1
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
2
|
Li X, Liang X, Gu X, Zou M, Cao W, Liu C, Wang X. Ursodeoxycholic acid and 18β-glycyrrhetinic acid alleviate ethinylestradiol-induced cholestasis via downregulating RORγt and CXCR3 signaling pathway in iNKT cells. Toxicol In Vitro 2024; 96:105782. [PMID: 38244730 DOI: 10.1016/j.tiv.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18β-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18β-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18β-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18β-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18β-GA, and 18β-GA as an alternative treatment for EE-induced cholestasis.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaojing Liang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxia Gu
- Department of Obstetrics and Gynecology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Mengzhi Zou
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiping Cao
- Departments of Obstetrics, Maternity and Child Health Hospital of Zhenjiang, Zhenjiang 212001, China.
| | - Chunhui Liu
- Physics and Chemistry Test Center of Jiangsu Province, 210042 Nanjing, China.
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Mei Y, Li X, He C, Zhang Y, Kong W, Xue R, Huang X, Shi Y, Tao G, Xing M, Wang X. Detrimental Role of CXCR3 in α-Naphthylisothiocyanate- and Triptolide-Induced Cholestatic Liver Injury. Chem Res Toxicol 2024; 37:42-56. [PMID: 38091573 DOI: 10.1021/acs.chemrestox.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The chemokine receptor CXCR3 is functionally pleiotropic, not only recruiting immune cells to the inflamed liver but also mediating the pathological process of cholestatic liver injury (CLI). However, the mechanism of its involvement in the CLI remains unclear. Both alpha-naphthylisothiocyanate (ANIT) and triptolide are hepatotoxicants that induce CLI by bile acid (BA) dysregulation, inflammation, and endoplasmic reticulum (ER)/oxidative stress. Through molecular docking, CXCR3 is a potential target of ANIT and triptolide. Therefore, this study aimed to investigate the role of CXCR3 in ANIT- and triptolide-induced CLI and to explore the underlying mechanisms. Wild-type mice and CXCR3-deficient mice were administered with ANIT or triptolide to compare CLI, BA profile, hepatic recruitment of IFN-γ/IL-4/IL-17+CD4+T cells, IFN-γ/IL-4/IL-17+iNKT cells and IFN-γ/IL-4+NK cells, and the expression of ER/oxidative stress pathway. The results showed that CXCR3 deficiency ameliorated ANIT- and triptolide-induced CLI. CXCR3 deficiency alleviated ANIT-induced dysregulated BA metabolism, which decreased the recruitment of IFN-γ+NK cells and IL-4+NK cells to the liver and inhibited ER stress. After triptolide administration, CXCR3 deficiency ameliorated dysregulation of BA metabolism, which reduced the migration of IL-4+iNKT cells and IL-17+iNKT cells and reduced oxidative stress through inhibition of Egr1 expression and AKT phosphorylation. Our findings suggest a detrimental role of CXCR3 in ANIT- and triptolide-induced CLI, providing a promising therapeutic target and introducing novel mechanisms for understanding cholestatic liver diseases.
Collapse
Affiliation(s)
- Yuan Mei
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Chao He
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London WC1E 6BT, U.K
| | - Weichao Kong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxiang Shi
- Department of Gastroenterology, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang 212003, China
| | - Gang Tao
- Department of Gastroenterology, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang 212003, China
| | - Mengtao Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Ghavami G, Sardari S. Two Birds with One Stone: Drug Regime Targets Viral Pathogenesis Phases and COVID-19 ARDS at the Same Time. Infect Disord Drug Targets 2024; 24:e290124226467. [PMID: 38288808 DOI: 10.2174/0118715265270637240107153121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 09/04/2024]
Abstract
BACKGROUND Severe COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a kind of viral pneumonia induced by infection with the coronavirus that causes ARDS. It involves symptoms that are a combination of viral pneumonia and ARDS. Antiviral or immunosuppressive medicines are used to treat many COVID-19 patients. Several drugs are now undergoing clinical studies in order to see if they can be repurposed in the future. MATERIAL AND METHODS In this study, in silico biomarker-targeted methodologies, such as target/ molecule virtual screening by docking technique and drug repositioning strategy, as well as data mining approach and meta-analysis of investigational data, were used. RESULTS In silico findings of used combination of drug repurposing and high-throughput docking methods presented acetaminophen, ursodiol, and β-carotene as a three-drug therapy regimen to treat ARDS induced by viral pneumonia in addition to inducing direct antiviral effects against COVID-19 viral infection. CONCLUSION In the current study, drug repurposing and high throughput docking methods have been employed to develop combination drug regimens as multiple-molecule drugs for the therapy of COVID-19 and ARDS based on a multiple-target therapy strategy. This approach offers a promising avenue for the treatment of COVID-19 and ARDS, and highlights the potential benefits of drug repurposing in the fight against the current pandemic.
