflammation. Int Immunopharmacol 2022; 113:109347. [DOI: 10.1016/j.intimp.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
13
|
Deak P, Knight HR, Esser-Kahn A. Robust tolerogenic dendritic cells via push/pull pairing of toll-like-receptor agonists and immunomodulators reduces EAE. Biomaterials 2022; 286:121571. [PMID: 35597168 PMCID: PMC10152544 DOI: 10.1016/j.biomaterials.2022.121571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
A failure of central immune tolerance driven by autoantigen specific T regulatory (Treg) cells is a major cause of many autoimmune diseases. Restoration of proper autoantigen Treg specific response holds promise as a highly effective, long-term therapy for a wide variety of autoimmune diseases. Generating autoantigen specific Tregs remains a challenge due to the non-specific nature of most tolerizing agents and the complexities of generating Tregs in vivo. Here we show a new push/pull method for inducing antigen-specific Treg tolerance via induction of tolerogenic dendritic cells (tolDCs). We identified a combination of three tolerogenic drugs, dexamethasone, simvastatin and SC-514, which when used in combination with toll-like-receptor (TLR) agonists induces an active tolDC phenotype. When the tolerogenic combination was packaged into a liposome with a model antigen such as ovalbumin (OVA), these tolDCs induce differentiation of OVA specific Tregs both ex vivo and in vivo. We examined the tolerizing potential of the combination in an experimental autoimmune encephalomyelitis (EAE) disease model. Given the antigen specificity of this technique, this paper presents an attractive preclinical autoimmune therapy.
Collapse
Affiliation(s)
- Peter Deak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, United States.
| | - Hannah Riley Knight
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, United States.
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, United States.
| |
Collapse
|
14
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
15
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
16
|
Young RP, Scott RJ. Statins as adjunct therapy in COPD: is it time to target innate immunity and cardiovascular risk? Eur Respir J 2021; 58:58/1/2100342. [PMID: 34326175 DOI: 10.1183/13993003.00342-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Robert P Young
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raewyn J Scott
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Kim JH, Wee JH, Choi HG, Park JY, Hwang YI, Jang SH, Jung KS. Association Between Statin Medication and Asthma/Asthma Exacerbation in a National Health Screening Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2783-2791. [PMID: 33894391 DOI: 10.1016/j.jaip.2021.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Statins, which are a type of 3-hydroxy-3-methylglutaryl-CoA inhibitor, have multiple therapeutic effects, including anti-inflammatory and immunomodulatory properties. Despite positive preclinical data on statin use in patients with asthma, clinical trials and epidemiological studies have yielded conflicting results. OBJECTIVE To evaluate the association between statin use and an asthma diagnosis in all participants and the effects of statins on asthma-related outcomes among patients with asthma using a national health screening cohort. METHODS Patients with asthma and control participants matched for age group, sex, income, and region of residence were selected from the Korean National Health Insurance Service-Health Screening Cohort data. This case-control study comprised 88,780 people with asthma and the same number of control participants. Asthma exacerbation (AE) was defined as an emergency department visit, a history of hospitalization due to asthma, or the use of systemic steroids for 2 weeks. Conditional and unconditional logistic regression analyses were used to evaluate the effect of the previous use of statins on an asthma diagnosis or AE after adjusting for multiple covariates. RESULTS A significant association between a statin prescription and an asthma diagnosis was not observed in this cohort (adjusted odds ratio, 1.01; 95% CI, 0.98-1.03; P = .633 for 1 year of statin prescription). Among the patients with asthma, 16.54% (n = 14,687) were categorized into the AE group and the others (n = 74,093) were categorized into the no AE group. A statin prescription was associated with fewer AEs in patients with asthma (adjusted odds ratio, 0.89; 95% CI, 0.84-0.93; P < .001 for 1 year of statin prescription). CONCLUSIONS Statin use was associated with a reduced risk of asthma-related emergency department visits, hospitalizations, and systemic steroid use in patients with asthma in this cohort study.
Collapse
Affiliation(s)
- Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jee-Hye Wee
- Departments of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hyo Geun Choi
- Departments of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea.
| | - Ji-Young Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Yong Il Hwang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Ki-Suck Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
18
|
Maneechotesuwan K, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Role of autophagy in regulating interleukin-10 and the responses to corticosteroids and statins in asthma. Clin Exp Allergy 2021; 51:1553-1565. [PMID: 33423318 DOI: 10.1111/cea.13825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interleukin (IL)-10 is a key anti-inflammatory cytokine that may be reduced in asthma but is enhanced by corticosteroids, especially when combined with a statin, although the mechanisms of these effects are uncertain. OBJECTIVE To study the role of autophagy in macrophages in promoting inflammation in asthma through reducing IL-10 secretion and how corticosteroids and statins may reverse this process. METHODS We conducted a randomised double-blind placebo-controlled study in moderate to severe asthmatic patients (n = 44) to investigate the effect of an inhaled corticosteroid (budesonide 400 μg/day) and the combination of budesonide with an oral statin (simvastatin 10 mg/day) given for 8 weeks on autophagy protein expression in sputum cells by using immunocytochemistry and measurement of IL-10 release. In in vitro experiments, we studied cross-regulation between autophagy and IL-10 release by measuring the expression of autophagy proteins in M2-like macrophages and the effects of budesonide and simvastatin on these mechanisms. RESULTS In asthmatic patients, inhaled budesonide inhibited airway macrophage autophagy (beclin-1, LC3) as well as autophagic flux (p62), which was enhanced by simvastatin and was correlated with increased sputum IL-10 and reduced IL-4 concentrations. In macrophages in vitro, budesonide and simvastatin inhibited rapamycin-induced autophagy as well as autophagic flux, with reduced expression of beclin-1 and LC3, but enhanced the accumulation of p62 and increased expression of IL-10, which itself further inhibited autophagy in macrophages. With siRNA-mediated silencing, LC3-deficient macrophages also showed a maximal induction of IL-10 transcription. Neutralisation of IL-10 with recombinant specific blocking antibody and silencing IL-10 transcription reversed the inhibitory effects of budesonide and simvastatin on macrophage autophagy. CONCLUSION AND CLINICAL RELEVANCE Inhibition by corticosteroids and a statin of macrophage autophagy enhances IL-10 production, resulting in the control of asthmatic inflammation.
