1
|
Agarwal A, Maikap D, Padhan P. Treatment of Reactive Arthritis with Biological Agents. Curr Rheumatol Rep 2024; 26:450-458. [PMID: 39312088 DOI: 10.1007/s11926-024-01165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
PURPOSE OF THE REVIEW Reactive arthritis (ReA) is an inflammatory joint condition triggered by an infection elsewhere in the body, and this review aims to provide a comprehensive synthesis of recent studies including case reports and case series to determine whether biologics are a treatment option. RECENT FINDINGS Recent studies indicate that biological agents, including anti-TNF agents (infliximab, adalimumab, etanercept), anti-IL17 (secukinumab), and anti-IL6 (tocilizumab), are effective in treating refractory cases of ReA. Evidence suggests these agents are associated with significant clinical improvement. Notably, the data reveal that these biologics are generally well-tolerated, with a low incidence of major adverse events, which supports their safety profile for use in ReA. Biological agents, including anti-TNF, anti-IL17, and anti-IL6 therapies, can be safely and effectively used in the treatment of ReA when conventional therapies fail. It further emphasizes the need for a well-designed controlled trial to provide scientific basis for better informed clinical decisions in cases not responding to conventional treatment.
Collapse
Affiliation(s)
- Avarna Agarwal
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Debashis Maikap
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Baker H, Amaral JK, Schoen RT. Management of postinfectious inflammatory arthritis. Curr Opin Rheumatol 2024; 36:155-162. [PMID: 38411201 DOI: 10.1097/bor.0000000000001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Postinfectious inflammatory arthritis can result from various pathogens, including bacteria, viruses, fungi, and parasites. Prompt identification and treatment of acute infection is vital, but some cases progress to chronic arthritis despite successful treatment of infection. Postinfectious inflammatory arthritis varies from mild, self-limited arthralgia to severe, refractory arthritis, necessitating ongoing disease-modifying treatment. This review explores the spectrum of postinfectious inflammatory arthritis to provide insights into effective management. RECENT FINDINGS Research continues regarding the benefit of antimicrobial therapy, beyond treatment of the acute infection, to diminish the severity of postinfectious inflammatory arthritis. Following treatment of acute infection, most cases are self-limited so treatment is symptomatic. However, a difficult-to-predict fraction of cases develop chronic postinfectious inflammatory arthritis that can be challenging to manage. Recently, as more biologic, and targeted synthetic DMARDs have become available, treatment options have expanded. SUMMARY In this article, we use the term 'postinfectious inflammatory arthritis' rather than 'reactive arthritis' because it describes a broader spectrum of diseases and emphasizes the common pathogenesis of a postinfectious inflammatory process. We summarize the conventional therapies and recent management developments for the most frequently encountered postinfectious inflammatory arthritides.
Collapse
Affiliation(s)
- Hailey Baker
- Section of Rheumatology, Allergy, and Immunology, Yale School of Medicine
| | - J Kennedy Amaral
- Institute of Diagnostic Medicine of Cariri, Juazeiro do Norte, Ceará, Brazil
| | - Robert T Schoen
- Section of Rheumatology, Allergy, and Immunology, Yale School of Medicine
| |
Collapse
|
3
|
Slouma M, Abbes M, Mehmli T, Dhahri R, Metoui L, Gharsallah I, Louzir B. Reactive arthritis occurring after COVID-19 infection: a narrative review. Infection 2023; 51:37-45. [PMID: 35655110 PMCID: PMC9162104 DOI: 10.1007/s15010-022-01858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Reactive arthritis is acute aseptic arthritis occurring 1 to 4 weeks after a distant infection in a genetically predisposed individual. It may occur after COVID-19 infection. We summarize, in this article, the current findings of reactive arthritis following COVID-19 infection. METHODS A literature search has been performed from December 2019 to December 2021. We included case reports of reactive arthritis occurring after COVID-19 infection. We collected demographic, clinical, and paraclinical data. RESULTS A total of 22 articles were reviewed. There were 14 men and 11 women with a mean age of 44.96 + 17.47 years. Oligoarticular involvement of the lower limbs was the most frequent clinical presentation. The time between arthritis and COVID infection ranged from 6 to 48 days. The diagnosis was based on clinical and laboratory findings. The pharmacological management was based on non-steroidal anti-inflammatory drugs in 20 cases. Systemic or local steroid therapy was indicated in 13 patients. Sulfasalazine was indicated in two cases. Alleviation of symptoms and recovery were noted in 22 cases. The mean duration of the clinical resolution was 16 + 57 days. CONCLUSION The diagnosis of reactive arthritis should be considered in patients with a new onset of arthritis following COVID-19 infection. Its mechanism is still unclear.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Maissa Abbes
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia.
