1
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Li D, Bühler M, Runft S, Gerold G, Marek K, Baumgärtner W, Strowig T, Gerhauser I. ASC- and caspase-1-deficient C57BL/6 mice do not develop demyelinating disease after infection with Theiler's murine encephalomyelitis virus. Sci Rep 2023; 13:10960. [PMID: 37414913 PMCID: PMC10326010 DOI: 10.1038/s41598-023-38152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces an acute polioencephalomyelitis and a chronic demyelinating leukomyelitis in SJL mice. C57BL/6 (B6) mice generally do not develop TMEV-induced demyelinating disease (TMEV-IDD) due to virus elimination. However, TMEV can persist in specific immunodeficient B6 mice such as IFNβ-/- mice and induce a demyelinating process. The proinflammatory cytokines IL-1β and IL-18 are activated by the inflammasome pathway, which consists of a pattern recognition receptor molecule sensing microbial pathogens, the adaptor molecule Apoptosis-associated speck-like protein containing a CARD (ASC), and the executioner caspase-1. To analyze the contribution of the inflammasome pathway to the resistance of B6 mice to TMEV-IDD, ASC- and caspase-1-deficient mice and wild type littermates were infected with TMEV and investigated using histology, immunohistochemistry, RT-qPCR, and Western Blot. Despite the antiviral activity of the inflammasome pathway, ASC- and caspase-1-deficient mice eliminated the virus and did not develop TMEV-IDD. Moreover, a similar IFNβ and cytokine gene expression was found in the brain of immunodeficient mice and their wild type littermates. Most importantly, Western Blot showed cleavage of IL-1β and IL-18 in all investigated mice. Consequently, inflammasome-dependent activation of IL-1β and IL-18 does not play a major role in the resistance of B6 mice to TMEV-IDD.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 90185, Umeå, Sweden
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Till Strowig
- Department for Microbial Immune Regulation, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
3
|
Preclinical model of multiple sclerosis: Focal, chemical or viral demyelination. Methods Cell Biol 2022; 168:87-102. [DOI: 10.1016/bs.mcb.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Perez Gomez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Genetic and immunological contributors to virus-induced paralysis. Brain Behav Immun Health 2021; 18:100395. [PMID: 34917987 PMCID: PMC8645428 DOI: 10.1016/j.bbih.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
Collapse
Key Words
- Amyotrophic Lateral Sclerosis, (ALS)
- Chromosome, (Chr)
- Chronic infection
- Collaborative Cross, (CC)
- Collaborative cross
- Cytokine
- Epstein-Barr Virus, (EBV)
- Host response
- IL-1 α
- Multiple Sclerosis, (MS)
- Paralysis
- Parkinson's disease, (PD)
- RANTES
- TMEV
- Theiler's murine encephalomyelitis virus, (TMEV)
- Viral infection
- blood brain barrier, (BBB)
- central nervous system, (CNS)
- days post infection, (dpi)
- experimental autoimmune encephalitis, (EAE)
- intraperitoneal, (IP)
- phosphate buffered saline, (PBS)
- plaque-forming units, (PFU)
- receptor for IL-1 α, (Il1r1)
Collapse
Affiliation(s)
- Aracely A. Perez Gomez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Metcalf CS, Vanegas F, Underwood T, Johnson K, West PJ, Smith MD, Wilcox KS. Screening of prototype antiseizure and anti-inflammatory compounds in the Theiler's murine encephalomyelitis virus model of epilepsy. Epilepsia Open 2021; 7:46-58. [PMID: 34668659 PMCID: PMC8886069 DOI: 10.1002/epi4.12550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice results in handling-induced seizures and is useful for evaluating compounds effective against infection-induced seizures. However, to date only a few compounds have been evaluated in this model, and a comprehensive study of antiseizure medications (ASMs) has not yet been performed. Furthermore, as the TMEV infection produces marked neuroinflammation, an evaluation of prototype anti-inflammatory compounds is needed as well. METHODS Male C57Bl/6J mice were inoculated with TMEV (day 0) followed by daily administrations of test compounds (day 3-7) and subsequent handling sessions (day 3-7). Doses of ASMs, comprising several mechanistic classes, were selected based on previously published data demonstrating the effect of these compounds in reducing seizures in the 6 Hz model of pharmacoresistant seizures. Doses of anti-inflammatory compounds, comprising several mechanistic classes, were selected based on published evidence of reduction of inflammation or inflammation-related endpoints. RESULTS Several prototype ASMs reduced acute seizures following TMEV infection: lacosamide, phenytoin, ezogabine, phenobarbital, tiagabine, gabapentin, levetiracetam, topiramate, and sodium valproate. Of these, phenobarbital and sodium valproate had the greatest effect (>95% seizure burden reduction). Prototype anti-inflammatory drugs celecoxib, dexamethasone, and prednisone also moderately reduced seizure burden. SIGNIFICANCE The TMEV model is utilized by the Epilepsy Therapy Screening Program (ETSP) as a tool for evaluation of novel compounds. Compounds reducing seizures in the TMEV comprise distinct mechanistic classes, some with mechanisms of action that extend beyond traditional ASMs.