Collapse
Affiliation(s)
- Kittipong Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
19
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
20
|
Abstract
Asthma patients are classified by phenotype and endotype. Although symptoms in most asthma patients are well controlled by glucocorticoid treatment, certain populations of severe eosinophilic asthma patients in T-helper 2 (Th2)/type 2 asthma and neutrophilic asthma patients in non-Th2/type 2 asthma show insensitivity to inhaled or oral glucocorticoid therapy. In some cases of severe eosinophilic asthma, eosinophils remain in the lungs despite glucocorticoid therapy. It was reported that interleukin (IL)-33-induced activation of type 2 innate lymphoid cells (ILC2) was resistant to glucocorticoid treatment in certain allergic conditions. Regarding neutrophilic airway inflammation in steroid-resistant asthma, IL-17 derived from Th17 cells and IL-8 and tumor necrosis factor-α derived mainly from macrophages were reported to be involved in the pathogenesis. Recently, "NETosis," a specific cell death of neutrophils, has been reported to be involved in asthmatic airway inflammation. When NETosis is induced in asthma, aggravation of inflammation and delay of tissue repair could occur, suggesting that NETosis may be associated with the development of steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma by focusing mainly on neutrophils.
Collapse
Affiliation(s)
- Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
21
|
Hu Y, Chen Z, Zeng J, Zheng S, Sun L, Zhu L, Liao W. Th17/Treg imbalance is associated with reduced indoleamine 2,3 dioxygenase activity in childhood allergic asthma. Allergy Asthma Clin Immunol 2020; 16:61. [PMID: 32834826 PMCID: PMC7386249 DOI: 10.1186/s13223-020-00457-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background The differentiation of CD4+ lymphocytes Th17/regulatory T cells (Treg) and indoleamine 2,3-dioxygenase (IDO) is associated with the pathogenesis of allergic asthma. Basic research has shown that IDO is likely a “switch” of the transition from Th17 cells to Tregs under certain conditions. However, no relevant clinical studies have been reported on the association between IDO activity and Th17/Treg imbalance in children with allergic asthma. The goal of this study was to test whether indoleamine 2,3 dioxygenase (IDO) participates in the pathogenesis of pediatric allergic asthma by influencing Th17/regulatory T cell (Treg) differentiation and related cytokines. Methods Thirty-three children with allergic asthma and 33 healthy children were selected. The subjects were evaluated via a pulmonary function test, a skin prick test, and an eosinophil count. Peripheral blood was collected to measure Th17/Treg percentages and related cytokine levels. Blood and induced sputum were obtained to measure the IDO level. Results Compared with the control group, the patient group had an obvious Th17/Treg imbalance; their IDO levels were significantly lower, their IL-17 and IL-6 levels were markedly higher, and their IL-10 and TGF-β levels were markedly lower than those of the control group. The IDO levels in both blood and induced sputum were negatively correlated with the Th17/Treg ratio. Conclusions A significant correlation was observed between IDO activity and Th17/Treg imbalance in children with allergic asthma. IDO may upregulate Treg numbers by stimulating IL-10 production and inhibiting IL-6 expression. Therefore, IDO may be a molecular switch that leads to the conversion of Th17 cells to Tregs, thus playing a potentially protective role in the pathogenesis of asthma. Trial registration This study was approved by the Chinese Clinical Trial Registry with registration number ChiCTR-COC-15006080 and was reviewed and approved by the Ethics Committee of Southwest Hospital. The name of registration: The effect of indoleamine 2,3 dioxygenase (IDO) on Regulation of Th17/Treg Differentiation in Childhood Asthma. Date of registration: 14/03/2015. URL of trial registry record: http://www.chictr.org.cn
Collapse
Affiliation(s)
- Ying Hu
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| | - Zhiqiang Chen
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| | - Jing Zeng
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| | - Shouyan Zheng
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| | - Liujuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| | - Li Zhu
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| | - Wei Liao
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, 400038 China
| |
Collapse
|
22
|
Zheng R, Wang F, Huang Y, Xiang Q, Dai H, Zhang W. Elevated Th17 cell frequencies and Th17/Treg ratio are associated with airway hyperresponsiveness in asthmatic children. J Asthma 2020; 58:707-716. [PMID: 32114839 DOI: 10.1080/02770903.2020.1737710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: The elevation of T helper (Th)17 cell frequencies and the imbalance of Th17/regulatory T (Treg) cells occur in asthma pathogenesis. Airway hyperresponsiveness (AHR) is a cardinal feature of asthma, and Th17 responses can promote AHR. We hypothesized that changes in Th17 cells and the Th17/Treg ratio correlate with AHR in asthmatic children.Methods: Twenty asthmatic children and twenty healthy children were included in the study. The peak expiratory flow (PEF) % pred, forced expiratory volume in 1 s (FEV1) % pred and the FEV1/forced vital capacity (FVC) ratio were measured in all subjects. Methacholine challenge test (MCT) was performed in asthmatic children. Flow cytometric analysis was used to determine the proportions of Th17 and Treg cells in peripheral blood mononuclear cells. ELISA was used to assess serum levels of interleukin (IL)-17A and IL-10.Results: Th17 cell frequencies (2.272 ± 0.207% in asthmatics, 1.193 ± 0.131% in controls, P < 0.01) and Th17/Treg ratios (0.371 ± 0.0387 in asthmatics, 0.183 ± 0.020 in controls, P < 0.01) were significantly increased in asthmatic children compared to controls. In asthmatic children, the MCT grade had positive correlations with the Th17 cell frequencies [r = 0.718, P < 0.01], serum IL-17A level [r = 0.753, P < 0.01] and Th17/Treg ratio [r = 0.721, P < 0.01], while the log10PD20-FEV1 value was negatively correlated with the Th17 cell frequencies [r = -0.654, P < 0.01], serum IL-17A level [r = -0.652, P < 0.01] and Th17/Treg ratio [r = -0.625, P < 0.01].Conclusion: Th17 cell, IL-17A and Th17/Treg ratio were positively correlated with AHR in asthmatic children. It may be helpful to monitor Th17 cells and the Th17/Treg ratio as indicators of AHR in clinical practice.