Collapse
Affiliation(s)
- Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Yang Y, He X, Rojas M, Leung PSC, Gao L. Mechanism-based target therapy in primary biliary cholangitis: opportunities before liver cirrhosis? Front Immunol 2023; 14:1184252. [PMID: 37325634 PMCID: PMC10266968 DOI: 10.3389/fimmu.2023.1184252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an immune-mediated liver disease characterized by cholestasis, biliary injuries, liver fibrosis, and chronic non-suppurative cholangitis. The pathogenesis of PBC is multifactorial and involves immune dysregulation, abnormal bile metabolism, and progressive fibrosis, ultimately leading to cirrhosis and liver failure. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are currently used as first- and second-line treatments, respectively. However, many patients do not respond adequately to UDCA, and the long-term effects of these drugs are limited. Recent research has advanced our understanding the mechanisms of pathogenesis in PBC and greatly facilitated development of novel drugs to target mechanistic checkpoints. Animal studies and clinical trials of pipeline drugs have yielded promising results in slowing disease progression. Targeting immune mediated pathogenesis and anti-inflammatory therapies are focused on the early stage, while anti-cholestatic and anti-fibrotic therapies are emphasized in the late stage of disease, which is characterized by fibrosis and cirrhosis development. Nonetheless, it is worth noting that currently, there exists a dearth of therapeutic options that can effectively impede the progression of the disease to its terminal stages. Hence, there is an urgent need for further research aimed at investigating the underlying pathophysiology mechanisms with potential therapeutic effects. This review highlights our current knowledge of the underlying immunological and cellular mechanisms of pathogenesis in PBC. Further, we also address current mechanism-based target therapies for PBC and potential therapeutic strategies to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Yushu Yang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - XiaoSong He
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Manuel Rojas
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S. C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Wang H, Zhang J, Liu J, Jiang Y, Fu L, Peng S. Identification of AKR1B10 as a key gene in primary biliary cholangitis by integrated bioinformatics analysis and experimental validation. Front Mol Biosci 2023; 10:1124956. [PMID: 36845547 PMCID: PMC9947156 DOI: 10.3389/fmolb.2023.1124956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease that eventually progresses to cirrhosis and hepatocellular carcinoma (HCC) in the absence of proper treatment. However, Gene expression and molecular mechanisms involved in the pathogenesis of PBC have not been completely elucidated. Methods: Microarray expression profiling dataset GSE61260 was downloaded from the Gene Expression Omnibus (GEO) database. Data were normalized to screen differentially expressed genes (DEGs) using the limma package in R. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed. A protein-protein interaction (PPI) network was constructed to identify hub genes and an integrative regulatory network of transcriptional factor-DEG-microRNA was established. Gene Set Enrichment Analysis (GSEA) was used to analyze differences in biological states for groups with different expressions of aldo-keto reductase family 1 member B10 (AKR1B10). Immunohistochemistry (IHC) analysis was performed to validate the expression of hepatic AKR1B10 in patients with PBC. The association of hepatic AKR1B10 levels with clinical parameters was evaluated using one-way analysis of variance (ANOVA) and Pearson's correlation analysis. Results: This study identified 22 upregulated and 12 downregulated DEGs between patients with PBC and healthy controls. GO and KEGG analysis revealed that DEGs were mainly enriched in immune reactions. AKR1B10 was identified as a key gene and was further analyzed by screening out hub genes from the PPI network. GSEA analysis indicated that high expression of AKR1B10 might promote PBC to develop into HCC. Immunohistochemistry results verified the increased expression of hepatic AKR1B10 in patients with PBC and demonstrated its positive correlation with the severity of PBC. Conclusion: AKR1B10 was identified as a hub gene in PBC by integrated bioinformatics analysis and clinical validation. The increase of AKR1B10 expression in patients with PBC was associated with disease severity and might promote the progression of PBC to HCC.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yongfang Jiang
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lei Fu, ; Shifang Peng,
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
7
|
Kong W, Li X, Zou M, Zhang Y, Cai H, Zhang L, Wang X. iNKT17 cells play a pathogenic role in ethinylestradiol-induced cholestatic hepatotoxicity. Arch Toxicol 2023; 97:561-580. [PMID: 36329302 DOI: 10.1007/s00204-022-03403-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
IL-17 is closely associated with inflammation in intrahepatic cholestasis (IHC). Targeting IL-17 ameliorates IHC in mice. Invariant natural killer T (iNKT) cells are predominantly enriched in the liver and they mediate drug-induced liver injury through their secreted cytokines. However, whether iNKT17 cells are involved in ethinylestradiol (EE)-induced IHC remains unclear. In the present study, the administration of EE (10 mg/kg in vivo and 6.25 μM in vitro) promoted the activation and expansion of iNKT17 cells, which contributed to a novel hepatic iNKT17/Treg imbalance. iNKT cell-deficient Jα18-/- mice and the RORγt inhibitor digoxin (20 μg) alleviated EE-induced cholestatic hepatotoxicity and downregulated the IL-17 signalling pathway. In contrast, the co-administration of EE with recombinant IL-17 (1 μg) to Jα18-/- mice induced cholestatic hepatotoxicity and increased the infiltration of hepatic neutrophils and monocytes. Importantly, the administration of IL-17-/- iNKT cells (3.5 × 105) to Jα18-/- mice resulted in the attenuation of hepatotoxicity and the recruitment of fewer hepatic neutrophils and monocytes than the adoptive transfer of wild-type iNKT cells. These results indicated that iNKT17 cells could exert pathogenic effects. The recruitment and activation of iNKT17 cells could be attributed to the high level of CXCR3 expression on their surface. CXCL10 deficiency ameliorated EE-induced cholestatic liver damage, reduced hepatic CXCR3+ iNKT cells and inhibited RORγt expression. These findings suggest that iNKT17 cells play a key role in EE-induced cholestatic liver injury via CXCR3-mediated recruitment and activation. Our study provides new insights and therapeutic targets for cholestatic diseases.
Collapse
Affiliation(s)
- Weichao Kong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengzhi Zou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Heng Cai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Barron-Millar B, Ogle L, Mells G, Flack S, Badrock J, Sandford R, Kirby J, Palmer J, Jopson L, Brain J, Smith GR, Rushton S, Hegade VS, Jones R, Rushbrook S, Thorburn D, Ryder S, Hirschfield G, Dyson JK, Jones DEJ. The Serum Proteome and Ursodeoxycholic Acid Response in Primary Biliary Cholangitis. Hepatology 2021; 74:3269-3283. [PMID: 34129689 DOI: 10.1002/hep.32011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Stratified therapy has entered clinical practice in primary biliary cholangitis (PBC), with routine use of second-line therapy in nonresponders to first-line therapy with ursodeoxycholic acid (UDCA). The mechanism for nonresponse to UDCA remains, however, unclear and we lack mechanistic serum markers. The UK-PBC study was established to explore the biological basis of UDCA nonresponse in PBC and identify markers to enhance treatment. APPROACH AND RESULTS Discovery serum proteomics (Olink) with targeted multiplex validation were carried out in 526 subjects from the UK-PBC cohort and 97 healthy controls. In the discovery phase, untreated PBC patients (n = 68) exhibited an inflammatory proteome that is typically reduced in scale, but not resolved, with UDCA therapy (n = 416 treated patients). Nineteen proteins remained at a significant expression level (defined using stringent criteria) in UDCA-treated patients, six of them representing a tightly linked profile of chemokines (including CCL20, known to be released by biliary epithelial cells (BECs) undergoing senescence in PBC). All showed significant differential expression between UDCA responders and nonresponders in both the discovery and validation cohorts. A linear discriminant analysis, using serum levels of C-X-C motif chemokine ligand 11 and C-C motif chemokine ligand 20 as markers of responder status, indicated a high level of discrimination with an AUC of 0.91 (CI, 0.83-0.91). CONCLUSIONS UDCA under-response in PBC is characterized by elevation of serum chemokines potentially related to cellular senescence and was previously shown to be released by BECs in PBC, suggesting a potential role in the pathogenesis of high-risk disease. These also have potential for development as biomarkers for identification of high-risk disease, and their clinical utility as biomarkers should be evaluated further in prospective studies.
