1
|
Xu J, Mu S, Wang Y, Yu S, Wang Z. Recent advances in immunotherapy and its combination therapies for advanced melanoma: a review. Front Oncol 2024; 14:1400193. [PMID: 39081713 PMCID: PMC11286497 DOI: 10.3389/fonc.2024.1400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
The incidence of melanoma is increasing year by year and is highly malignant, with a poor prognosis. Its treatment has always attracted much attention. Among the more clinically applied immunotherapies are immune checkpoint inhibitors, bispecific antibodies, cancer vaccines, adoptive cell transfer therapy, and oncolytic virotherapy. With the continuous development of technology and trials, in addition to immune monotherapy, combinations of immunotherapy and radiotherapy have shown surprising efficacy. In this article, we review the research progress of immune monotherapy and combination therapy for advanced melanoma, with the aim of providing new ideas for the treatment strategy for advanced melanoma.
Collapse
Affiliation(s)
- Jiamin Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shukun Mu
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yun Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Suchun Yu
- Department of Pharmacy, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Roccuzzo G, Sarda C, Pala V, Ribero S, Quaglino P. Prognostic biomarkers in melanoma: a 2023 update from clinical trials in different therapeutic scenarios. Expert Rev Mol Diagn 2024; 24:379-392. [PMID: 38738539 DOI: 10.1080/14737159.2024.2347484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Over the past decade, significant advancements in the field of melanoma have included the introduction of a new staging system and the development of immunotherapy and targeted therapies, leading to changes in substage classification and impacting patient prognosis. Despite these strides, early detection remains paramount. The quest for dependable prognostic biomarkers is ongoing, given melanoma's unpredictable nature, especially in identifying patients at risk of relapse. Reliable biomarkers are critical for informed treatment decisions. AREAS COVERED This review offers a comprehensive review of prognostic biomarkers in the context of clinical trials for immunotherapy and targeted therapy. It explores different clinical scenarios, including adjuvant, metastatic, and neo-adjuvant settings. Key findings suggest that tumor mutational burden, PD-L1 expression, IFN-γ signature, and immune-related factors are promising biomarkers associated with improved treatment responses. EXPERT OPINION Identifying practical prognostic factors for melanoma therapy is challenging due to the tumor's heterogeneity. Promising biomarkers include tumor mutational burden (TMB), circulating tumor DNA, and those characterizing the tumor microenvironment, especially the immune component. Future research should prioritize large-scale, prospective studies to validate and standardize these biomarkers, emphasizing clinical relevance and real-world applicability. Easily accessible biomarkers have the potential to enhance the precision and effectiveness of melanoma management.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Cristina Sarda
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Valentina Pala
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Guo M, Zhao H. Growth differentiation factor-15 may be a novel biomarker in pancreatic cancer: A review. Medicine (Baltimore) 2024; 103:e36594. [PMID: 38335385 PMCID: PMC10860926 DOI: 10.1097/md.0000000000036594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Pancreatic cancer is a highly malignant and invasive gastrointestinal tumor that is often diagnosed at an advanced stage with a poor prognosis and high mortality. Currently, carbohydrate antigen199(CA199) is the only biomarker approved by the FDA for the diagnosis of pancreatic cancer, but it has great limitations. Growth differentiation factor-15 (GDF-15) is expected to be a novel biomarker for the diagnosis, efficacy prediction, and prognosis assessment of pancreatic cancer patients. In this paper, we searched the keywords GDF-15, macrophage inhibitory cytokine-1 (MIC-1), CA199, pancreatic cancer, and tumor markers in PubMed and Web of Science, searched related articles, and read and analyzed the retrieved papers. Finally, we systematically described the characteristics, mechanism of action, and clinical value of GDF-15, aiming to provide help for the detection and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Meng Guo
- Shanghai Jiaotong University School of Medicine affiliated Tongren Hospital, Shanghai, China
| | - Hui Zhao
- Shanghai Jiaotong University School of Medicine affiliated Tongren Hospital, Shanghai, China
| |
Collapse
|
4
|
Wei T, Li Y, Li B, Xie Q, Huang Y, Wu Z, Chen H, Meng Y, Liang L, Wang M, Geng J, Lei M, Shang J, Guo S, Yang Z, Jia H, Ren F, Zhao T. Plasmid co-expressing siRNA-PD-1 and Endostatin carried by attenuated Salmonella enhanced the anti-melanoma effect via inhibiting the expression of PD-1 and VEGF on tumor-bearing mice. Int Immunopharmacol 2024; 127:111362. [PMID: 38103411 DOI: 10.1016/j.intimp.2023.111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Melanoma, the most perilous form of skin cancer, is known for its inherent resistance to chemotherapy. Even with advances in tumor immunotherapy, the survival of patients with advanced or recurrent melanomas remains poor. Over time, melanoma tumor cells may produce excessive angiogenic factors, necessitating the use of combinations of angiogenesis inhibitors, including broad-spectrum options, to combat melanoma. Among these inhibitors, Endostatin is one of the most broad-spectrum and least toxic angiogenesis inhibitors. We found Endostatin significantly increased the infiltration of CD8+ T cells and reduced the infiltration of M2 tumor-associated macrophages (TAMs) in the melanoma tumor microenvironment (TME). Interestingly, we also observed high expression levels of programmed death 1 (PD-1), an essential immune checkpoint molecule associated with tumor immune evasion, within the melanoma tumor microenvironment despite the use of Endostatin. To address this issue, we investigated the effects of a plasmid expressing Endostatin and PD-1 siRNA, wherein Endostatin was overexpressed while RNA interference (RNAi) targeted PD-1. These therapeutic agents were delivered using attenuated Salmonella in melanoma-bearing mice. Our results demonstrate that pEndostatin-siRNA-PD-1 therapy exhibits optimal therapeutic efficacy against melanoma. We found that pEndostatin-siRNA-PD-1 therapy promotes the infiltration of CD8+ T cells and the expression of granzyme B in melanoma tumors. Importantly, combined inhibition of angiogenesis and PD-1 significantly suppresses melanoma tumor progression compared with the inhibition of angiogenesis or PD-1 alone. Based on these findings, our study suggests that combining PD-1 inhibition with angiogenesis inhibitors holds promise as a clinical strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Tian Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yang Li
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, PR China
| | - Baozhu Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Qian Xie
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yujing Huang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zunge Wu
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Haoqi Chen
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ying Meng
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Lirui Liang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ming Wang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jiaxin Geng
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Mengyu Lei
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jingli Shang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Sheng Guo
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Zishan Yang
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| | - Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang 453000, Henan, PR China.