Collapse
Affiliation(s)
- Rongying Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangmin Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Huang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiangwei Xiang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Dai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Huang YS, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Front Immunol 2020; 11:388. [PMID: 32194572 PMCID: PMC7066259 DOI: 10.3389/fimmu.2020.00388] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Ma X, Liu S, Li T, Yuan H. Intensive statin treatment ameliorate the Th17/Treg functional imbalance in patients with non-ST elevation acute coronary syndrome underwent percutaneous coronary intervention. Clin Cardiol 2019; 43:379-385. [PMID: 31872906 PMCID: PMC7144487 DOI: 10.1002/clc.23326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Background Inflammation plays important roles in the pathogenesis of acute coronary syndrome (ACS). Statins exert positive effects on the plaque stabilization through anti‐inflammation, however, the detailed mechanism is still under investigation. Hypothesis Studies suggest that the Th17/Treg functional imbalance takes key part in the plaque destabilization and the onset of ACS. We hypothesized that intensive statin therapy could ameliorate the Th17/Treg imbalance in patients with ACS. Methods Sixty‐six patients with non‐ST elevation acute coronary syndrome (NSTE‐ACS) were randomized to conventional group and intensive group. Peripheral blood samples were collected on admission and after atorvastatin treatment. The frequencies of circulating Th17 cells and Treg cells, the levels of cytokines associated with Th17 cells (IL‐17, IL‐6 and IL‐23) and associated with Treg cells (IL‐10 and TGF‐β1) were measured through flow cytometry and ELISA assay respectively. Results One week after therapy, the frequencies of circulating Th17 cells of both the groups decreased and the frequencies of circulating Treg cells increased significantly, compared with the basal levels. Furthermore, the decreased frequencies of circulating Th17 cells and the increased frequencies of circulating Treg cells in the intensive group were significantly higher than those in the conventional group. In consistence, the decreased accumulation of IL‐17, IL‐6 and IL‐23 (cytokines relevant to Th17 cells) and the increased accumulation of IL‐10 and TGF‐β1 in peripheral blood were displayed in both groups. The changes are more significant in the intensive group. Conclusion Intensive statins therapy could ameliorate the Th17 and Treg functional imbalance in patients with ACS.
Collapse
Affiliation(s)
- Xiaojing Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Shilei Liu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Teng Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
25
|
Li M, Zhao Y, Qi D, He J, Wang D. Tangeretin attenuates lipopolysaccharide-induced acute lung injury through Notch signaling pathway via suppressing Th17 cell response in mice. Microb Pathog 2019; 138:103826. [PMID: 31676364 DOI: 10.1016/j.micpath.2019.103826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Tangeretin, a polymethoxylated flavonoid is abundant in citrus fruits, which has been reported to inhibit inflammation by inhibiting NF-κB activation and proinflammatory cytokines. Notch blockage inhibits Th17 cells response that are involved in the development of acute lung injury (ALI). This study investigated the protective effects of tangeretin on LPS-induced ALI in mice. Male C57BL/6 mice were treated with phosphate-buffered saline (PBS), lipopolysaccharide (LPS), LPS and tangeretin, or LPS and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, a Notch signaling inhibitor), which were harvested at 48 h after challenged by LPS. CD4+ T cells were treated with tangeretin or DAPT and harvested after 72 h. Tangeretin notably attenuated pathological changes and decreased the wet to dry weight ratio of the mouse lungs. The total cell and neutrophil counts, tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF), myeloperoxidase activity of lung tissue were markedly reduced by tangeretin. The percentage of CD4+IL-17 + T cells in the lungs and the concentration of interleukin (IL)-17 and IL-22 in BALF were significantly down-regulated by tangeretin. As with the positive control (DAPT), tangeretin inhibited the activity of the Notch signaling pathway accompanied with the down-regulation of acid-related orphan receptor gamma t and IL-23 receptor expression. This study demonstrated that tangeretin protects against LPS-induced ALI by suppressing Th17 response at least partially, through a Notch-dependent mechanism.
Collapse
Affiliation(s)
- Mengqin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China; Department of Emergency, The Affiliated Hospital of North Sichuan Medical College, China
| | - Yan Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
26
|
Shahbaz SK, Sadeghi M, Koushki K, Penson PE, Sahebkar A. Regulatory T cells: Possible mediators for the anti-inflammatory action of statins. Pharmacol Res 2019; 149:104469. [PMID: 31577918 DOI: 10.1016/j.phrs.2019.104469] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Statins beside their main effect on reducing the progression of cardiovascular disease through pharmacological inhibition of the endogenous cholesterol synthesis, have additional pleiotropic effects including antiinflammatory effects mediated through the induction of suppressor regulatory T cells (Tregs). Statin-induced expansion of Tregs reduces chronic inflammation and may have beneficial effects in autoimmune diseases. However, statins could represent a double-edged sword in immunomodulation. Drugs that act by increasing the concentration of Tregs could enhance the risk of cancers, particularly in the elderly and may have adverse effects in neurodegenerative disorders and infectious diseases. In the present paper, we review the experimental studies that evaluate the effects of statins on Treg cells in autoimmune and inflammatory diseases and we discuss potential therapeutic applications of statins in this setting.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadije Koushki
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Yeh JJ, Syue SH, Lin CL, Hsu CY, Shae Z, Kao CH. Statin use and Vital Organ Failure in Patients With Asthma-Chronic Obstructive Pulmonary Disease Overlap: A Time-Dependent Population-Based Study. Front Pharmacol 2019; 10:889. [PMID: 31474854 PMCID: PMC6707404 DOI: 10.3389/fphar.2019.00889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: The effects of statins on the risk of hepatic, renal, respiratory, and heart failure among patients with asthma–chronic obstructive pulmonary disease overlap (ACO) have not been reported. Design: Time-dependent population-based study. Setting: Patient data from 2000 to 2010 were retrieved from the Taiwan National Health Insurance Research Database. Patients: We divided patients with ACO into cohorts of statin use (N = 1,211) and nonuse (N = 7,443). Measurements and Main Results: The cumulative incidence rates of hepatic, renal, respiratory, and heart failure were analyzed through Cox proportional regression analysis with time-dependent variables. After adjustment for multiple confounding factors, including age, sex, comorbidities, and medications [statins, inhaled corticosteroid (ICS), or oral steroid (OS)], the adjusted hazard ratios (aHRs) [95% confidence intervals (CIs)] for hepatic, renal, respiratory, and heart failure were 0.50 (0.40–0.64), 0.49 (0.38–0.64), 0.61 (0.27–2.21), and 0.47 (0.37–0.60), respectively. The aHRs (95% CIs) for statin use with [ICS, OS] for hepatic, renal, and heart failure were [0.36 (0.20–0.66), 0.52 (0.39–0.70)]; [0.82 (0.51–1.34), 0.46 (0.33–0.63)]; and [0.66 (0.40–1.07), 0.48 (0.37–0.64)], respectively. Conclusions: The ACO cohort with statin use exhibited lower risk of hepatic, renal, and heart failure than any other cohort, regardless of age, sex, comorbidities, or ICS or OS use. Regarding the combined use of statins and ICS, the risks of hepatic failure were lower. For the combined use of statins and OS, hepatic, renal, and heart failure were less frequent.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Mei-Ho University, Pingtung, Taiwan