Collapse
Affiliation(s)
- Ben Barron-Millar
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Ogle
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - George Mells
- Department of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Steven Flack
- Department of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Badrock
- Department of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard Sandford
- Department of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - John Kirby
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Jopson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John Brain
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit (BSU), Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Steve Rushton
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | - Rebecca Jones
- Liver Unit, St James' Hospital, Leeds, United Kingdom
| | - Simon Rushbrook
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | | | - Steve Ryder
- Queen's Medical Centre, Nottingham, United Kingdom
| | - Gideon Hirschfield
- Queen Elizabeth Hospital, Birmingham, United Kingdom
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada
| | - Jessica K Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Freeman Hospital, Newcastle-upon-Tyne, United Kingdom
| | - David E J Jones
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Freeman Hospital, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
9
|
Muscate F, Woestemeier A, Gagliani N. Functional heterogeneity of CD4 + T cells in liver inflammation. Semin Immunopathol 2021; 43:549-561. [PMID: 34463867 PMCID: PMC8443520 DOI: 10.1007/s00281-021-00881-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
CD4+ T cells play an essential role in orchestrating adequate immunity, but their overactivity has been associated with the development of immune-mediated inflammatory diseases, including liver inflammatory diseases. These cells can be subclassified according to their maturation stage, cytokine profile, and pro or anti-inflammatory functions, i.e., functional heterogeneity. In this review, we summarize what has been discovered so far regarding the role of the different CD4+ T cell polarization states in the progression of two prominent and still different liver inflammatory diseases: non-alcoholic steatohepatitis (NASH) and autoimmune hepatitis (AIH). Finally, the potential of CD4+ T cells as a therapeutic target in both NASH and AIH is discussed.
Collapse
Affiliation(s)
- Franziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Ainosah RH, Hagras MM, Alharthi SE, Saadah OI. The effects of ursodeoxycholic acid on sepsis-induced cholestasis management in an animal model. J Taibah Univ Med Sci 2020; 15:312-320. [PMID: 32982635 PMCID: PMC7479157 DOI: 10.1016/j.jtumed.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives Cholestasis refers to a reduction in bile flow from the liver into the biliary system. Ursodeoxycholic acid (UDCA) is commonly used for the treatment of hepatic cholestasis. This study aimed to explore the role of UDCA in the treatment and prevention of lipopolysaccharide (LPS)-induced cholestasis. Methods Sixty male albino rats were randomly classified into five groups of 12 rats each: the control group (received saline and water), UDCA group (received UDCA), LPS group (received LPS), treatment group (received LPS followed by UDCA), and prevention group (received UDCA followed by LPS). Changes in gamma-glutamyl transferase (GGT), plasma aspartate transferase (AST), plasma alkaline transferase (ALT), plasma alkaline phosphatase (ALP), total bilirubin (TBIL), hepatocyte apoptosis, immunomodulatory activity, plasma pro-inflammatory cytokines (TNF-α, IL-1α, and IL-4), and liver histology were assessed. Results UDCA improved serum liver chemical markers (GGT, ALP, and AST) in both the prevention and treatment groups (p < 0.05 and p < 0.05, respectively). CD3 count was higher in the UDCA treatment group compared to the LPS group (p < 0.001). UDCA caused a reduction in plasma TNF-α in the prevention group (P < 0.05); however, it had no effect on the treatment group, as compared to the LPS group. Similarly, UDCA had no effect on IL-1α or IL-4. UDCA treatment resulted in improved liver histological features and a significant reduction in liver tissue apoptosis in both the treatment and prevention groups, as compared to the LPS group (p = 0.013 and p = 0.002, respectively). Conclusions This study provides evidence of the effectiveness of UDCA for the treatment and prevention of sepsis-induced cholestasis.
Collapse
Affiliation(s)
| | - Magda M Hagras
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Egypt
| | - Sameer E Alharthi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | - Omar I Saadah
- Department of Pediatrics, King Abdulaziz University, Jeddah, KSA
| |
Collapse
|
11
|
Abstract
The human liver is an organ with a diverse array of immunologic functions. Its unique anatomic position that leads to it receiving all the mesenteric venous blood, combined with its unique micro anatomy, allows it to serve as a sentinel for the body's immune system. Hepatocytes, biliary epithelial cells, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells express key molecules that recruit and activate innate and adaptive immunity. Additionally, a diverse array of lymphoid and myeloid immune cells resides within and traffics to the liver in specific circumstances. Derangement of these trafficking mechanisms underlies the pathophysiology of autoimmune liver diseases, nonalcoholic steatohepatitis, and liver transplantation. Here, we review these pathways and interactions along with potential targets that have been identified to be exploited for therapeutic purposes.