- Tunis El Manar University, Tunis, Tunisia.
| | - Takoua Mehmli
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rim Dhahri
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Leila Metoui
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Imen Gharsallah
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Bassem Louzir
- Department of Internal Medicine, Military Hospital, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
4
|
Bessho S, Grando KCM, Kyrylchuk K, Miller A, Klein-Szanto AJ, Zhu W, Gallucci S, Tam V, Tükel Ç. Systemic exposure to bacterial amyloid curli alters the gut mucosal immune response and the microbiome, exacerbating Salmonella-induced arthritis. Gut Microbes 2023; 15:2221813. [PMID: 37317012 PMCID: PMC10269392 DOI: 10.1080/19490976.2023.2221813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
The Salmonella biofilm-associated amyloid protein, curli, is a dominant instigator of systemic inflammation and autoimmune responses following Salmonella infection. Systemic curli injections or infection of mice with Salmonella Typhimurium induce the major features of reactive arthritis, an autoimmune disorder associated with Salmonella infection in humans. In this study, we investigated the link between inflammation and microbiota in exacerbating autoimmunity. We studied C57BL/6 mice from two sources, Taconic Farms and Jackson Labs. Mice from Taconic Farms have been reported to have higher basal levels of the inflammatory cytokine IL - 17 than do mice from Jackson Labs due to the differences in their microbiota. When we systemically injected mice with purified curli, we observed a significant increase in diversity in the microbiota of Jackson Labs mice but not in that of the Taconic mice. In Jackson Labs, mice, the most striking effect was the expansion of Prevotellaceae. Furthermore, there were increases in the relative abundance of the family Akkermansiaceae and decreases in families Clostridiaceae and Muribaculaceae in Jackson Labs mice. Curli treatment led to significantly aggravated immune responses in the Taconic mice compared to Jackson Labs counterparts. Expression and production of IL - 1β, a cytokine known to promote IL - 17 production, as well as expression of Tnfa increased in the gut mucosa of Taconic mice in the first 24 hours after curli injections, which correlated with significant increases in the number of neutrophils and macrophages in the mesenteric lymph nodes. A significant increase in the expression of Ccl3 in colon and cecum of Taconic mice injected with curli was detected. Taconic mice injected with curli also had elevated levels of inflammation in their knees. Overall, our data suggest that autoimmune responses to bacterial ligands, such as curli, are amplified in individuals with a microbiome that promote inflammation.
Collapse
Affiliation(s)
- Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kaitlyn C. M. Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kathrine Kyrylchuk
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Amanda Miller
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | | | - Wenhan Zhu
- Department of Pathology Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stefania Gallucci
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Tam
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
5
|
Parida JR, Kumar S, Ahmed S, Chaurasia S, Mukherjee R, Singh R, Ravindran B, Aggarwal A, Misra R. Reactive arthritis and undifferentiated peripheral spondyloarthritis share human leucocyte antigen B27 subtypes and serum and synovial fluid cytokine profiles. Rheumatology (Oxford) 2021; 60:3004-3011. [PMID: 34144605 DOI: 10.1093/rheumatology/keaa746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/07/2020] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Peripheral SpA (pSpA) is comprised of ReA, PsA, enteritis-associated arthritis and undifferentiated pSpA (upSpA). ReA and upSpA share T cell oligotypes and metabolomics in serum and SF. We investigated HLA-B27 subtypes and cytokines in serum and SF that were compared between ReA and upSpA. METHODS ReA and upSpA were compared in two cohorts. In cohort I (44 ReA and 56 upSpA), HLA-B27 subtyping was carried out. In cohort II (17 ReA and 21 upSpA), serum and SF cytokines were compared using a multiplex cytokine bead assay (27 cytokines). A total of 28 healthy controls with similar age and sex to cohort II were included for comparison of serum cytokine levels. RESULTS In cohort I, HLA-B27 was positive in 81.8% (36/44) of ReA and 85.71% (48/56) of upSpA patients. HLA-B27 typing was successful in 70 patients (30 ReA and 40 uSpA). HLA-B*2705 was the most common, followed by HLA-B*2704 and HLA-B*2707. Frequencies were the same between ReA and upSpA. In cohort II, 14 cytokines were detectable in the serum of patients. The levels of eight cytokines were higher than in the controls. The cytokine levels of ReA and upSpA were similar. Sixteen cytokines were detectable in the SF of patients. There was no statistical difference in the levels between ReA and upSpA. The cytokine profiles in sera and SF were also similar among HLA-B27-positive and negative patients. CONCLUSION ReA and upSpA have similar HLA-B27 subtype associations and similar cytokine profiles. They should be considered as a single entity during studies as well as clinical management.