| | - Shih-Huei Syue
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Zonyin Shae
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells. Immunol Res 2019; 67:310-324. [DOI: 10.1007/s12026-019-09089-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Sorathia N, Al-Rubaye H, Zal B. The Effect of Statins on the Functionality of CD4+CD25+FOXP3+ Regulatory T-cells in Acute Coronary Syndrome: A Systematic Review and Meta-analysis of Randomised Controlled Trials in Asian Populations. Eur Cardiol 2019; 14:123-129. [PMID: 31360235 PMCID: PMC6659032 DOI: 10.15420/ecr.2019.9.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Acute coronary syndrome (ACS) is characterised by increased effector cells and decreased regulatory T-cells (Tregs). Statins have been shown to be clinically beneficial in ACS patients. This effect could be mediated via the induction of Tregs in ACS patients. The aim of this systemic review and meta-analysis was to evaluate whether statin therapy enhances the frequency of Tregs determined by CD4+CD25+FOXP3+ in this subset of patients. A comprehensive search of PubMed and Embase was performed. Studies were restricted to randomised controlled trials that quantified CD4+CD25+FOXP3+ cell frequency by flow cytometric analysis before and after statin treatment in adults diagnosed with ACS. A minimum of at least two of the conventional markers to identify Tregs was compulsory. Four randomised controlled trials studies (439 participants) were included, all with low-to-moderate risk of bias. Pooled data showed a significant increase in Treg frequency after statin therapy in ACS patients. A further meta-regression and subgroup analysis also showed a negative dose-related effect, and a statin type-related effect (rosuvastatin versus atorvastatin), respectively. The results confirmed that statins positively alter the frequency of Tregs, which may indicate a potential mechanism of their therapeutic effect. However, there was a risk of information bias due to the markers used to identify Tregs, which was not fully explored, therefore, further randomised controlled trials should utilise markers of Tregs, such as the FOXP3 locus (Treg-specific demethylated region), for identification.
Collapse
Affiliation(s)
- Nilofer Sorathia
- Medipathways College London London, UK.,University of Buckingham Buckingham, UK.,St George's, University of London London, UK
| | | | - Benham Zal
- Medipathways College London London, UK.,University of Buckingham Buckingham, UK
| |
Collapse
|
30
|
Esteban-Gorgojo I, Antolín-Amérigo D, Domínguez-Ortega J, Quirce S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018; 11:267-281. [PMID: 30464537 PMCID: PMC6211579 DOI: 10.2147/jaa.s153097] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although non-eosinophilic asthma (NEA) is not the best known and most prevalent asthma phenotype, its importance cannot be underestimated. NEA is characterized by airway inflammation with the absence of eosinophils, subsequent to activation of non-predominant type 2 immunologic pathways. This phenotype, which possibly includes several not well-defined subphenotypes, is defined by an eosinophil count <2% in sputum. NEA has been associated with environmental and/or host factors, such as smoking cigarettes, pollution, work-related agents, infections, and obesity. These risk factors, alone or in conjunction, can activate specific cellular and molecular pathways leading to non-type 2 inflammation. The most relevant clinical trait of NEA is its poor response to standard asthma treatments, especially to inhaled corticosteroids, leading to a higher severity of disease and to difficult-to-control asthma. Indeed, NEA constitutes about 50% of severe asthma cases. Since most current and forthcoming biologic therapies specifically target type 2 asthma phenotypes, such as uncontrolled severe eosinophilic or allergic asthma, there is a dramatic lack of effective treatments for uncontrolled non-type 2 asthma. Research efforts are now focusing on elucidating the phenotypes underlying the non-type 2 asthma, and several studies are being conducted with new drugs and biologics aiming to develop effective strategies for this type of asthma, and various immunologic pathways are being scrutinized to optimize efficacy and to abolish possible adverse effects.
Collapse
Affiliation(s)
| | | | - Javier Domínguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ).,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| |
Collapse
|
31
|
Yeh JJ, Lin CL, Hsu CY, Shae Z, Kao CH. Statin for Tuberculosis and Pneumonia in Patients with Asthma⁻Chronic Pulmonary Disease Overlap Syndrome: A Time-Dependent Population-Based Cohort Study. J Clin Med 2018; 7:E381. [PMID: 30355982 PMCID: PMC6262333 DOI: 10.3390/jcm7110381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
We investigated the effects of statins on tuberculosis (TB) and pneumonia risks in asthma⁻chronic pulmonary disease overlap syndrome (ACOS) patients. We extracted data of patients diagnosed as having ACOS during 2000⁻2010 from the Taiwan National Health Insurance Research Database and divided them into statin users and nonusers. All study participants were followed up from the index date until death, withdrawal from insurance, or TB and pneumonia occurred (31 December 2011). The cumulative TB and pneumonia incidence was analyzed using Cox proportional regression analysis with time-dependent variables. After adjustments for multiple confounding factors including age, sex, comorbidities, and use of medications [statins, inhaled corticosteroids (ICSs), or oral steroids (OSs)], statin use was associated with significantly lower TB [adjusted hazard ratio (aHR) 0.49, 95% confidence interval (CI) 0.34⁻0.70] and pneumonia (aHR 0.52, 95% CI 0.41⁻0.65) risks. Moreover, aHRs (95% CIs) for statins combined with ICSs and OSs were respectively 0.60 (0.31⁻1.16) and 0.58 (0.40⁻0.85) for TB and 0.61 (0.39⁻0.95) and 0.57 (0.45⁻0.74) for pneumonia. Thus, statin users had lower TB and pneumonia risks than did nonusers, regardless of age, sex, comorbidities, and ICS or OS use. Pneumonia risk was lower among users of statins combined with ICSs or Oss and TB risk was lower among the users of statins combined with OSs.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family and Chest Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan.