Collapse
|
12
|
Ronca V, Mancuso C, Milani C, Carbone M, Oo YH, Invernizzi P. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis. J Leukoc Biol 2020; 108:659-671. [PMID: 32349179 DOI: 10.1002/jlb.5mr0320-200r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by the destruction of the small and medium bile ducts. Its pathogenesis is still unknown. Despite the genome wide association study findings, the therapies targeting the cytokines pathway, tested so far, have failed. The concept of the biliary epithelium as a key player of the PBC pathogenesis has emerged over the last few years. It is now well accepted that the biliary epithelial cells (BECs) actively participate to the genesis of the damage. The chronic stimulation of BECs via microbes and bile changes the cell phenotype toward an active state, which, across the production of proinflammatory mediators, can recruit, retain, and activate immune cells. The consequent immune system activation can in turn damage BECs. Thus, the crosstalk between both innate and adaptive immune cells and the biliary epithelium creates a paracrine loop responsible for the disease progression. In this review, we summarize the evidence provided in literature about the role of BECs and the immune system in the pathogenesis of PBC. We also dissect the relationship between the immune system and the BECs, focusing on the unanswered questions and the future potential directions of the translational research and the cellular therapy in this area.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Clara Mancuso
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Ye Htun Oo
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
13
|
A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice. Biochem Pharmacol 2019; 166:212-221. [PMID: 31129048 DOI: 10.1016/j.bcp.2019.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are the most prevalent metabolic liver disorders and a serious global health burden. NAFLD/NASH pathogenesis and progression are highly multi-factorial and likely demand a combination of multiple mechanisms to provide a more effective treatment. We have developed a dual farnesoid X receptor agonist (FXRA)/soluble epoxide hydrolase inhibitor (sEHi) to simultaneously address two validated and complementary modes of action in NASH treatment. Here we report the in vivo profiling for this FXRA/sEHi in toxin- and diet-induced rodent NASH models. In streptozotocin-induced NASH as a proof-of-concept study, the experimental FXRA/sEHi drug robustly prevented hepatic steatosis and fibrosis, and improved lipid homeostasis as well as biochemical markers of liver health. In methionine-choline-deficient high-fat diet-induced NASH, FXRA/sEHi treatment reduced hepatic steatosis and fibrosis to levels similar to healthy animals and demonstrated anti-inflammatory activity confirming that dual FXRA/sEHi modulation produces a triad of complementary anti-NASH effects. Our results validate dual FXRA/sEHi modulation as an effective therapeutic strategy to treat NASH and advocates for a combinational drug therapeutic approach for multifactorial liver diseases.
Collapse
|
14
|
Immunological abnormalities in patients with primary biliary cholangitis. Clin Sci (Lond) 2019; 133:741-760. [DOI: 10.1042/cs20181123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Primary biliary cholangitis (PBC), an autoimmune liver disease occurring predominantly in women, is characterized by high titers of serum anti-mitochondrial antibodies (AMAs) and progressive intrahepatic cholestasis. The immune system plays a critical role in PBC pathogenesis and a variety of immune cell subsets have been shown to infiltrate the portal tract areas of patients with PBC. Amongst the participating immune cells, CD4 T cells are important cytokine-producing cells that foster an inflammatory microenvironment. Specifically, these cells orchestrate activation of other immune cells, including autoreactive effector CD8 T cells that cause biliary epithelial cell (BEC) injury and B cells that produce large quantities of AMAs. Meanwhile, other immune cells, including dendritic cells (DCs), natural killer (NK) cells, NKT cells, monocytes, and macrophages are also important in PBC pathogenesis. Activation of these cells initiates and perpetuates bile duct damage in PBC patients, leading to intrahepatic cholestasis, hepatic damage, liver fibrosis, and eventually cirrhosis or even liver failure. Taken together, the body of accumulated clinical and experimental evidence has enhanced our understanding of the immunopathogenesis of PBC and suggests that immunotherapy may be a promising treatment option. Herein, we summarize current knowledge regarding immunological abnormalities of PBC patients, with emphasis on underlying pathogenic mechanisms. The differential immune response which occurs over decades of disease activity suggests that different therapies may be needed at different stages of disease.
Collapse
|
15
|
Mesenchymal stem cells alleviate experimental autoimmune cholangitis through immunosuppression and cytoprotective function mediated by galectin-9. Stem Cell Res Ther 2018; 9:237. [PMID: 30223894 PMCID: PMC6142687 DOI: 10.1186/s13287-018-0979-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) play an anti-inflammatory role by secreting certain bioactive molecules to exert their therapeutic effects for disease treatment. However, the underlying mechanism of MSCs in chronic autoimmune liver diseases—primary biliary cholangitis (PBC), for example—remains to be elucidated. Methods Human umbilical cord–derived MSCs (UC-MSCs) were injected intravenously into 2-octynoic acid coupled to bovine serum albumin (2OA-BSA)-induced autoimmune cholangitis mice. Serum levels of biomarkers and autoantibodies, histologic changes in the liver, diverse CD4+ T-cell subsets in different tissues, and chemokine activities were analyzed. Moreover, we investigated galectin-9 (Gal-9) expression and its function in UC-MSCs. Results In this study, UC-MSC transplantation (UC-MSCT) significantly ameliorated liver inflammation, primarily by diminishing T helper 1 (Th1) and Th17 responses as well as modifying liver chemokine activities in experimental autoimmune cholangitis mice. Mechanistically, UC-MSCs significantly repressed the proliferation of CD4+ T cells and suppressed the differentiation of Th1 and Th17 cells, which was likely dependent on Gal-9. Furthermore, the signal transducer and activator of transcription (STAT) and c-Jun N-terminal kinase (JNK) signaling pathways were involved in the production of Gal-9 in UC-MSCs. Conclusions These results suggest that Gal-9 contributes significantly to UC-MSC–mediated therapeutic effects and improve our understanding of the immunomodulatory mechanisms of MSCs in the treatment of PBC. Electronic supplementary material The online version of this article (10.1186/s13287-018-0979-x) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
de Graaf KL, Lapeyre G, Guilhot F, Ferlin W, Curbishley SM, Carbone M, Richardson P, Moreea S, McCune CA, Ryder SD, Chapman RW, Floreani A, Jones DE, de Min C, Adams DH, Invernizzi P. NI-0801, an anti-chemokine (C-X-C motif) ligand 10 antibody, in patients with primary biliary cholangitis and an incomplete response to ursodeoxycholic acid. Hepatol Commun 2018; 2:492-503. [PMID: 29761166 PMCID: PMC5944576 DOI: 10.1002/hep4.1170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
NI-0801 is a fully human monoclonal antibody against chemokine (C-X-C motif) ligand 10 (CXCL10), which is involved in the recruitment of inflammatory T cells into the liver. The safety and efficacy of NI-0801 was assessed in patients with primary biliary cholangitis. In this open-label phase 2a study, patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid received six consecutive intravenous administrations of NI-0801 (10 mg/kg) every 2 weeks. Patients were followed up for 3 months after the last infusion. Liver function tests, safety assessments, as well as pharmacokinetic and pharmacodynamic parameters were evaluated at different time points throughout the dosing period and the safety follow-up period. Twenty-nine patients were enrolled in the study and were treated with NI-0801. The most frequently reported adverse events included headaches (52%), pruritus (34%), fatigue (24%), and diarrhea (21%). No study drug-related serious adverse events were reported. NI-0801 administration did not lead to a significant reduction in any of the liver function tests assessed at the end of the treatment period (i.e., 2 weeks after final NI-0801 administration) compared to baseline. Conclusion: Despite clear pharmacologic responses in the blood, no therapeutic benefit of multiple administrations of NI-0801 could be demonstrated. The high production rate of CXCL10 makes it difficult to achieve drug levels that lead to sustained neutralization of the chemokine, thus limiting its targetability. (Hepatology Communications 2018;2:492-503).