Collapse
Affiliation(s)
- Jyoti Ranjan Parida
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Department of Clinical Immunology & Rheumatology IMS and SUM Hospital and Medical College, Bhubaneswar, India
| | - Sandeep Kumar
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Department of Medicine, Section Pulmonary Disease, Tulane University, New Orleans, LA, USA
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| | - Smriti Chaurasia
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ratnadeep Mukherjee
- Infectious Disease Biology Group, Institute of Life Sciences, Bhubaneswar, India.,Immunodynamics Section, Laboratory of Integrative Cancer Immunology, Centre for Cancer Research -National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajeev Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,ICMR-Regional Medical Research Centre, Ministry of Health and Family Welfare, Government of India, BRD Medical College Campus, Gorakhpur, India
| | - Balachandran Ravindran
- Institute of Life Sciences, Bhubaneswar, India.,Institute of Life Sciences, Bhubaneswar, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ramnath Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| |
Collapse
|
6
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
7
|
Treatment of reactive arthritis with biological agents: a review. Biosci Rep 2021; 40:222065. [PMID: 32039436 PMCID: PMC7033307 DOI: 10.1042/bsr20191927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of reactive arthritis (ReA) has not been fully elucidated. In recent years, many researchers have confirmed that multiple cytokines are involved in the occurrence and development of ReA. Although ReA is self-limiting, it is still incurable for some patients who have no or a weak response to traditional drugs, such as non-steroidal anti-inflammatory agents, glucocorticoids and immunosuppressive agents. This is called refractory reactive arthritis. Currently, there is insufficient evidences for the treatment of refractory ReA with biological agents, though biological agents against cytokines have been developed over the past few years. This review summarizes the current development of clinical treatments of ReA with biological agents, which provides future investigations on refractory ReA with more evidence and references.
Collapse
|
8
|
Yang KL, Lejeune A, Chang G, Scher JU, Koralov SB. Microbial-derived antigens and metabolites in spondyloarthritis. Semin Immunopathol 2021; 43:163-172. [PMID: 33569635 DOI: 10.1007/s00281-021-00844-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
Spondyloarthritis (SpA) is a group of chronic, immune-mediated, inflammatory diseases affecting the bone, synovium, and enthesis. Microbiome, the community of microorganisms that has co-evolved with human hosts, plays a pivotal role in human health and disease. This invisible "essential organ" supplies the host with a myriad of chemicals and molecules. In turn, microbial metabolites can serve as messengers for microbes to communicate with each other and in the cross-talk with host cells. Gut dysbiosis in SpA is associated with altered microbial metabolites, and an accumulated body of research has contributed to the understanding that changes in intestinal microbiota can modulate disease pathogenesis. We review the novel findings from human and animal studies to provide an overview of the contribution of individual microbial metabolites and antigens to SpA.