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
- Department of Family Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Nursing, Mei-Ho University, Pingtung 91252, Taiwan.
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 40447, Taiwan.
- College of Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Chung-Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Zonyin Shae
- Department of Computer Science and Information Engineering, Asia University, Taichung 40447, Taiwan.
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| |
Collapse
|
32
|
Zeki AA, Elbadawi-Sidhu M. Innovations in asthma therapy: is there a role for inhaled statins? Expert Rev Respir Med 2018; 12:461-473. [PMID: 29575963 PMCID: PMC6018057 DOI: 10.1080/17476348.2018.1457437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Asthma manifests as chronic airflow obstruction with persistent inflammation and airway hyperresponsiveness. The immunomodulatory and anti-inflammatory properties of the HMG-CoA reductase (HMGCR) inhibitors (a.k.a. statins), suggest a therapeutic role in chronic inflammatory lung diseases. However, despite positive laboratory investigations and promising epidemiological data, clinical trials using statins for the treatment of asthma have yielded conflicting results. Inadequate statin levels in the airway compartment could explain these findings. Areas covered: HMGCR is in the mevalonate (MA) pathway and MA signaling is fundamental to lung biology and asthma. This article will discuss clinical trials of oral statins in asthma, review lab investigations relevant to the systemic versus inhaled administration of statins, address the advantages and disadvantages of inhaled statins, and answer the question: is there a role for inhaled statins in the treatment of asthma? Expert commentary: If ongoing investigations show that oral administration of statins has no clear clinical benefits, then repurposing statins for delivery via inhalation is a logical next step. Inhalation of statins bypasses first-pass metabolism by the liver, and therefore, allows for delivery of significantly lower doses to the airways at greater potency. Statins could become the next major class of novel inhalers for the treatment of asthma.
Collapse
Affiliation(s)
- Amir A. Zeki
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, CA, USA
| | - Mona Elbadawi-Sidhu
- NIH West Coast Metabolomics Center, Genome and Biomedical Sciences Facility, University of California, Davis, CA, USA
| |
Collapse
|
33
|
Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res 2017; 2017:3743048. [PMID: 29359169 PMCID: PMC5735647 DOI: 10.1155/2017/3743048] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic inflammatory disease that undermines the airways. It is caused by dysfunction of various types of cells, as well as cellular components, and is characterized by recruitment of inflammatory cells, bronchial hyperreactivity, mucus production, and airway remodelling and narrowing. It has commonly been considered that airway inflammation is caused by the Th2 immune response, or eosinophilia, which is a hallmark of bronchial asthma pathogenesis. Some patients display a neutrophil-dominant presentation and are characterized with low (or even absent) Th2 cytokines. In recent years, increasing evidence has also suggested that neutrophils play a key role in the development of certain subtypes of asthma. This review discusses neutrophils in asthma and potentially related targeted therapies.
Collapse
|
34
|
Kim DH, Kim BY, Shin JH, Kim SW, Kim SW. Intranasal azelastine and mometasone exhibit a synergistic effect on a murine model of allergic rhinitis. Am J Otolaryngol 2017; 38:198-203. [PMID: 28117118 DOI: 10.1016/j.amjoto.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE The purpose of this study was to compare the anti-allergic effects of the combination of azelastine and mometasone with those of either agent alone in a Dermatophagoides farinae (Derf)-induced murine model of allergic rhinitis (AR). MATERIALS AND METHODS Forty BALB/c mice were divided into five groups: azelastine (A), mometasone (M), a combination of azelastine and mometasone (MA), Derf, and control. Derf served as the allergen. Allergic symptom scores, eosinophil counts, and serum Derf-specific IgE levels were measured. The mucosal levels of mRNAs encoding interferon (IFN)-γ, T-bet, interleukin (IL)-4, GATA-3, Foxp3, IL-17, and ROR-γt were determined by real-time polymerase chain reaction. The T-bet, GATA-3, Foxp3, and ROR-γt results were confirmed by Western blotting. RESULTS Nose-rubbing motions; the levels of mRNAs encoding IL-4, GATA-3, and ROR-γt; and tissue eosinophil count were reduced in the MA compared with those in the Derf group (all P values <0.05). The levels of mRNAs encoding GATA3 and IL-4 mRNA [synthesized by T helper (Th)2 cells] were reduced and that of mRNA encoding Foxp3 was increased in the MA compared with those in the Derf and A groups. Western blotting confirmed these findings. CONCLUSION We found that the combination of intranasal azelastine and mometasone synergistically suppressed Th17 responses and (reciprocally) elevated Treg responses. Therefore, this combination not only ameliorated allergic inflammation by suppressing Th2 responses, but also usefully modified the Treg/Th17 balance.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Boo-Young Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Hyeon Shin
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Whan Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Blanquiceth Y, Rodríguez-Perea AL, Tabares Guevara JH, Correa LA, Sánchez MD, Ramírez-Pineda JR, Velilla PA. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma. Front Immunol 2016; 7:620. [PMID: 28066430 PMCID: PMC5174085 DOI: 10.3389/fimmu.2016.00620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/06/2016] [Indexed: 01/24/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role by controlling allergic inflammation of airways. Recently, it has been shown that statins have immunomodulatory properties, probably mediated by their effects on Tregs. Therefore, we evaluated the in vivo effect of atorvastatin (ATV) on Tregs and its association with the inflammatory process in a model of allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with intranasal OVA. ATV (40 mg/kg) was delivered by daily intraperitoneal injection for 7 or 15 days before each OVA challenge. ATV treatment for 7 days increased the frequency of Tregs in mediastinal lymph nodes (MLN) and the interleukin (IL)-10 in lungs. After 15 days of treatment, ATV increased the percentage of glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR+) and programmed cell death protein 1 (PD-1+) Tregs in the lung, without enhancing their suppressive activity, but also increased the percentage of conventional T cells expressing GITR+, PD1+, and OX-40 (tumor necrosis factor receptor superfamily member 4). Although no significant changes were observed in the number of inflammatory cells in the bronchoalveolar lavage (BAL), OVA-specific immunoglobulin E in the serum, and type 2 helper (Th2) cytokines in the lungs, there was a significant decrease of peribronchial inflammation that negatively correlated with the Tregs in MLN and the concentration of IL-10 in the lung. These results suggest that ATV has an immunomodulatory role possibly mediated by their effects on Tregs, which could contribute to the control of inflammation during allergic asthma. Further studies are necessary to elucidate the contribution of Treg to immunomodulatory action of statins in the context of allergic asthma.