| |
Collapse
|
5
|
Poletto S, Paruzzo L, Nepote A, Caravelli D, Sangiolo D, Carnevale-Schianca F. Predictive Factors in Metastatic Melanoma Treated with Immune Checkpoint Inhibitors: From Clinical Practice to Future Perspective. Cancers (Basel) 2023; 16:101. [PMID: 38201531 PMCID: PMC10778365 DOI: 10.3390/cancers16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The introduction of immunotherapy revolutionized the treatment landscape in metastatic melanoma. Despite the impressive results associated with immune checkpoint inhibitors (ICIs), only a portion of patients obtain a response to this treatment. In this scenario, the research of predictive factors is fundamental to identify patients who may have a response and to exclude patients with a low possibility to respond. These factors can be host-associated, immune system activation-related, and tumor-related. Patient-related factors can vary from data obtained by medical history (performance status, age, sex, body mass index, concomitant medications, and comorbidities) to analysis of the gut microbiome from fecal samples. Tumor-related factors can reflect tumor burden (metastatic sites, lactate dehydrogenase, C-reactive protein, and circulating tumor DNA) or can derive from the analysis of tumor samples (driver mutations, tumor-infiltrating lymphocytes, and myeloid cells). Biomarkers evaluating the immune system activation, such as IFN-gamma gene expression profile and analysis of circulating immune cell subsets, have emerged in recent years as significantly correlated with response to ICIs. In this manuscript, we critically reviewed the most updated literature data on the landscape of predictive factors in metastatic melanoma treated with ICIs. We focus on the principal limits and potentiality of different methods, shedding light on the more promising biomarkers.
Collapse
Affiliation(s)
- Stefano Poletto
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Luca Paruzzo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Nepote
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Daniela Caravelli
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, 10060 Candiolo, Italy; (D.C.); (F.C.-S.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
| | | |
Collapse
|
6
|
Chen S, Huang C, Liao G, Sun H, Xie Y, Liao C, Wang J, He M, Hu H, Dai Z, Ren X, Zeng X, Lin Z, Zhang GP, Xie W, Shen S, Li S, Peng S, Kuang DM, Zhao Q, Duda DG, Kuang M. Distinct single-cell immune ecosystems distinguish true and de novo HBV-related hepatocellular carcinoma recurrences. Gut 2023; 72:1196-1210. [PMID: 36596711 DOI: 10.1136/gutjnl-2022-328428] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Revealing the single-cell immune ecosystems in true versus de novo hepatocellular carcinoma (HCC) recurrences could help the optimal development of immunotherapies. DESIGN We performed 5'and VDJ single-cell RNA-sequencing on 34 samples from 20 recurrent HCC patients. Bulk RNA-sequencing, flow cytometry, multiplexed immunofluorescence, and in vitro functional analyses were performed on samples from two validation cohorts. RESULTS Analyses of mutational profiles and evolutionary trajectories in paired primary and recurrent HCC samples using whole-exome sequencing identified de novo versus true recurrences, some of which occurred before clinical diagnosis. The tumour immune microenvironment (TIME) of truly recurrent HCCs was characterised by an increased abundance in KLRB1+CD8+ T cells with memory phenotype and low cytotoxicity. In contrast, we found an enrichment in cytotoxic and exhausted CD8+ T cells in the TIME of de novo recurrent HCCs. Transcriptomic and interaction analyses showed elevated GDF15 expression on HCC cells in proximity to dendritic cells, which may have dampened antigen presentation and inhibited antitumour immunity in truly recurrent lesions. In contrast, myeloid cells' cross talk with T cells-mediated T cell exhaustion and immunosuppression in the TIME of de novo recurrent HCCs. Consistent with these findings, a phase 2 trial of neoadjuvant anti-PD-1 immunotherapy showed more responses in de novo recurrent HCC patients. CONCLUSION True and de novo HCC recurrences occur early, have distinct TIME and may require different immunotherapy strategies. Our study provides a source for genomic diagnosis and immune profiling for guiding immunotherapy based on the type of HCC recurrence and the specific TIME.