Collapse
Affiliation(s)
- Katharine Lu Yang
- Department of Pathology, NYU School of Medicine, 522 First Ave. Smilow Research Bldg 511, New York, NY, 10016, USA
| | - Alannah Lejeune
- Department of Pathology, NYU School of Medicine, 522 First Ave. Smilow Research Bldg 511, New York, NY, 10016, USA
| | - Gregory Chang
- Department of Radiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, 10016, USA. .,Division of Rheumatology and Psoriatic Arthritis Center, 301 East 17th St, Room 1608, New York, NY, 10003, USA.
| | - Sergei B Koralov
- Department of Pathology, NYU School of Medicine, 522 First Ave. Smilow Research Bldg 511, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Abstract
Purpose of Review The aim of this paper is to provide an overview about reactive arthritis, with an update regarding pathophysiology and therapeutic approach of the disease, outlining the clinical features and diagnostic approach, based on recent literature review. Recent Findings Reactive arthritis is considered to be part of the spectrum of the spondyloarthritis. Its epidemiology is changing worldwide due to several reasons, among them are as follows: different diagnosis approach and clinical presentations, different grades of infection, microbiome changes, etc. The understanding of pathophysiological models is challenging, but recent studies contribute to elucidate the major factors involved in the development of the disease. The management of ReA depends on the triggering agent and the phase of disease, whether it is acute or chronic. Summary The association between the microbiome changes and spondyloarthropathies (ReA) is becoming increasingly evident. The results regarding the biologic treatment on refectory ReA are promising.
Collapse
|
10
|
Verma A, Sharda S, Rathi B, Somvanshi P, Pandey BD. Elucidating potential molecular signatures through host-microbe interactions for reactive arthritis and inflammatory bowel disease using combinatorial approach. Sci Rep 2020; 10:15131. [PMID: 32934294 PMCID: PMC7492238 DOI: 10.1038/s41598-020-71674-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
Reactive Arthritis (ReA), a rare seronegative inflammatory arthritis, lacks exquisite classification under rheumatic autoimmunity. ReA is solely established using differential clinical diagnosis of the patient cohorts, where pathogenic triggers linked to enteric and urogenital microorganisms e.g. Salmonella, Shigella, Yersinia, Campylobacter, Chlamydia have been reported. Inflammatory Bowel Disease (IBD), an idiopathic enteric disorder co-evolved and attuned to present gut microbiome dysbiosis, can be correlated to the genesis of enteropathic arthropathies like ReA. Gut microbes symbolically modulate immune system homeostasis and are elementary for varied disease patterns in autoimmune disorders. The gut-microbiota axis structured on the core host-microbe interactions execute an imperative role in discerning the etiopathogenesis of ReA and IBD. This study predicts the molecular signatures for ReA with co-evolved IBD through the enveloped host-microbe interactions and microbe-microbe 'interspecies communication', using synonymous gene expression data for selective microbes. We have utilized a combinatorial approach that have concomitant in-silico work-pipeline and experimental validation to corroborate the findings. In-silico analysis involving text mining, metabolic network reconstruction, simulation, filtering, host-microbe interaction, docking and molecular mimicry studies results in robust drug target/s and biomarker/s for co-evolved IBD and ReA. Cross validation of the target/s or biomarker/s was done by targeted gene expression analysis following a non-probabilistic convenience sampling. Studies were performed to substantiate the host-microbe disease network consisting of protein-marker-symptom/disease-pathway-drug associations resulting in possible identification of vital drug targets, biomarkers, pathways and inhibitors for IBD and ReA.Our study identified Na(+)/H(+) anti-porter (NHAA) and Kynureninase (KYNU) to be robust early and essential host-microbe interacting targets for IBD co-evolved ReA. Other vital host-microbe interacting genes, proteins, pathways and drugs include Adenosine Deaminase (ADA), Superoxide Dismutase 2 (SOD2), Catalase (CAT), Angiotensin I Converting Enzyme (ACE), carbon metabolism (folate biosynthesis) and methotrexate. These can serve as potential prognostic/theranostic biomarkers and signatures that can be extrapolated to stratify ReA and related autoimmunity patient cohorts for further pilot studies.
Collapse
Affiliation(s)
- Anukriti Verma
- Amity Institute of Biotechnology, J-3 Block, Amity University Campus, Sector-125, Noida, UP, 201313, India
| | - Shivani Sharda
- Amity Institute of Biotechnology, J-3 Block, Amity University Campus, Sector-125, Noida, UP, 201313, India.