Collapse
Affiliation(s)
- Yurany Blanquiceth
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Ana Lucia Rodríguez-Perea
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Jorge H Tabares Guevara
- Grupo Inmunomodulación, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| | - Luis Alfonso Correa
- Sección de Dermatología, Departamento de Medicina, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia; Laboratorio de Patología, Laboratorio Clínico VID, Obra de la Congregación Mariana, Medellín, Colombia
| | - María Dulfary Sánchez
- Stanley S. Scott Cancer Center & Louisiana Cancer Research Center, Health Sciences Center, Louisiana State University , New Orleans, LA , USA
| | | | - Paula Andrea Velilla
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín , Colombia
| |
Collapse
|
36
|
Paquissi FC. Immune Imbalances in Non-Alcoholic Fatty Liver Disease: From General Biomarkers and Neutrophils to Interleukin-17 Axis Activation and New Therapeutic Targets. Front Immunol 2016; 7:490. [PMID: 27891128 PMCID: PMC5104753 DOI: 10.3389/fimmu.2016.00490] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasing problem worldwide and is associated with negative outcomes such as cirrhosis, hepatocellular carcinoma, insulin resistance, diabetes, and cardiovascular events. Current evidence shows that the immune response has an important participation driving the initiation, maintenance, and progression of the disease. So, various immune imbalances, from cellular to cytokines levels, have been studied, either for better compression of the disease pathophysiology or as biomarkers for severity assessment and outcome prediction. In this article, we performed a thorough review of studies that evaluated the role of inflammatory/immune imbalances in the NAFLD. At the cellular level, we gave special focus on the imbalance between neutrophils and lymphocytes counts (the neutrophil-to-lymphocyte ratio), and that which occurs between T helper 17 (Th17) and regulatory T cells as emerging biomarkers. By extension, we reviewed the reflection of these imbalances at the molecular level through pro-inflammatory cytokines including those involved in Th17 differentiation (IL-6, IL-21, IL-23, and transforming growth factor-beta), and those released by Th17 cells (IL-17A, IL-17F, IL-21, and IL-22). We gave particular attention to the role of IL-17, either produced by Th17 cells or neutrophils, in fibrogenesis and steatohepatitis. Finally, we reviewed the potential of these pathways as new therapeutic targets in NAFLD.
Collapse
|
37
|
Klarquist J, Tobin K, Farhangi Oskuei P, Henning SW, Fernandez MF, Dellacecca ER, Navarro FC, Eby JM, Chatterjee S, Mehrotra S, Clark JI, Le Poole IC. Ccl22 Diverts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res 2016; 76:6230-6240. [PMID: 27634754 DOI: 10.1158/0008-5472.can-16-0618] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
T regulatory cells (Treg) avert autoimmunity, but their increased levels in melanoma confer a poor prognosis. To explore the basis for Treg accumulation in melanoma, we evaluated chemokine expression in patients. A 5-fold increase was documented in the Treg chemoattractants CCL22 and CCL1 in melanoma-affected skin versus unaffected skin, as accompanied by infiltrating FoxP3+ T cells. In parallel, there was an approximately two-fold enhancement in expression of CCR4 in circulating Treg but not T effector cells. We hypothesized that redirecting Treg away from tumors might suppress autoimmune side effects caused by immune checkpoint therapeutics now used widely in the clinic. In assessing this hypothesis, we observed a marked increase in skin Treg in mice vaccinated with Ccl22, with repetitive vaccination sufficient to limit Treg accumulation and melanoma growth in the lungs of animals challenged by tumor cell injection, whether using a prevention or treatment protocol design. The observed change in Treg accumulation in this setting could not be explained by Treg conversion. Overall, our findings offered a preclinical proof of concept for the potential use of CCL22 delivered by local injection as a strategy to enhance the efficacious response to immune checkpoint therapy while suppressing its autoimmune side effects. Cancer Res; 76(21); 6230-40. ©2016 AACR.
Collapse
Affiliation(s)
- Jared Klarquist
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Kristen Tobin
- Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | | | - Steven W Henning
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Manuel F Fernandez
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | | | - Flor C Navarro
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Jonathan M Eby
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois
| | - Shilpak Chatterjee
- Department of Surgery/Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery/Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph I Clark
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois.,Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - I Caroline Le Poole
- Oncology Research Institute, Loyola University Chicago, Maywood, Illinois. .,Departments of Pathology, Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
38
|
Fu CH, Tsai WC, Lee TJ, Huang CC, Chang PH, Su Pang JH. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils. PLoS One 2016; 11:e0157186. [PMID: 27275740 PMCID: PMC4898827 DOI: 10.1371/journal.pone.0157186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.