Collapse
Affiliation(s)
- Shuling Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guanrui Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huichuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yubin Xie
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Changyi Liao
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jianping Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Minghui He
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huanjing Hu
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoxue Ren
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuezhen Zeng
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhilong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Guo-Pei Zhang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenxuan Xie
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Sui Peng
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Dong-Ming Kuang
- State Key Laboratory of Oncology in South China, Cancer Center, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, People's Republic of China
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Guan J, Liu H, Chai Y, Yu J, Yao J, Wang J, Pan Z, Zhang J, Zhou Y, Liu H, Yao S, Qi J, Feng H, Gao GF, Wang Q, Shi Y, Tan S. Characterization of the high-affinity anti-CTLA-4 monoclonal antibody JS007 for immune checkpoint therapy of cancer. MAbs 2023; 15:2153409. [PMID: 36511654 PMCID: PMC9754112 DOI: 10.1080/19420862.2022.2153409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical inhibitory checkpoint molecule, and monoclonal antibodies (mAbs) targeting CTLA-4 that restore anti-tumor T cell immunity have achieved clinical success. Here, we report a humanized IgG1 mAb, namely JS007, with high binding affinity to CTLA-4. JS007 shows superior binding affinity and T-cell activating efficiency over ipilimumab. Moreover, it demonstrates substantial in vivo tumor suppression efficacy at low doses. The crystal structure of JS007/CTLA-4 complex (PDB: 8HIT) shows JS007 adopts a heavy-chain-dominant binding mode, and mainly contacts the BC loop, DE loop and FG loop of CTLA-4. Notably, two Tyr residues (VH-Y100 and VL-Y32) from the complementarity-determining region loops insert into the two cavities formed by the residues from the loops of CTLA-4, which may contribute to the stabilization of the binding. Comparative analysis with other anti-CTLA-4 mAbs indicates that the double "wedge-into-hole" binding mode is unique for JS007 and may be responsible for the high-affinity binding to CTLA-4. These findings have provided an important molecular understanding of the high-affinity CTLA-4 blockade mAbs and shed light on future development of agents targeting CTLA-4.
Collapse
Affiliation(s)
- Jiawei Guan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hongchuan Liu
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Yan Chai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China
| | - Jie Yu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Shandong, China
| | - Jian Yao
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Jing Wang
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Zhiwei Pan
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Jing Zhang
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Yuehua Zhou
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Hui Liu
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Sheng Yao
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - Jianxun Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China
| | - Hui Feng
- Department of Antibody Discovery and Engineering, Shanghai Junshi Biosciences Co Ltd, Shanghai, China
| | - George F. Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qihui Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China,CONTACT Qihui Wang
| | - Yi Shi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Tan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Plasma GDF15 levels associated with circulating immune cells predict the efficacy of PD-1/PD-L1 inhibitor treatment and prognosis in patients with advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:159-171. [PMID: 36472770 PMCID: PMC9889409 DOI: 10.1007/s00432-022-04500-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Although increased plasma growth differentiation factor-15 (GDF15) levels have been reported in patients with various cancers, the predictive role of PD-1/PD-L1 inhibitors in advanced cancers remains unknown. This study aimed to investigate GDF15 levels as a predictive marker in advanced non-small cell lung cancer (NSCLC) treated with PD-1/PD-L1 inhibitors and analyze their association with immune cell populations. METHODS This study included 87 patients with advanced NSCLC receiving anti-PD-1/PD-L1 inhibitors between March 2018 and May 2020. Blood samples were obtained immediately before and months after PD-1/PD-L1 inhibitor administration. RESULTS The objective response rate (ORR) was significantly higher in the low GDF15 than in the high GDF15 group (39.2% vs. 15.3%, P = 0.013). The median progression-free survival (PFS) was significantly longer in the low GDF15 than in the high GDF15 group (13.2 [95% CI 7.6-18.9] vs. 7.2 [95% CI 4.8-9.6] months, P = 0.048). Moreover, plasma GDF15 levels negatively correlated with PD-1+/CD8+ T cells (r = - 0.399, P = 0.003) and positively with PD-1+/Treg cells (r = 0.507, P < 0.001) and PD-1+Treg/CD4+ T cells (r = 0.439, P < 0.001). The ORR was significantly higher in the group with decreased GDF15 from baseline than in the increased GDF15 group (37.2% vs. 10.0%, P = 0.026). The median PFS was significantly longer in the decreased GDF15 group (14.8 [95% CI 10.4-19.2] vs. 5.9 [95% CI 2.8-9.0] months, P = 0.002). Plasma GDF15 levels were associated with PD-1+CD8+ T cells and PD-1+ Treg cells. CONCLUSION Plasma GDF15 could be a potential biomarker for predicting the efficacy and survival benefit of immunotherapy in advanced NSCLC.
Collapse
|
9
|
Wu Z, Bian Y, Chu T, Wang Y, Man S, Song Y, Wang Z. The role of angiogenesis in melanoma: Clinical treatments and future expectations. Front Pharmacol 2022; 13:1028647. [PMID: 36588679 PMCID: PMC9797529 DOI: 10.3389/fphar.2022.1028647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of melanoma has increased rapidly over the past few decades, with mortality accounting for more than 75% of all skin cancers. The high metastatic potential of Melanoma is an essential factor in its high mortality. Vascular angiogenic system has been proved to be crucial for the metastasis of melanoma. An in-depth understanding of angiogenesis will be of great benefit to melanoma treatment and may promote the development of melanoma therapies. This review summarizes the recent advances and challenges of anti-angiogenic agents, including monoclonal antibodies, tyrosine kinase inhibitors, human recombinant Endostatin, and traditional Chinese herbal medicine. We hope to provide a better understanding of the mechanisms, clinical research progress, and future research directions of melanoma.