Collapse
Affiliation(s)
| | | | | | | | - Stuart M. Curbishley
- Centre for Liver ResearchUniversity of BirminghamBirminghamUnited Kingdom
- National Institute for Health Research (NIHR) Biomedical Research CentreBirminghamUnited Kingdom
| | - Marco Carbone
- Division of Gastroenterology and Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and SurgeryUniversity of Milan‐BicoccaMilanItaly
| | - Paul Richardson
- Royal Liverpool University National Health Service TrustLiverpoolUnited Kingdom
| | - Sulleman Moreea
- Department of GastroenterologyBradford Teaching Hospitals National Health Service Foundation TrustBradfordUnited Kingdom
| | - C. Anne McCune
- Department of HepatologyBristol Royal InfirmaryBristolUnited Kingdom
| | - Stephen D. Ryder
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals National Health Service Trust and The University of NottinghamNottinghamUnited Kingdom
| | - Roger W. Chapman
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Annarosa Floreani
- Department of Surgery, Oncology and GastroenterologyUniversity of PaduaPaduaItaly
| | - David E. Jones
- NIHR Newcastle Biomedical Research Centre and the Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - David H. Adams
- Centre for Liver ResearchUniversity of BirminghamBirminghamUnited Kingdom
- National Institute for Health Research (NIHR) Biomedical Research CentreBirminghamUnited Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and SurgeryUniversity of Milan‐BicoccaMilanItaly
| |
Collapse
|
17
|
The molecular basis of immune regulation in autoimmunity. Clin Sci (Lond) 2018; 132:43-67. [PMID: 29305419 DOI: 10.1042/cs20171154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases can be triggered and modulated by various molecular and cellular characteristics. The mechanisms of autoimmunity and the pathogenesis of autoimmune diseases have been investigated for several decades. It is well accepted that autoimmunity is caused by dysregulated/dysfunctional immune susceptible genes and environmental factors. There are multiple physiological mechanisms that regulate and control self-reactivity, but which can also lead to tolerance breakdown when in defect. The majority of autoreactive T or B cells are eliminated during the development of central tolerance by negative selection. Regulatory cells such as Tregs (regulatory T) and MSCs (mesenchymal stem cells), and molecules such as CTLA-4 (cytotoxic T-lymphocyte associated antigen 4) and IL (interleukin) 10 (IL-10), help to eliminate autoreactive cells that escaped to the periphery in order to prevent development of autoimmunity. Knowledge of the molecular basis of immune regulation is needed to further our understanding of the underlying mechanisms of loss of tolerance in autoimmune diseases and pave the way for the development of more effective, specific, and safer therapeutic interventions.
Collapse
|
18
|
Liver immunology: How to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol 2017; 41:6-16. [PMID: 27526967 DOI: 10.1016/j.clinre.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
There are several examples of liver tolerance: the relative ease by which liver allografts are accepted and the exploitation of the hepatic microenvironment by the malarial parasite and hepatotrophic viruses are notable examples. The vasculature of the liver supports a unique population of antigen presenting cells specialised to maintain immunological tolerance despite continuous exposure to gut-derived antigens. Liver sinusoidal endothelial cells and Kupffer cells appear to be key to the maintenance of immune tolerance, by promoting T cell anergy or deletion and the generation of regulatory cell subsets. Despite this, there are three liver diseases with likely autoimmune involvement: primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis. How can we reconcile this with the inherent tolerogenicity of the liver? Genetic studies have uncovered several associations with genes involved in the activation of the innate and adaptive immune systems. There is also evidence pointing to pathogenic and xenobiotic triggers of autoimmune liver disease. Coupled to this, impaired immunoregulatory mechanisms potentially play a permissive role, allowing the autoimmune response to proceed.