| | - Bhawna Rathi
- Amity Institute of Biotechnology, J-3 Block, Amity University Campus, Sector-125, Noida, UP, 201313, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Bimlesh Dhar Pandey
- Fortis Hospital, B-22, Sector 62, Gautam Buddh Nagar, Noida, Uttar Pradesh, 201301, India
| |
Collapse
|
11
|
Castro Rocha FA, Duarte-Monteiro AM, Henrique da Mota LM, Matias Dinelly Pinto AC, Fonseca JE. Microbes, helminths, and rheumatic diseases. Best Pract Res Clin Rheumatol 2020; 34:101528. [PMID: 32448639 PMCID: PMC7203059 DOI: 10.1016/j.berh.2020.101528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been a progressive interest on modifications of the human defense system following insults occurring in the interface between our body and the external environment, as they may provoke or worsen disease states. Studies suggest that billions of germs, which compose the gut microbiota influence one's innate and adaptive immune responses at the intestinal level, but these microorganisms may also impact rheumatic diseases. The microbiota of the skin, respiratory, and urinary tracts may also be relevant in rheumatology. Evidence indicates that changes in the gut microbiome alter the pathogenesis of immune-mediated diseases such as rheumatoid arthritis and ankylosing spondylitis but also of other disorders like atherosclerosis and osteoarthritis. Therapeutic strategies to modify the microbiota, including probiotics and fecal microbiota transplantation, have been received with skepticism, which, in turn, has drawn attention back to previously developed interventions such as antibiotics. Helminths adapted to humans over the evolution process, but their role in disease modulation, particularly immune-mediated diseases, remains to be understood. The present review focuses on data concerning modifications of the immune system induced by interactions with microbes and pluricellular organisms, namely helminths, and their impact on rheumatic diseases. Practical aspects, including specific microbiota-targeted therapies, are also discussed.
Collapse
Affiliation(s)
- Francisco Airton Castro Rocha
- Departamento de Medicina Clínica, Liga de Reumatologia e Doenças Autoimunes, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Ana Margarida Duarte-Monteiro
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHULN and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Licia Maria Henrique da Mota
- Hospital Universitário de Brasília, Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Ana Carolina Matias Dinelly Pinto
- Departamento de Medicina Clínica, Liga de Reumatologia e Doenças Autoimunes, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHULN and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Yang L, Liu B, Zheng J, Huang J, Zhao Q, Liu J, Su Z, Wang M, Cui Z, Wang T, Zhang W, Li Q, Lu H. Rifaximin Alters Intestinal Microbiota and Prevents Progression of Ankylosing Spondylitis in Mice. Front Cell Infect Microbiol 2019; 9:44. [PMID: 30886835 PMCID: PMC6409347 DOI: 10.3389/fcimb.2019.00044] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, accumulating evidence has suggested that gut microbiota may be involved in the occurrence and development of ankylosing spondylitis (AS). It has been suggested that rifaximin have the ability to modulate the gut bacterial communities, prevent inflammatory response, and modulate gut barrier function. The goal of this work is to evaluate the protective effects of rifaximin in fighting AS and to elucidate the potential underlying mechanism. Rifaximin were administered to the proteoglycan (PG)-induced AS mice for 4 consecutive weeks. The disease severity was measured with the clinical and histological of arthritis and spondylitis. Intestinal histopathological, pro-inflammatory cytokine levels and the intestinal mucosal barrier were evaluated. Then, western blot was performed to explore the toll-like receptor 4 (TLR-4) signal transducer and NF-κB expression. Stool samples were collected to analyze the differences in the gut microbiota via next-generation sequencing of 16S rDNA. We found that rifaximin significantly reduced the severity of AS and resulted in down-regulation of inflammatory factors, such as TNF-α, IL-6, IL-17A, and IL-23. Meanwhile, rifaximin prevented ileum histological alterations, restored intestinal barrier function and inhibited TLR-4/NF-κB signaling pathway activation. Rifaximin also changed the gut microbiota composition with increased Bacteroidetes/Firmicutes phylum ratio, as well as selectively promoting some probiotic populations, including Lactobacillales. Our results suggest that rifaximin suppressed progression of AS and regulated gut microbiota in AS mice. Rifaximin might be useful as a novel treatment for AS.