Collapse
Affiliation(s)
- Zhuzhu Wu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China,Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| | - Yongmei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| | - Zhenguo Wang
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Shuai Man, ; Yongmei Song, ; Zhenguo Wang,
| |
Collapse
|
10
|
Aisa A, Weng S, Li X, Zhang D, Yuan Y. Immune Checkpoint Inhibitors combined with HER-2 targeted therapy in HER-2 positive Gastroesophageal cancer. Crit Rev Oncol Hematol 2022; 180:103864. [DOI: 10.1016/j.critrevonc.2022.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
11
|
Zhang Y, Liu B, Kotenko S, Li W. Prognostic value of neutrophil-lymphocyte ratio and lactate dehydrogenase in melanoma patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29536. [PMID: 35960066 PMCID: PMC9371534 DOI: 10.1097/md.0000000000029536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) showed promising therapeutic efficacy on melanoma. Neutrophil-to-lymphocyte ratio (NLR) and serum lactate dehydrogenase (LDH) showed predictive values on prognosis of various tumors, but not on melanoma yet. This meta-analysis was conducted to investigate the prognostic role of NLR and LDH levels in melanoma treated with ICIs. METHODS A search was conducted for all reports published till March 2020 in PubMed, Web of Science, Cochrane Library, EMBASE, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP). Studies were included if they investigated the association between pretreatment NLR/LDH and prognosis in melanoma patients treated with ICIs. Subgroup analysis, publication bias, and meta-regression were conducted to investigate heterogeneity. RESULTS A total of 6817 melanoma patients were included. Overall, high pretreatment NLR and LDH were associated with poor overall survival (OS) (P < .001) and PFS (P < .001). Subgroup analyses revealed that elevated NLR and LDH levels were associated with poor OS and PFS in patients treated with anti-CTLA-4 or anti-PD-1/PD-L1 alone. NLR level was superior in predicting OS if compared with LDH level in patients treated with anti-PD-1/PD-L1 + anti-CTLA-4. In subgroup analysis stratified by cutoff value, high NLR level was associated with poor OS and PFS regardless of cutoff value, but LDH works when cutoff value = upper normal limit (UNL). The predictive value of NLR and LDH levels on OS and PFS was partially compromised in the Asian populations, compared with the Western countries. CONCLUSION Blood NLR and LDH levels showed great potential to be used as early prognostic biomarkers in melanoma patients treated with ICIs.
Collapse
Affiliation(s)
- Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bozhi Liu
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Sergei Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ
- Center for Cell Signaling, Newark, NJ
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- * Correspondence: Wei Li, PhD, Cancer Center, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, 100015 Beijing, People’s Republic of China (e-mail: )
| |
Collapse
|
12
|
Fomchenko EI, Leelatian N, Darbinyan A, Huttner AJ, Chiang VL. Histological changes associated with laser interstitial thermal therapy for radiation necrosis: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE21373. [PMID: 35855352 PMCID: PMC9257400 DOI: 10.3171/case21373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Patients with lung cancer and melanoma remain the two largest groups to develop brain metastases. Immunotherapy has been approved for treatment of stage IV disease in both groups. Many of these patients are additionally treated with stereotactic radiosurgery for their brain metastases during ongoing immunotherapy. Use of immunotherapy has been reported to increase the rates of radiation necrosis (RN) after radiosurgery, causing neurological compromise due to growth of the enhancing lesion as well as worsening of associated cerebral edema. OBSERVATIONS Laser interstitial thermal therapy (LITT) is a surgical approach that has been shown effective in the management of RN, especially given its efficacy in early reduction of perilesional edema. However, little remains known about the pathology of the post-LITT lesions and how LITT works in this condition. Here, we present two patients who needed surgical decompression after LITT for RN. Clinical, histopathological, and imaging features of both patients are presented. LESSONS Criteria for selecting the best patients with RN for LITT therapy remains unclear. Given two similarly sized lesions and not too dissimilar clinical histories but with differing outcomes, further investigation is clearly needed to identify predictors of response to LITT in the setting of SRS and immunotherapy-induced RN.
Collapse
|
13
|
Muniyan S, Pothuraju R, Seshacharyulu P, Batra SK. Macrophage inhibitory cytokine-1 in cancer: Beyond the cellular phenotype. Cancer Lett 2022; 536:215664. [PMID: 35351601 PMCID: PMC9088220 DOI: 10.1016/j.canlet.2022.215664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Despite technological advances in diagnostic abilities and improved treatment methods, the burden of cancers remains high, leading to significant morbidity and mortality. One primary reason is that cancer cell secretory factors modulate the tumor microenvironment, supporting tumor growth and circumvents anticancer activities of conventional therapies. Macrophage inhibitory cytokine-1 (MIC-1) is a pleiotropic cytokine elevated in various cancers. MIC-1 regulates various cancer hallmarks, including sustained proliferation, tumor-promoting inflammation, avoiding immune destruction, inducing invasion, metastasis, angiogenesis, and resisting cell death. Despite these facts, the molecular regulation and downstream signaling of MIC-1 in cancer remain elusive, partly because its receptor (GFRAL) was unknown until recently. Binding of MIC-1 to GFRAL recruits the coreceptor tyrosine kinase RET to execute its downstream signaling. So far, studies have shown that GFRAL expression is restricted to the brain stem and is responsible for MIC-1/GFRAL/RET-mediated metabolic disorders. Nevertheless, abundant levels of MIC-1 expression have been reported in all cancer types and have been proposed as a surrogate biomarker. Given the ubiquitous expression of MIC-1 in cancers, it is crucial to understand both upstream regulation and downstream MIC-1/GFRAL/RET signaling in cancer hallmark traits.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Thornton J, Chhabra G, Singh CK, Guzmán-Pérez G, Shirley CA, Ahmad N. Mechanisms of Immunotherapy Resistance in Cutaneous Melanoma: Recognizing a Shapeshifter. Front Oncol 2022; 12:880876. [PMID: 35515106 PMCID: PMC9066268 DOI: 10.3389/fonc.2022.880876] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Melanoma is one of the seven most common cancers in the United States, and its incidence is still increasing. Since 2011, developments in targeted therapies and immunotherapies have been essential for significantly improving overall survival rates. Prior to the advent of targeted and immunotherapies, metastatic melanoma was considered a death sentence, with less than 5% of patients surviving more than 5 years. With the implementation of immunotherapies, approximately half of patients with metastatic melanoma now survive more than 5 years. Unfortunately, this also means that half of the patients with melanoma do not respond to current therapies and live less than 5 years after diagnosis. One major factor that contributes to lower response in this population is acquired or primary resistance to immunotherapies via tumor immune evasion. To improve the overall survival of melanoma patients new treatment strategies must be designed to minimize the risk of acquired resistance and overcome existing primary resistance. In recent years, many advances have been made in identifying and understanding the pathways that contribute to tumor immune evasion throughout the course of immunotherapy treatment. In addition, results from clinical trials focusing on treating patients with immunotherapy-resistant melanoma have reported some initial findings. In this review, we summarize important mechanisms that drive resistance to immunotherapies in patients with cutaneous melanoma. We have focused on tumor intrinsic characteristics of resistance, altered immune function, and systemic factors that contribute to immunotherapy resistance in melanoma. Exploring these pathways will hopefully yield novel strategies to prevent acquired resistance and overcome existing resistance to immunotherapy treatment in patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Jessica Thornton