Collapse
Affiliation(s)
- Chia-Hsiang Fu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Wan-Chun Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
| | - Ta-Jen Lee
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Chi-Che Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Po-Hung Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan, ROC
- * E-mail:
| |
Collapse
|
39
|
Barnes PJ. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol 2015; 136:531-45. [PMID: 26343937 DOI: 10.1016/j.jaci.2015.05.052] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
The recognition that there are some patients with features of asthma and chronic obstructive pulmonary disease (COPD) has highlighted the need to develop more specific treatments for these clinical phenotypes. Some patients with COPD have predominantly eosinophilic inflammation and might respond to high doses of inhaled corticosteroids and newly developed specific antieosinophil therapies, including blocking antibodies against IL-5, IL-13, IL-33, and thymic stromal lymphopoietin, as well as oral chemoattractant receptor-homologous molecule expressed on TH2 cells antagonists. Other patients have severe asthma or are asthmatic patients who smoke with features of COPD-induced inflammation and might benefit from treatments targeting neutrophils, including macrolides, CXCR2 antagonists, phosphodiesterase 4 inhibitors, p38 mitogen-activating protein kinase inhibitors, and antibodies against IL-1 and IL-17. Other patients appear to have largely fixed obstruction with little inflammation and might respond to long-acting bronchodilators, including long-acting muscarinic antagonists, to reduce hyperinflation. Highly selected patients with severe asthma might benefit from bronchial thermoplasty. Some patients with overlap syndromes can be conveniently treated with triple fixed-dose combination inhaler therapy with an inhaled corticosteroid, long-acting β2-agonist, and long-acting muscarinic antagonist, several of which are now in development. Corticosteroid resistance is a feature of asthma-COPD overlap syndrome, and understanding the various molecular mechanisms of this resistance has identified novel therapeutic targets and presented the prospect of therapies that can restore corticosteroid responsiveness.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
40
|
Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases. Clin Exp Allergy 2015; 45:602-12. [PMID: 25048954 DOI: 10.1111/cea.12378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two widely prevalent inflammatory diseases in the upper airways. T cell immunity has been suggested to play an important pathogenic role in many chronic inflammatory diseases including inflammatory upper airway diseases. Inappropriate CD4(+) T cell responses, especially the dysregulation of the Th1/Th2 balance leading to excessive Th1 or Th2 cell activation, have been associated with allergic rhinitis and chronic rhinosinusitis. Nevertheless, recent studies suggest that IL-17A and IL-17A-producing Th17 cell subset, a distinct pro-inflammatory CD4(+) T cell lineage, may also play an important role in the pathophysiology of inflammatory upper airway diseases. Th17 cells may promote both eosinophilic and neutrophilic inflammation in AR and CRS. In addition, a few, but accumulating evidence shows that the Th17 responses can be tightly regulated by endogenous and exogenous substances in the context of AR and CRS. This review discusses recent advances in our understanding of the expression and function of the Th17 response and its regulation in inflammatory upper airway diseases, and the perspective for future investigation and clinical utility.
Collapse
Affiliation(s)
- Y Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
41
|
Bhattacharjee D, Chogtu B, Magazine R. Statins in Asthma: Potential Beneficial Effects and Limitations. Pulm Med 2015; 2015:835204. [PMID: 26618001 PMCID: PMC4651730 DOI: 10.1155/2015/835204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
Asthma's sustenance as a global pandemic, across centuries, can be attributed to the lack of an understanding of its workings and the inability of the existing treatment modalities to provide a long lasting cure without major adverse effects. The discovery of statins boosted by a better comprehension of the pathophysiology of asthma in the past few decades has opened up a potentially alternative line of treatment that promises to be a big boon for the asthmatics globally. However, the initial excellent results from the preclinical and animal studies have not borne the results in clinical trials that the scientific world was hoping for. In light of this, this review analyzes the ways by which statins could benefit in asthma via their pleiotropic anti-inflammatory properties and explain some of the queries raised in the previous studies and provide recommendations for future studies in this field.
Collapse
Affiliation(s)
- Dipanjan Bhattacharjee
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Bharti Chogtu
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Rahul Magazine
- Department of Pulmonary Medicine, Kasturba Medical College, Manipal University, Manipal 576104, India
| |
Collapse
|
42
|
Maneechotesuwan K, Wongkajornsilp A, Adcock IM, Barnes PJ. Simvastatin Suppresses Airway IL-17 and Upregulates IL-10 in Patients With Stable COPD. Chest 2015; 148:1164-76. [PMID: 26043025 PMCID: PMC4631035 DOI: 10.1378/chest.14-3138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/15/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Statins have immunomodulatory properties that may provide beneficial effects in the treatment of COPD. We investigated whether a statin improves the IL-17/IL-10 imbalance in patients with COPD, as has previously been demonstrated in patients with asthma. METHODS Thirty patients with stable COPD were recruited to a double-blind, randomized, controlled, crossover trial comparing the effect of simvastatin, 20 mg po daily, with that of a matched placebo on sputum inflammatory markers and airway inflammation. Each treatment was administered for 4 weeks separated by a 4-week washout period. The primary outcome was the presence of T-helper 17 cytokines and indoleamine 2,3-dioxygenase (IDO) in induced sputum. Secondary outcomes included sputum inflammatory cells, FEV1, and symptoms using the COPD Assessment Test (CAT). RESULTS At 4 weeks, there was a significant reduction in sputum IL-17A, IL-22, IL-6, and CXCL8 concentrations (mean difference, -16.4 pg/mL, P = .01; -48.6 pg/mL, P < .001; -45.3 pg/mL, P = .002; and -190.9 pg/mL, P = .007, respectively), whereas IL-10 concentrations, IDO messenger RNA expression (fold change), and IDO activity (kynurenine to tryptophan ratio) were markedly increased during simvastatin treatment compared with placebo treatment periods (mean difference, 24.7 pg/mL, P < .001; 1.02, P < .001; and 0.47, P < .001, respectively). The absolute sputum macrophage count, proportion of macrophages, and CAT score were reduced after simvastatin compared with placebo (mean difference, -0.16 × 106, P = .004; -14.1%, P < .001; and -3.2, P = .02, respectively). Values for other clinical outcomes were similar between the simvastatin and placebo treatments. CONCLUSIONS Simvastatin reversed the IL-17A/IL-10 imbalance in the airways and reduced sputum macrophage but not neutrophil counts in patients with COPD. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01944176; www.clinicaltrials.gov.
Collapse
|
43
|
Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism. Curr Allergy Asthma Rep 2015; 15:48. [PMID: 26149587 DOI: 10.1007/s11882-015-0548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science.