Collapse
|
19
|
Berres ML, Lehmann J, Jansen C, Görtzen J, Meyer C, Thomas D, Zimmermann HW, Kroy D, Schumacher F, Strassburg CP, Sauerbruch T, Trautwein C, Wasmuth HE, Trebicka J. Chemokine (C-X-C motif) ligand 11 levels predict survival in cirrhotic patients with transjugular intrahepatic portosystemic shunt. Liver Int 2016. [PMID: 26212075 DOI: 10.1111/liv.12922] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Chemokines, such as CXCR3-ligands, have been identified to play an important role during hepatic injury, inflammation and fibrosis. While CXCL9 is associated with survival in patients receiving transjugular intrahepatic portosystemic shunt (TIPS), the role of CXCL11 in severe portal hypertension remains unknown. METHODS CXCL11-levels were measured in 136 patients with liver diseases, and 63 healthy controls. In further 47 cirrhotic patients receiving TIPS, CXCL11 levels were measured in portal and hepatic veins at TIPS insertion by cytometric bead array. CXCL11-levels were measured in 23 patients in cubital vein and right atrium, whereas in 24 patients in portal and hepatic blood at an invasive reevaluation. RESULTS CXCL11-levels were increased with the severity of liver fibrosis. CXCL11-levels from portal, hepatic and cubital veins and right atrium showed a highly significant correlation among each other in these patients. Furthermore, levels of CXCL11 from the right atrium were significantly higher than those from cubital vein. Interestingly, patients with alcoholic cirrhosis had significantly lower CXCL11-levels, than other aetiologies of cirrhosis. After TIPS, CXCL11 levels correlated with the degree of portal pressure and patients with higher CXCL11-levels in portal and hepatic veins showed higher mortality. Multivariate analysis revealed hepatic CXCL11-levels before TIPS, creatinine and age as independent predictors for survival in TIPS patients, whereas MELD score and low portal CXCL11-levels after TIPS predicted long-term survival. CONCLUSION CXCL11 levels are mainly increased in patients with non-alcoholic cirrhosis and high portal pressure. Moreover, levels of CXCL11 might predict long-time survival of cirrhotic patients bearing TIPS.
Collapse
Affiliation(s)
| | - Jennifer Lehmann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Christian Jansen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jan Görtzen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Carsten Meyer
- Institute of Radiology, University of Bonn, Bonn, Germany
| | - Daniel Thomas
- Institute of Radiology, University of Bonn, Bonn, Germany
| | | | - Daniela Kroy
- Department of Internal Medicine III, RTWH Aachen, Aachen, Germany
| | | | | | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Choi J, Selmi C, Leung PSC, Kenny TP, Roskams T, Gershwin ME. Chemokine and chemokine receptors in autoimmunity: the case of primary biliary cholangitis. Expert Rev Clin Immunol 2016; 12:661-72. [PMID: 26821815 DOI: 10.1586/1744666x.2016.1147956] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemokines represent a major mediator of innate immunity and play a key role in the selective recruitment of cells during localized inflammatory responses. Beyond critical extracellular mediators of leukocyte trafficking, chemokines and their cognate receptors are expressed by a variety of resident and infiltrating cells (monocytes, lymphocytes, NK cells, mast cells, and NKT cells). Chemokines represent ideal candidates for mechanistic studies (particularly in murine models) to better understand the pathogenesis of chronic inflammation and possibly become biomarkers of disease. Nonetheless, therapeutic approaches targeting chemokines have led to unsatisfactory results in rheumatoid arthritis, while biologics against pro-inflammatory cytokines are being used worldwide with success. In this comprehensive review we will discuss the evidence supporting the involvement of chemokines and their specific receptors in mediating the effector cell response, utilizing the autoimmune/primary biliary cholangitis setting as a paradigm.
Collapse
Affiliation(s)
- Jinjung Choi
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA.,b Division of Rheumatology , CHA University Medical Center , Bundang , Korea
| | - Carlo Selmi
- c Rheumatology and Clinical Immunology , Humanitas Research Hospital , Rozzano , Italy.,d BIOMETRA Department , University of Milan , Milano , Italy
| | - Patrick S C Leung
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Thomas P Kenny
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Tania Roskams
- e Translational Cell and Tissue Research , University of Leuven , Leuven , Belgium
| | - M Eric Gershwin
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| |
Collapse
|
21
|
Czaja AJ. Transitioning from Idiopathic to Explainable Autoimmune Hepatitis. Dig Dis Sci 2015; 60:2881-900. [PMID: 25999246 DOI: 10.1007/s10620-015-3708-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Kouroumalis E, Notas G. Primary biliary cirrhosis: From bench to bedside. World J Gastrointest Pharmacol Ther 2015; 6:32-58. [PMID: 26261733 PMCID: PMC4526840 DOI: 10.4292/wjgpt.v6.i3.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/19/2014] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a chronic non-suppurative destructive intrahepatic cholangitis leading to cirrhosis after a protractive non cirrhotic stage. The etiology and pathogenesis are largely unknown and autoimmne mechanisms have been implicated to explain the pathological lesions. Many epitopes and autoantigens have been reported as crucial in the pathophysiology of the disease and T and B cells abnormalities have been described, the exact pathways leading to the destruction of small intrahepatic ductules are mostly speculative. In this review we examined the various epidemiologal and geoepidemiological data as well as the complex pathogenetic aspects of this disease, focusing on recent in vivo and in vitro studies in this field. Initiation and progression of PBC is believed to be a multifactorial process with strong infuences from the patient’s genetic background and by various environmental factors. The role of innate and adaptive immunity, including cytokines, chemokines, macrophages and the involvement of apoptosis and reactive oxygen species are outlined in detailed. The current pathogenetic aspects are presented and a novel pathogenetic theory unifying the accumulated clinical information with in vitro and in vivo data is formulated. A review of clinical manifestations and immunological and pathological diagnosis was presented. Treatment modalities, including the multiple mechanisms of action of ursodeoxycholate were finally discussed.
Collapse
|
23
|
Abstract
Cholangiocytes are the epithelial cells that line the bile ducts. Along the biliary tree, two different kinds of cholangiocytes exist; small and large cholangiocytes. Each type has important differences in their biological role in physiological and pathological conditions. In response to injury, cholangiocytes become reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte biology and determine the evolution of biliary damage. The failure of such mechanisms is believed to influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. Therefore, the understanding of mechanisms regulating cholangiocyte response to injury is expected to foster the development of new therapeutic options to treat biliary diseases. In the present review, we will discuss the most recent findings in the mechanisms driving cholangiocyte adaptation to damage, with particular emphasis on molecular pathways that are susceptible of therapeutic intervention. Morphogenic pathways (Hippo, Notch, Hedgehog), which have been recently shown to regulate biliary ontogenesis and response to injury, will also be reviewed. In addition, the results of ongoing clinical trials evaluating new drugs for the treatment of cholangiopathies will be discussed.