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | | | - Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
15
|
Aamdal E, Jacobsen KD, Straume O, Kersten C, Herlofsen O, Karlsen J, Hussain I, Amundsen A, Dalhaug A, Nyakas M, Schuster C, Hagene KT, Holmsen K, Russnes HG, Skovlund E, Kaasa S, Aamdal S, Kyte JA, Guren TK. Ipilimumab in a real-world population: A prospective Phase IV trial with long-term follow-up. Int J Cancer 2022; 150:100-111. [PMID: 34449877 DOI: 10.1002/ijc.33768] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Ipilimumab was the first treatment that improved survival in advanced melanoma. Efficacy and toxicity in a real-world setting may differ from clinical trials, due to more liberal eligibility criteria and less intensive monitoring. Moreover, high costs and lack of biomarkers have raised cost-benefit concerns about ipilimumab in national healthcare systems and limited its use. Here, we report the prospective, interventional study, Ipi4 (NCT02068196), which aimed to investigate the toxicity and efficacy of ipilimumab in a real-world population with advanced melanoma. This national, multicentre, phase IV trial included 151 patients. Patients received ipilimumab 3 mg/kg intravenously and were followed for at least 5 years or until death. Treatment interruption or cessation occurred in 38%, most frequently due to disease progression (19%). Treatment-associated grade 3 to 4 toxicity was observed in 28% of patients, and immune-related toxicity in 56%. The overall response rate was 9%. Median overall survival was 12.1 months (95% CI: 8.3-15.9); and progression-free survival 2.7 months (95% CI: 2.6-2.8). After 5 years, 20% of patients were alive. In a landmark analysis from 6 months, improved survival was associated with objective response (HR 0.16, P = .001) and stable disease (HR 0.49, P = .005) compared to progressive disease. Poor performance status, elevated lactate dehydrogenase and C-reactive protein were identified as biomarkers. This prospective trial represents the longest reported follow-up of a real-world melanoma population treated with ipilimumab. Results indicate safety and efficacy comparable to phase III trials and suggest that the use of ipilimumab can be based on current cost-benefit estimates.
Collapse
Affiliation(s)
- Elin Aamdal
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Kari D Jacobsen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Oddbjørn Straume
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Oluf Herlofsen
- Department of Oncology, Ålesund Hospital, Ålesund, Norway
| | - Jarle Karlsen
- The Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Israr Hussain
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Anita Amundsen
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Astrid Dalhaug
- Department of Oncology and Palliative Medicine, Nordland Hospital, Norway
| | - Marta Nyakas
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cornelia Schuster
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Kjersti Holmsen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Hege G Russnes
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Stein Kaasa
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steinar Aamdal
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jon A Kyte
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tormod K Guren
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Almeida N, Rodriguez J, Pla Parada I, Perez-Riverol Y, Woldmar N, Kim Y, Oskolas H, Betancourt L, Valdés JG, Sahlin KB, Pizzatti L, Szasz AM, Kárpáti S, Appelqvist R, Malm J, B. Domont G, C. S. Nogueira F, Marko-Varga G, Sanchez A. Mapping the Melanoma Plasma Proteome (MPP) Using Single-Shot Proteomics Interfaced with the WiMT Database. Cancers (Basel) 2021; 13:6224. [PMID: 34944842 PMCID: PMC8699267 DOI: 10.3390/cancers13246224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
Collapse
Affiliation(s)
- Natália Almeida
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
| | - Jimmy Rodriguez
- Division of Chemistry I, Department of Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden;
| | - Indira Pla Parada
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK;
| | - Nicole Woldmar
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | - Yonghyo Kim
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Lazaro Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Jeovanis Gil Valdés
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - K. Barbara Sahlin
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | | | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Roger Appelqvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Gilberto B. Domont
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Fábio C. S. Nogueira
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| |
Collapse
|
17
|
Guo H, Zhou L, Guo J, Huang X, Gu J. Endostatin inhibits the proliferation and migration of B16 cells by inducing macrophage polarity to M1‑type. Mol Med Rep 2021; 24:841. [PMID: 34633057 DOI: 10.3892/mmr.2021.12481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/23/2021] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is a common skin tumor that easily metastasizes and has a poor prognosis. Endostatin is an endogenous vascular endothelial inhibitor that mainly suppresses tumor growth by inhibiting the proliferation of vascular endothelial cells and by reducing the formation of tumor microvessels, however the immunological function of endostatin remains unclear. Previously, we have found that an over‑expression endostatin (pEndostatin) plasmid induced RAW264.7 cells' polarity to M1‑type macrophage. To elucidate the effect of M1‑type macrophages induced by endostatin on melanoma B16 cells, the present study transfected RAW264.7 cells with pEndostatin plasmid and co‑cultured them with B16 cells. Compared with the control group, the expression of matrix metalloproteinase (MMP)‑2, MMP‑9 and proliferating cell nuclear antigen in B16 cells was inhibited by M1‑type macrophages, but cleaved Caspase‑3 and cleaved Caspase‑8 were significantly upregulated and the ratio of Bax/Bcl‑2 was increased. These results indicated that M1 macrophages induced by pEndostatin plasmid inhibited the proliferation and migration of B16 cells and promoted their apoptosis. These findings suggest that the inhibitory effect of endostatin on melanoma is not limited to directly inhibiting tumor microvessel formation, but it may also be related to regulating changes in macrophage polarity.