Collapse
Affiliation(s)
- Lianjun Yang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Bin Liu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Junchi Zheng
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jincheng Huang
- Department of Orthopedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Qinghao Zhao
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jinshi Liu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhihai Su
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhifei Cui
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tingxuan Wang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weicong Zhang
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hai Lu
- Department of Orthopedic Surgery, Orthopaedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Ahmed S, Dubey D, Chowdhury A, Chaurasia S, Guleria A, Kumar S, Singh R, Kumar D, Misra R. Nuclear magnetic resonance‐based metabolomics reveals similar metabolomics profiles in undifferentiated peripheral spondyloarthritis and reactive arthritis. Int J Rheum Dis 2019; 22:725-733. [DOI: 10.1111/1756-185x.13490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Durgesh Dubey
- Centre of Biomedical Research Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Abhra Chowdhury
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Smriti Chaurasia
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Anupam Guleria
- Centre of Biomedical Research Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Sandeep Kumar
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Rajeev Singh
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Dinesh Kumar
- Centre of Biomedical Research Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Ramnath Misra
- Department of Clinical Immunology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| |
Collapse
|
14
|
Gupta L, Ahmed S, Jain A, Misra R. Emerging role of metabolomics in rheumatology. Int J Rheum Dis 2018; 21:1468-1477. [PMID: 30146741 DOI: 10.1111/1756-185x.13353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
The pursuit for understanding disease pathogenesis, in this age of rapid laboratory diagnostics and fast-paced research, has led scientists worldwide to take recourse in hypothesis-free approaches for molecular diagnosis. Metabolomics is one such powerful tool that explores comprehensibly the metabolic alternations in human diseases. It involves study of small molecules of less than 1 kD in size by either LSMS or nuclear magnetic resonance. Unlike genomics, which tells us what may have happened, metabolomics reflects what did happen. The NMR technique has an advantage of analyzing metabolites without sample preparation, thereby diminishing artifacts, is less cumbersome and with the latest database on Metabolome; about 30 000 metabolites can be identified. The study of metabolomics for several rheumatic diseases, including rheumatoid arthritis, lupus, osteoarthritis and vasculitis, has revealed distinctive metabolic signatures. Thus, metabolomics is a technique that promises precision medicine with better biomarkers, robust predictors of drug response and of disease outcome, discovery of newer metabolites and pathways in disease pathogenesis, and finally, targeted drug development. This review intends to decipher its relevance in common rheumatic diseases.
Collapse
Affiliation(s)
- Latika Gupta
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Avinash Jain
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ramnath Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
15
|
Manasson J, Shen N, Garcia Ferrer HR, Ubeda C, Iraheta I, Heguy A, Von Feldt JM, Espinoza LR, Garcia Kutzbach A, Segal LN, Ogdie A, Clemente JC, Scher JU. Gut Microbiota Perturbations in Reactive Arthritis and Postinfectious Spondyloarthritis. Arthritis Rheumatol 2018; 70:242-254. [PMID: 29073348 DOI: 10.1002/art.40359] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Reactive arthritis (ReA) is an inflammatory disorder occurring several weeks after gastrointestinal or genitourinary tract infections. HLA-B27 positivity is considered a risk factor, although it is not necessarily predictive of disease incidence. Among nongenetic factors, the intestinal microbiome may play a role in disease susceptibility. The objective of this study was to characterize the gut microbiota and host gene interactions in ReA and postinfectious spondyloarthritis. METHODS Adult subjects with peripheral spondyloarthritis and control subjects with preceding infections who did not develop arthritis were prospectively recruited from a geographic region with a high prevalence of ReA. Clinical variables, HLA status, and 16S ribosomal RNA gene sequencing of intestinal microbiota were analyzed. RESULTS Subjects with ReA showed no significant differences from controls in gut bacterial richness or diversity. However, there was a significantly higher abundance of Erwinia and Pseudomonas and an increased prevalence of typical enteropathogens associated with ReA. Subjects with ultrasound evidence of enthesitis were enriched in Campylobacter, while subjects with uveitis and radiographic sacroiliitis were enriched in Erwinia and unclassified Ruminococcaceae, respectively; both were enriched in Dialister. Host genetics, particularly HLA-A24, were associated with differences in gut microbiota diversity irrespective of disease status. We identified several co-occurring taxa that were also predictive of HLA-A24 status. CONCLUSION This is the first culture-independent study characterizing the gut microbial community in postinfectious arthritis. Although bacterial factors correlated with disease presence and clinical features of ReA, host genetics also appeared to be a major independent driver of intestinal community composition. Understanding of these gut microbiota-host genetic relationships may further clarify the pathogenesis of postinfectious spondyloarthritides.