Collapse
|
44
|
Blankestijn MA, Boyle RJ, Gore R, Hawrylowicz C, Jarvis D, Knulst AC, Wardlaw AJ. Developments in the field of allergy in 2013 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2015; 44:1436-57. [PMID: 25346287 DOI: 10.1111/cea.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2013 was another exciting year for allergy in general and Clinical and Experimental Allergy in particular. In the field of asthma and rhinitis, there continued to be a focus on heterogeneity and phenotypes with increasing use of biostatistical techniques to determine clusters of similar populations. Obesity- and aspirin-associated disease are intriguing associations with asthma which were explored in a number of papers. We published a number of excellent papers on mechanisms of airway inflammation and how this relates to physiology, pathology, genetics and biomarkers in both human and experimental model systems. In terms of mechanisms, there is less on individual cell types in allergic disease at the moment, but the immunology of allergic disease continued to fascinate our authors. Another area that was popular both in the mechanisms and in the epidemiology sections was early life events and how these lead to allergic disease, with an increasing focus on the role of the microbiome and how this influences immune tolerance. In the clinical allergy section, oral immunotherapy for food allergy is clearly a major topic of interest at the moment as was in vitro testing to distinguish between sensitization and allergic disease. There was less on inhalant allergy this year, but a good representation from the drug allergy community including some interesting work on non-IgE-mediated mechanisms. In the allergen section, important new allergens continue to be discovered, but the major focus as in the last couple of years was on working out how component-resolved approaches can improve diagnosis and management of food and venom allergy.
Collapse
Affiliation(s)
- M A Blankestijn
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: Current knowledge and future perspectives. World J Clin Cases 2015; 3:285-292. [PMID: 25789301 PMCID: PMC4360500 DOI: 10.12998/wjcc.v3.i3.285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Asthma and obesity are epidemiologically linked; however, similar relationships are also observed with other markers of the metabolic syndrome, such as insulin resistance and dyslipidemia, which cannot be accounted for by increased body mass alone. Obesity appears to be a predisposing factor for the asthma onset, both in adults and in children. In addition, obesity could make asthma more difficult to control and to treat. Although obesity may predispose to increased Th2 inflammation or tendency to atopy, other mechanisms need to be considered, such as those mediated by hyperglycaemia, hyperinsulinemia and dyslipidemia in the context of metabolic syndrome. The mechanisms underlying the association between asthma and metabolic syndrome are yet to be determined. In the past, these two conditions were believed to occur in the same individual without any pathogenetic link. However, the improvement in asthma symptoms following weight reduction indicates a causal relationship. The interplay between these two diseases is probably due to a bidirectional interaction. The purpose of this review is to describe the current knowledge about the possible link between metabolic syndrome and asthma, and explore potential application for future studies and strategic approaches.
Collapse
|
46
|
Thomson NC, Charron CE, Chaudhuri R, Spears M, Ito K, McSharry C. Atorvastatin in combination with inhaled beclometasone modulates inflammatory sputum mediators in smokers with asthma. Pulm Pharmacol Ther 2015; 31:1-8. [PMID: 25595138 DOI: 10.1016/j.pupt.2015.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Statins have pleiotropic immunomodulatory effects that may be beneficial in the treatment of asthma. We previously reported that treatment with atorvastatin improved asthma symptoms in smokers with asthma in the absence of a change in the concentration of a selection of sputum inflammatory mediators. OBJECTIVE To determine the effects of atorvastatin alone and in combination with inhaled corticosteroid on a range of sputum cytokines, chemokines and growth factors implicated in the pathogenesis of asthma, and their association with asthma control questionnaire (ACQ) and/or asthma quality of life questionnaire (AQLQ) scores. METHODS Sputum samples were analysed from a sub-group of 39 smokers with mild to moderate asthma recruited to a randomised controlled trial comparing atorvastatin (40 mg/day) versus placebo for four weeks, followed by inhaled beclometasone (400 μg/day) for a further four weeks. Induced sputum supernatant fluid was analysed (Luminex or biochemical analyses) for concentrations of 35 mediators. RESULTS Sputum mediator concentrations were not reduced by inhaled beclometasone alone. Atorvastatin significantly reduced sputum concentrations of CCL7, IL-12p70, sCD40L, FGF-2, CCL4, TGF-α and MMP-8 compared with placebo and, when combined with inhaled beclometasone, reduced sputum concentrations of MMP-8, IL-1β, IL-10, MMP-9, sCD40L, FGF-2, IL-7, G-CSF and CCL7 compared to ICS alone. Improvements in ACQ and/or AQLQ scores with atorvastatin and ICS were associated with decreases in G-CSF, IL-7, CCL2 and CXCL8. CONCLUSION Short-term treatment with atorvastatin alone or in combination with inhaled beclometasone reduces several sputum cytokines, chemokines and growth factors concentrations unresponsive to inhaled corticosteroids alone, in smokers with asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- Respiratory Medicine, Institute of Infection, Immunity and Inflammation, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 OYN, Scotland, UK.
| | | | - Rekha Chaudhuri
- Respiratory Medicine, Institute of Infection, Immunity and Inflammation, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 OYN, Scotland, UK
| | - Mark Spears
- Respiratory Medicine, Forth Valley Royal Hospital, Larbert, UK
| | - Kazuhiro Ito
- Airway Disease Section, Imperial College, London, UK
| | - Charles McSharry
- Respiratory Medicine, Institute of Infection, Immunity and Inflammation, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 OYN, Scotland, UK
| |
Collapse
|
47
|
Malhotra R, Olsson H. Immunology, genetics and microbiota in the COPD pathophysiology: potential scope for patient stratification. Expert Rev Respir Med 2015; 9:153-9. [DOI: 10.1586/17476348.2015.1000865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
49
|
Abstract
Asthma remains a formidable public health problem with ever increasing annual costs and prevalence. There are 300 million people with asthma worldwide. Per the Centers for Disease Control and Prevention, there are over 25 million Americans with asthma (both children and adults), i.e. one in 12 people have asthma, and this is increasing annually. Asthma results in approximately half a million hospitalizations and two million emergency department (ED) visits per year. In 2007 alone, 185 children and 3262 adults died from asthma, i.e. nine to ten patients die a day from asthma. This resulted in an annual cost of $56 billion in medical costs, lost work/school days, and early deaths. Therefore, we need novel and innovative therapies for asthma. In this Editorial, I review results from a study by Tse et al. evaluating the therapeutic potential of statins, within the context of our current state of knowledge. I review observational studies and clinical trials, highlight some potential pitfalls in clinical trial design, and discuss important questions for future research.
Collapse
Affiliation(s)
- Amir A Zeki
- University of California , Davis, Sacramento, CA , USA
| |
Collapse
|
50
|
Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY, Cools N, Schrijvers DM. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: Can the unattainable dream turn into reality? Autoimmun Rev 2014; 13:138-50. [DOI: 10.1016/j.autrev.2013.09.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023]
|