Collapse
Affiliation(s)
- Hua Guo
- Department of Pathology and Pathogen Biology, Ningbo University School of Medical, Ningbo, Zhejiang 315211, P.R. China
| | - Longyuan Zhou
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Guo
- Department of Pathology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xueqin Huang
- Department of Pathology and Pathogen Biology, Ningbo University School of Medical, Ningbo, Zhejiang 315211, P.R. China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shangdong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
18
|
Garutti M, Bonin S, Buriolla S, Bertoli E, Pizzichetta MA, Zalaudek I, Puglisi F. Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers (Basel) 2021; 13:cancers13081819. [PMID: 33920288 PMCID: PMC8070445 DOI: 10.3390/cancers13081819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the therapeutic landscape of melanoma. In particular, checkpoint inhibition has shown to increase long-term outcome, and, in some cases, it can be virtually curative. However, the absence of clinically validated predictive biomarkers is one of the major causes of unpredictable efficacy of immunotherapy. Indeed, the availability of predictive biomarkers could allow a better stratification of patients, suggesting which type of drugs should be used in a certain clinical context and guiding clinicians in escalating or de-escalating therapy. However, the difficulty in obtaining clinically useful predictive biomarkers reflects the deep complexity of tumor biology. Biomarkers can be classified as tumor-intrinsic biomarkers, microenvironment biomarkers, and systemic biomarkers. Herein we review the available literature to classify and describe predictive biomarkers for checkpoint inhibition in melanoma with the aim of helping clinicians in the decision-making process. We also performed a meta-analysis on the predictive value of PDL-1.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Correspondence:
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34123 Trieste, Italy;
| | - Silvia Buriolla
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Dipartimento di Oncologia, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Elisa Bertoli
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Maria Antonietta Pizzichetta
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Iris Zalaudek
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Fabio Puglisi
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
19
|
Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One 2020; 15:e0240653. [PMID: 33057452 PMCID: PMC7561147 DOI: 10.1371/journal.pone.0240653] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
A novel coronavirus responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, to test existing drugs as inhibitors of SARS-CoV-2 main protease is a good approach. Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules. The flavonoids chemical structures were downloaded from PubChem and protease structure 6LU7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the SARS-CoV-2 protease and could be further investigated by in vitro and in vivo experiments for further validation. MD simulations were further performed to evaluate the dynamic behavior and stability of the protein in complex with the three best hits of docking experiments. Our results indicate that the rutin is a potential drug to inhibit the function of Chymotrypsin-like protease (3CL pro) of Coronavirus.
Collapse
Affiliation(s)
- Sabri Ahmed Cherrak
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen, Algeria
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
20
|
Lectin affinity chromatography and quantitative proteomic analysis reveal that galectin-3 is associated with metastasis in nasopharyngeal carcinoma. Sci Rep 2020; 10:16462. [PMID: 33020562 PMCID: PMC7536187 DOI: 10.1038/s41598-020-73498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious cancer in East and Southeast Asia. Patients are often diagnosed at advanced stages, rendering treatment failure due to high potential of metastasis. This study identified lectin-binding glycoproteins with a potential role in NPC metastasis. Cell lysate and culture medium in highly metastatic 5-8F, and lowly-metastatic 6-10B NPC cell lines were fractionated by ConA- and WGA-affinity chromatography, and subjected to GeLC-MS/MS. A total of 232 and 197 proteins were identified in ConA-enriched fraction of 5-8F and 6-10B cell lysates respectively. In WGA-enriched fraction, 65 and 164 proteins were found in 5-8F and 6-10B cell lysates respectively. Proteins identified in culture medium for both cell lines were 223 and 85 for ConA-enriched fraction, and 94 and 124 for WGA-enriched fraction from 5-8F and 6-10B respectively. Differentially expressed proteins were functionally categorized into cell–cell adhesion, extracellular matrix, glycolysis, protein homeostasis and/or glycosylation enzymes, and lipid metabolism. Interestingly, Galectin-3 (Gal-3) was highly expressed in 5-8F cells but was lowly expressed in 6-10B cells. The Gal-3 knockdown in 5-8F cells, Gal-3 overexpression in 6-10B cells and treatment with Gal-3 inhibitor revealed that Gal-3 was responsible for metastatic phenotypes including adhesion, migration and invasion. So Galectin-3 may serve as a potential target for NPC therapeutic interventions.