Collapse
|
24
|
Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DEJ. Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 2015; 12:147-58. [PMID: 25645973 DOI: 10.1038/nrgastro.2015.12] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary biliary cirrhosis (PBC) is a chronic immune-mediated liver disease characterized by progressive cholestasis, biliary fibrosis and eventually cirrhosis. It results in characteristic symptoms with marked effects on life quality. The advent of large patient cohorts has challenged the view of PBC as a benign condition treated effectively by the single licensed therapy-ursodeoxycholic acid (UDCA). UDCA nonresponse or under-response has a major bearing on outcome, substantially increasing the likelihood that liver transplantation will be required or that patients will die of the disease. In patients with high-risk, treatment-unresponsive or highly symptomatic disease the need for new treatment approaches is clear. Evolution in our understanding of disease mechanisms is rapidly leading to the advent of new and re-purposed therapeutic agents targeting key processes. Notable opportunities are offered by targeting what could be considered as the 'upstream' immune response, 'midstream' biliary injury and 'downstream' fibrotic processes. Combination therapy targeting several pathways or the development of novel agents addressing multiple components of the disease pathway might be required. Ultimately, PBC therapeutics will require a stratified approach to be adopted in practice. This Review provides a current perspective on potential approaches to PBC treatment, and highlights the challenges faced in evaluating and implementing those treatments.
Collapse
Affiliation(s)
- Jessica K Dyson
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gideon M Hirschfield
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - David H Adams
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - Ulrich Beuers
- Department of Gastroenterology &Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, G4-216, University of Amsterdam, PO Box 22600, NL-1100 DD, Amsterdam, Netherlands
| | - Derek A Mann
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Keith D Lindor
- College of Health Solutions, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA
| | - David E J Jones
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
25
|
Berres ML, Asmacher S, Lehmann J, Jansen C, Görtzen J, Klein S, Meyer C, Strunk HM, Fimmers R, Tacke F, Strassburg CP, Trautwein C, Sauerbruch T, Wasmuth HE, Trebicka J. CXCL9 is a prognostic marker in patients with liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. J Hepatol 2015; 62:332-9. [PMID: 25457205 DOI: 10.1016/j.jhep.2014.09.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Inflammation, collagen deposition and tissue remodelling are involved in the pathogenesis and complications of cirrhosis with portal hypertension. CXCL9 and other chemokines play an important role in these processes and have been associated with liver injury and complications of liver disease in humans. However, their predictive value in patients with cirrhosis and portal hypertension remains to be established. METHODS 103 patients with liver cirrhosis who had received TIPS (transjugular intrahepatic portosystemic shunt) were included into this study. The TIPS indication was either refractory ascites or recurrent bleeding. Before and after the TIPS procedure portal and hepatic venous blood samples were obtained in 78 patients. In 25 patients blood samples were obtained from the portal vein, hepatic vein, right atrium and cubital vein at TIPS insertion. Serum levels of CXCL9 were measured by cytometric bead array and correlated with clinical parameters and overall outcome. RESULTS Portal venous levels of CXCL9 decreased after TIPS. Child-Pugh score, refractory ascites, renal dysfunction and alcoholic aetiology of cirrhosis were associated with increased CXCL9 levels. Importantly, low levels of CXCL9 in portal and hepatic vein samples were prognostic factors for the survival of patients receiving TIPS during long-time follow-up. CONCLUSIONS The CXCR3 ligand CXCL9 affects the liver and/or is released by the liver and thereby might contribute to hepatic and extrahepatic organ dysfunction. Elevated levels of CXCL9 are associated with shorter survival in cirrhotic patients with severe portal hypertension receiving TIPS. This chemokine should be further evaluated as a novel biomarker for the outcome in patients with cirrhosis and portal hypertension and its modulation as a new therapeutic strategy.
Collapse
Affiliation(s)
| | - Sonja Asmacher
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jennifer Lehmann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Christian Jansen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jan Görtzen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Carsten Meyer
- Institute of Radiology, University of Bonn, Bonn, Germany
| | | | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Frank Tacke
- Department of Internal Medicine III, RTWH Aachen, Aachen, Germany
| | | | | | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Pu Y, Yang JH, Yang J. Progress in treatment of primary biliary cirrhosis. Shijie Huaren Xiaohua Zazhi 2014; 22:5273-5278. [DOI: 10.11569/wcjd.v22.i34.5273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a chronic autoimmune cholestatic liver disease characterized by cholestasis, and it often eventually develops into cirrhosis, portal hypertension and liver failure. Asymptomatic patients typically are diagnosed by the elevation of alkaline phosphatase (ALP) and the presence of anti-mitochondrial antibody (AMA) titers of 1:40 or greater. Ursodeoxycholic acid (UDCA) is the only Food and Drug Administration approved treatment for PBC, but it is not universally effective. In patients with UDCA-refractory PBC, additional therapies should be considered, including budesonide, fibrates, obeticholic acid, immunosuppressants and liver transplantation.
Collapse
|
27
|
Gao F, Ju J, Hu MM, Yan FY, Wang XQ. Progress in pharmaceutical therapy of autoimmune liver diseases. Shijie Huaren Xiaohua Zazhi 2014; 22:4087-4093. [DOI: 10.11569/wcjd.v22.i27.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autoimmune liver diseases (AILDs) include autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and overlap syndrome (OS). AILDs are the new research hotspot in the field of liver diseases nowadays. The advances in research of AILDs have led to a new understanding of pharmaceutical treatment of this disease. This article reviews the progress in the pharmaceutical therapy of AILDs.