Collapse
Affiliation(s)
- Julia Manasson
- New York University School of Medicine and Hospital for Joint Diseases, New York, New York
| | - Nan Shen
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helga R Garcia Ferrer
- Guatemalan Association Against Rheumatic Diseases and Universidad Francisco Marroquin, Guatemala City, Guatemala
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain, and CIBER en Epidemiologia y Salud Publica, Madrid, Spain
| | - Isa Iraheta
- Guatemalan Association Against Rheumatic Diseases and Universidad Francisco Marroquin, Guatemala City, Guatemala
| | - Adriana Heguy
- New York University School of Medicine, New York, New York
| | | | - Luis R Espinoza
- Louisiana State University Health Science Center, New Orleans
| | - Abraham Garcia Kutzbach
- Guatemalan Association Against Rheumatic Diseases and Universidad Francisco Marroquin, Guatemala City, Guatemala
| | | | | | | | - Jose U Scher
- New York University School of Medicine and Hospital for Joint Diseases, New York, New York
| |
Collapse
|
16
|
Chowdhury AC, Chaurasia S, Mishra SK, Aggarwal A, Misra R. IL-17 and IFN-γ producing NK and γδ-T cells are preferentially expanded in synovial fluid of patients with reactive arthritis and undifferentiated spondyloarthritis. Clin Immunol 2017; 183:207-212. [DOI: 10.1016/j.clim.2017.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/27/2017] [Accepted: 03/03/2017] [Indexed: 01/13/2023]
|
17
|
Abstract
Cytological analysis of synovial fluid is widely used in the clinic to assess joint health and disease. However, in general practice, only the total number of white blood cells (WBCs) are available for cytologic evaluation of the joint. Moreover, sufficient volume of synovial aspirates is critical to run conventional analyses, despite limited volume of aspiration that can normally be obtained from a joint. Therefore, there is a lack of consistent and standardized synovial fluid cytological tests in the clinic. To address these shortcomings, we developed a microfluidic platform (Synovial Chip), for the first time in the literature, to achieve repeatable, cost- and time-efficient, and standardized synovial fluid cytological analysis based on specific cell surface markers. Microfluidic channels functionalized with antibodies against specific cell surface antigens are connected in series to capture WBC subpopulations, including CD4+, CD8+, and CD66b+ cells, simultaneously from miniscule volumes (100 μL) of synovial fluid aspirates. Cell capture specificity was evaluated by fluorescent labeling of isolated cells in microchannels and was around 90% for all three WBC subpopulations. Furthermore, we investigated the effect of synovial fluid viscosity on capture efficiency in the microfluidic channels and utilized hyaluronidase enzyme treatment to reduce viscosity and to improve cell capture efficiency (>60%) from synovial fluid samples. Synovial Chip allows efficient and standardized point-of-care isolation and analysis of WBC subpopulations in miniscule volumes of patient synovial fluid samples in the clinic.
Collapse
|
18
|
Misra R, Gupta L. Epidemiology: Time to revisit the concept of reactive arthritis. Nat Rev Rheumatol 2017; 13:327-328. [PMID: 28490789 DOI: 10.1038/nrrheum.2017.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ramnath Misra
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Rae Bareilly Road, Lucknow 226014, India
| | - Latika Gupta
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Rae Bareilly Road, Lucknow 226014, India
| |
Collapse
|
19
|
Abstract
Reactive arthritis is classified as a spondyloarthropathy. Current concepts of disease suggest an infectious trigger, followed by inflammatory arthritis. Several mechanisms have been proposed to explain the interaction of host susceptibility and microorganism. Diagnosis relies on a compatible clinical syndrome and microbiologic confirmation of the pathogen. Antibiotic therapy seems useful in Chlamydia-triggered arthritis. The role of antibiotics in arthritis triggered by enteric pathogens is less clear. The role of tumor necrosis factor alpha inhibitors in therapy is evolving. Many patients have a course limited to a few months, but others experience extraarticular disease and more prolonged courses.
Collapse
Affiliation(s)
- Steven K Schmitt
- Section of Bone and Joint Infections, Department of Infectious Disease, Medicine Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Desk G-21, Cleveland, OH 44195, USA.
| |
Collapse
|