Collapse
|
21
|
Tomela K, Pietrzak B, Schmidt M, Mackiewicz A. The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life (Basel) 2020; 10:life10100219. [PMID: 32992737 PMCID: PMC7600343 DOI: 10.3390/life10100219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
There are various melanoma treatment strategies that are based on immunological responses, among which immune checkpoint inhibitors (ICI) are relatively novel form. Nowadays, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies represent a standard treatment for metastatic melanoma. Although there are remarkable curative effects in responders to ICI therapy, up to 70% of melanoma patients show resistance to this treatment. This low response rate is caused by innate as well as acquired resistance, and some aspects of treatment resistance are still unknown. Growing evidence shows that gut microbiota and bacterial metabolites, such as short-chain fatty acids (SCFAs), affect the efficacy of immunotherapy. Various bacterial species have been indicated as potential biomarkers of anti-PD-1 or anti-CTLA-4 therapy efficacy in melanoma, next to biomarkers related to molecular and genetic tumor characteristics or the host immunological response, which are detected in patients' blood. Here, we review the current status of biomarkers of response to ICI melanoma therapies, their pre-treatment predictive values, and their utility as on-treatment monitoring tools in order to select a relevant personalized therapy on the basis of probability of the best clinical outcome.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
22
|
Kijima T, Yamamoto H, Saito K, Kusuhara S, Yoshida S, Yokoyama M, Matsuoka Y, Numao N, Sakai Y, Matsubara N, Yuasa T, Masuda H, Yonese J, Kageyama Y, Fujii Y. Early C-reactive protein kinetics predict survival of patients with advanced urothelial cancer treated with pembrolizumab. Cancer Immunol Immunother 2020; 70:657-665. [DOI: 10.1007/s00262-020-02709-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/20/2020] [Indexed: 11/30/2022]
|
23
|
Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, Cao J, Tan M, Xu W, Zheng F, Shi Y, Hu B. A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin Infect Dis 2020; 71:833-840. [PMID: 32296824 PMCID: PMC7184338 DOI: 10.1093/cid/ciaa443] [Citation(s) in RCA: 330] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Because there is no reliable risk stratification tool for severe coronavirus disease 2019 (COVID-19) patients at admission, we aimed to construct an effective model for early identification of cases at high risk of progression to severe COVID-19. METHODS In this retrospective multicenter study, 372 hospitalized patients with nonsevere COVID-19 were followed for > 15 days after admission. Patients who deteriorated to severe or critical COVID-19 and those who maintained a nonsevere state were assigned to the severe and nonsevere groups, respectively. Based on baseline data of the 2 groups, we constructed a risk prediction nomogram for severe COVID-19 and evaluated its performance. RESULTS The training cohort consisted of 189 patients, and the 2 independent validation cohorts consisted of 165 and 18 patients. Among all cases, 72 (19.4%) patients developed severe COVID-19. Older age; higher serum lactate dehydrogenase, C-reactive protein, coefficient of variation of red blood cell distribution width, blood urea nitrogen, and direct bilirubin; and lower albumin were associated with severe COVID-19. We generated the nomogram for early identifying severe COVID-19 in the training cohort (area under the curve [AUC], 0.912 [95% confidence interval {CI}, .846-.978]; sensitivity 85.7%, specificity 87.6%) and the validation cohort (AUC, 0.853 [95% CI, .790-.916]; sensitivity 77.5%, specificity 78.4%). The calibration curve for probability of severe COVID-19 showed optimal agreement between prediction by nomogram and actual observation. Decision curve and clinical impact curve analyses indicated that nomogram conferred high clinical net benefit. CONCLUSIONS Our nomogram could help clinicians with early identification of patients who will progress to severe COVID-19, which will enable better centralized management and early treatment of severe disease.
Collapse
Affiliation(s)
- Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingyi Ou
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yusheng Jie
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, People's Republic of China
| | - Yaqiong Chen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lianxiong Yuan
- Department of Science and Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mingkai Tan
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenxiong Xu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yaling Shi
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, Cao J, Tan M, Xu W, Zheng F, Shi Y, Hu B. A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and Guangdong, China. Clin Infect Dis 2020. [PMID: 32296824 DOI: 10.1101/2020.03.17.20037515] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Because there is no reliable risk stratification tool for severe coronavirus disease 2019 (COVID-19) patients at admission, we aimed to construct an effective model for early identification of cases at high risk of progression to severe COVID-19. METHODS In this retrospective multicenter study, 372 hospitalized patients with nonsevere COVID-19 were followed for > 15 days after admission. Patients who deteriorated to severe or critical COVID-19 and those who maintained a nonsevere state were assigned to the severe and nonsevere groups, respectively. Based on baseline data of the 2 groups, we constructed a risk prediction nomogram for severe COVID-19 and evaluated its performance. RESULTS The training cohort consisted of 189 patients, and the 2 independent validation cohorts consisted of 165 and 18 patients. Among all cases, 72 (19.4%) patients developed severe COVID-19. Older age; higher serum lactate dehydrogenase, C-reactive protein, coefficient of variation of red blood cell distribution width, blood urea nitrogen, and direct bilirubin; and lower albumin were associated with severe COVID-19. We generated the nomogram for early identifying severe COVID-19 in the training cohort (area under the curve [AUC], 0.912 [95% confidence interval {CI}, .846-.978]; sensitivity 85.7%, specificity 87.6%) and the validation cohort (AUC, 0.853 [95% CI, .790-.916]; sensitivity 77.5%, specificity 78.4%). The calibration curve for probability of severe COVID-19 showed optimal agreement between prediction by nomogram and actual observation. Decision curve and clinical impact curve analyses indicated that nomogram conferred high clinical net benefit. CONCLUSIONS Our nomogram could help clinicians with early identification of patients who will progress to severe COVID-19, which will enable better centralized management and early treatment of severe disease.