Collapse
|
28
|
Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147:577-594.e1. [PMID: 25066692 DOI: 10.1053/j.gastro.2014.06.043] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/08/2023]
Abstract
Sustained hepatic inflammation is an important factor in progression of chronic liver diseases, including hepatitis C or non-alcoholic steatohepatitis. Liver inflammation is regulated by chemokines, which regulate the migration and activities of hepatocytes, Kupffer cells, hepatic stellate cells, endothelial cells, and circulating immune cells. However, the effects of the different chemokines and their receptors vary during pathogenesis of different liver diseases. During development of chronic viral hepatitis, CCL5 and CXCL10 regulate the cytopathic versus antiviral immune responses of T cells and natural killer cells. During development of nonalcoholic steatohepatitis, CCL2 and its receptor are up-regulated in the liver, where they promote macrophage accumulation, inflammation, fibrosis, and steatosis, as well as in adipose tissue. CCL2 signaling thereby links hepatic and systemic inflammation related to metabolic disorders and insulin resistance. Several chemokine signaling pathways also promote hepatic fibrosis. Recent studies have shown that other chemokines and immune cells have anti-inflammatory and antifibrotic activities. Chemokines and their receptors can also contribute to the pathogenesis of hepatocellular carcinoma, promoting proliferation of cancer cells, the inflammatory microenvironment of the tumor, evasion of the immune response, and angiogenesis. We review the roles of different chemokines in the pathogenesis of liver diseases and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy.
| | - Frank Tacke
- Department of Medicine III, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
29
|
Czaja AJ. Review article: chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther 2014; 40:261-79. [PMID: 24890045 DOI: 10.1111/apt.12825] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/10/2014] [Accepted: 05/14/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chemokines contribute to the pathogenesis of autoimmune hepatitis by directing the migration and positioning of inflammatory and immune cells within the liver. AIM Describe the liver-infiltrating effector cell populations in autoimmune hepatitis, indicate the chemokines that influence their migration, describe the role of chemokines in hepatic fibrosis and identify chemokine-directed treatment opportunities. METHODS Studies cited in Pub Med from 1972 to 2014 for autoimmune hepatitis, chemokines in liver disease, pathogenesis of autoimmune hepatitis and chemokine therapy were selected. RESULTS T helper type 17 lymphocytes expressing CXCR3 and CCR6 are attracted to the liver by the secretion of CXCL9, CXCL10 and CXCL11. These cells recruit pro-inflammatory T helper type 1 lymphocytes expressing CXCR3 and CCR5 by secreting CXCL10. Resident natural killer T cells expressing CXCR6 migrate in response to the local secretion of CXCL16, and they modulate the inflammatory response. T helper type 2 lymphocytes expressing CCR4 are attracted by CCL17 and CCL22, and they dampen the expansion of pro-inflammatory cells. Regulatory T cells expressing CXCR3 are attracted by the secretion of CXCL9, and they help dampen the pro-inflammatory responses. CCL2, CCL3, CCL5, CXCL4, CXCL10 and CXCL16 promote fibrosis by activating or attracting hepatic stellate cells, and CX3CL1 may prevent fibrosis by affecting the apoptosis of monocytes. CONCLUSIONS Chemokines are requisites for mobilising, directing and positioning the effector cells in immune-mediated liver disease. They are feasible therapeutic targets in autoimmune hepatitis, and the evaluation of monoclonal antibodies that neutralise the pro-inflammatory ligands or designer peptides that block receptor activity are investigational opportunities.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
30
|
Abstract
Primary biliary cirrhosis (PBC) is a chronic progressive cholestatic autoimmune liver disease characterized by the destruction of small intrahepatic bile ducts and the presence of highly specific serum antimitochondrial antibodies (AMAs). In this article, we will review the clinical, serological and histopathological features of PBC as well as the advances in the diagnosis and differential diagnosis of PBC. In addition, this article systematically describes the advances in the treatment of PBC, and the treatments include ursodeoxycholic acid (UDCA), budesonide, methotrexate (MTX), farnesoid X receptor (FXR) agonists, cyclosporine A, bezafibrate, rituximab, bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation, and liver transplantation. At present, liver transplantation is the only option with known therapeutic benefit for end-stage PBC patients.
Collapse
|
31
|
Czaja AJ. Review article: permanent drug withdrawal is desirable and achievable for autoimmune hepatitis. Aliment Pharmacol Ther 2014; 39:1043-58. [PMID: 24628539 DOI: 10.1111/apt.12701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/09/2014] [Accepted: 02/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autoimmune hepatitis can be rendered treatment-free, but the difficulty, frequency and risks associated with the pursuit of this outcome are unclear. AIM To describe the frequency that autoimmune hepatitis can be rendered treatment-free, identify the features that characterise these patients, examine the pathogenic pathways that may sustain or terminate the disease and indicate management protocols that can obtain this result. METHODS Studies cited in Pub Med from 1972-2014 for autoimmune hepatitis, treatment, relapse, remission and outcome were selected. RESULTS The frequency of a treatment-free state varies from 19% to 40% in patients observed for ≥3 years after drug withdrawal. Complete laboratory resolution and reversion to normal liver tissue prior to drug withdrawal favours this response. The development of cirrhosis during therapy may increase treatment-dependence. Persistent liver damage and the generation of neo-antigens during the apoptosis of hepatocytes may perpetuate the disease. Genetic and age-related effects on the vigour of the immune response may also contribute. Reversion to normal liver tissue is achieved in only 22% of patients during conventional corticosteroid therapy, and the emerging pharmacological and biological interventions may improve this frequency. A management strategy designed to achieve a treatment-free state accommodates all candidates for this outcome, and it can be modified to a long-term maintenance strategy as warranted by the clinical response. CONCLUSIONS Permanent drug withdrawal is a treatment outcome that is desirable and achievable in patients with autoimmune hepatitis. Normalisation of liver tests and liver tissue during treatment enhances this occurrence.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
32
|
Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: A comprehensive review. J Autoimmun 2013; 46:97-111. [DOI: 10.1016/j.jaut.2013.06.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
|