Collapse
Affiliation(s)
- Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingyi Ou
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yusheng Jie
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, People's Republic of China
| | - Yaqiong Chen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lianxiong Yuan
- Department of Science and Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Cao
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mingkai Tan
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenxiong Xu
- Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yaling Shi
- Department of Laboratory Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol 2020; 11:951. [PMID: 32508832 PMCID: PMC7248355 DOI: 10.3389/fimmu.2020.00951] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Growth/differentiation factor-15 (GDF-15), also named macrophage inhibitory cytokine-1, is a divergent member of the transforming growth factor β superfamily. While physiological expression is barely detectable in most somatic tissues in humans, GDF-15 is abundant in placenta. Elsewhere, GDF-15 is often induced under stress conditions, seemingly to maintain cell and tissue homeostasis; however, a moderate increase in GDF-15 blood levels is observed with age. Highly elevated GDF-15 levels are mostly linked to pathological conditions including inflammation, myocardial ischemia, and notably cancer. GDF-15 has thus been widely explored as a biomarker for disease prognosis. Mechanistically, induction of anorexia via the brainstem-restricted GDF-15 receptor GFRAL (glial cell-derived neurotrophic factor [GDNF] family receptor α-like) is well-documented. GDF-15 and GFRAL have thus become attractive targets for metabolic intervention. Still, several GDF-15 mediated effects (including its physiological role in pregnancy) are difficult to explain via the described pathway. Hence, there is a clear need to better understand non-metabolic effects of GDF-15. With particular emphasis on its immunomodulatory potential this review discusses the roles of GDF-15 in pregnancy and in pathological conditions including myocardial infarction, autoimmune disease, and specifically cancer. Importantly, the strong predictive value of GDF-15 as biomarker may plausibly be linked to its immune-regulatory function. The described associations and mechanistic data support the hypothesis that GDF-15 acts as immune checkpoint and is thus an emerging target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jörg Wischhusen
- Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University of Würzburg Medical School, Würzburg, Germany
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Immunology and Immunotherapy Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Université de Paris, Sorbonne Université Team Cancer, Immune Control and Escape, Paris, France
| |
Collapse
|
26
|
Babačić H, Lehtiö J, Pico de Coaña Y, Pernemalm M, Eriksson H. In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma. J Immunother Cancer 2020; 8:e000204. [PMID: 32457125 PMCID: PMC7253007 DOI: 10.1136/jitc-2019-000204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have significantly improved the outcome in metastatic cutaneous melanoma (CM). However, therapy response is limited to subgroups of patients and clinically useful predictive biomarkers are lacking. METHODS To discover treatment-related systemic changes in plasma and potential biomarkers associated with treatment outcome, we analyzed serial plasma samples from 24 patients with metastatic CM, collected before and during ICI treatment, with mass-spectrometry-based global proteomics (high-resolution isoelectric focusing liquid chromatography-mass spectrometry (HiRIEF LC-MS/MS)) and targeted proteomics with proximity extension assays (PEAs). In addition, we analyzed plasma proteomes of 24 patients with metastatic CM treated with mitogen-activated protein kinase inhibitors (MAPKis), to pinpoint changes in protein plasma levels specific to the ICI treatment. To detect plasma proteins associated with treatment response, we performed stratified analyses in anti-programmed cell death protein 1 (anti-PD-1) responders and non-responders. In addition, we analyzed the association between protein plasma levels and progression-free survival (PFS) by Cox proportional hazards models. RESULTS Unbiased HiRIEF LC-MS/MS-based proteomics showed plasma levels' alterations related to anti-PD-1 treatment in 80 out of 1160 quantified proteins. Circulating PD-1 had the highest increase during anti-PD-1 treatment (log2-FC=2.03, p=0.0008) and in anti-PD-1 responders (log2-FC=2.09, p=0.005), but did not change in the MAPKis cohort. Targeted, antibody-based proteomics by PEA confirmed this observation. Anti-PD-1 responders had an increase in plasma proteins involved in T-cell response, neutrophil degranulation, inflammation, cell adhesion, and immune suppression. Furthermore, we discovered new associations between plasma proteins (eg, interleukin 6, interleukin 10, proline-rich acidic protein 1, desmocollin 3, C-C motif chemokine ligands 2, 3 and 4, vascular endothelial growth factor A) and PFS, which may serve as predictive biomarkers. CONCLUSIONS We detected an increase in circulating PD-1 during anti-PD-1 treatment, as well as diverse immune plasma proteomic signatures in anti-PD-1 responders. This study demonstrates the potential of plasma proteomics as a liquid biopsy method and in discovery of putative predictive biomarkers for anti-PD-1 treatment in metastatic CM.
Collapse
Affiliation(s)
- Haris Babačić
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Maria Pernemalm
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Hanna Eriksson
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- Theme Cancer/Department of Oncology/Skin Cancer Centre, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|