Collapse
Affiliation(s)
- Cameron S Metcalf
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Fabiola Vanegas
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Tristan Underwood
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Kristina Johnson
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Peter J West
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Misty D Smith
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.,School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Karen S Wilcox
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Ciurkiewicz M, Floess S, Beckstette M, Kummerfeld M, Baumgärtner W, Huehn J, Beineke A. Transcriptome analysis following neurotropic virus infection reveals faulty innate immunity and delayed antigen presentation in mice susceptible to virus-induced demyelination. Brain Pathol 2021; 31:e13000. [PMID: 34231271 PMCID: PMC8549031 DOI: 10.1111/bpa.13000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV‐induced demyelinating disease (TMEV‐IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV‐infected SJL (TMEV‐IDD susceptible) and C57BL/6 (TMEV‐IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole‐transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock‐infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV‐infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or –suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.
Collapse
Affiliation(s)
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Ayasoufi K, Pfaller CK, Evgin L, Khadka RH, Tritz ZP, Goddery EN, Fain CE, Yokanovich LT, Himes BT, Jin F, Zheng J, Schuelke MR, Hansen MJ, Tung W, Parney IF, Pease LR, Vile RG, Johnson AJ. Brain cancer induces systemic immunosuppression through release of non-steroid soluble mediators. Brain 2020; 143:3629-3652. [PMID: 33253355 PMCID: PMC7954397 DOI: 10.1093/brain/awaa343] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.
Collapse
Affiliation(s)
| | - Christian K Pfaller
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, Germany
| | - Laura Evgin
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Roman H Khadka
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Zachariah P Tritz
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Emma N Goddery
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Cori E Fain
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lila T Yokanovich
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Benjamin T Himes
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Jiaying Zheng
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Matthew R Schuelke
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Immunology, Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, USA
| | | | - Wesley Tung
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Ian F Parney
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Larry R Pease
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Richard G Vile
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Department of Neurology, Rochester, MN, USA
| |
Collapse
|
8
|
Acute Disseminated Encephalomyelitis with Seizures and Myocarditis: A Fatal Triad. ACTA ACUST UNITED AC 2020; 56:medicina56060277. [PMID: 32512953 PMCID: PMC7353866 DOI: 10.3390/medicina56060277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/25/2023]
Abstract
Autoimmune pathology of acute disseminated encephalomyelitis (ADEM) is generally restricted to the brain. Our objective is to expand the phenotype of ADEM. A four-year-old girl was admitted to the pediatric emergency room of a university medical center five days after a common upper respiratory tract infection. Acute symptoms were fever, leg pain, and headaches. She developed meningeal signs, and her level of consciousness dropped rapidly. Epileptic seizure activity started, and she became comatose, requiring intubation and mechanical ventilation. Serial brain magnetic resonance imaging (MRI) illustrated the fulminant development of ADEM. Treatment escalation with high-dose corticosteroids, immunoglobulins, and plasma exchange did not lead to clinical improvement. On day ten, the patient developed treatment-refractory cardiogenic shock and passed away. The postmortem assessment confirmed ADEM and revealed acute lymphocytic myocarditis, likely explaining the acute cardiac failure. Human metapneumovirus and picornavirus were detected in the tracheal secrete by PCR. Data sources–medical chart of the patient. This case is consistent with evidence from experimental findings of an association of ADEM with myocarditis as a postinfectious systemic autoimmune response, with life-threatening involvement of the brain and heart.
Collapse
|
9
|
Jin W, Leitzen E, Goebbels S, Nave KA, Baumgärtner W, Hansmann F. Comparison of Theiler's Murine Encephalomyelitis Virus Induced Spinal Cord and Peripheral Nerve Lesions Following Intracerebral and Intraspinal Infection. Int J Mol Sci 2019; 20:ijms20205134. [PMID: 31623261 PMCID: PMC6834305 DOI: 10.3390/ijms20205134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Hallmarks of Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) include spinal cord (SC) inflammation, demyelination and axonal damage occurring approximately 5-8 weeks after classical intracerebral (i.c.) infection. The aim of this study was to elucidate the consequences of intraspinal (i.s.) TMEV infection and a direct comparison of classical i.c. and intraspinal infection. Swiss Jim Lambert (SJL)-mice were i.s. infected with the BeAn strain of TMEV. Clinical investigations including a scoring system and rotarod analysis were performed on a regular basis. Necropsies were performed at 3, 7, 14, 28 and 63 days post infection (dpi) following i.s. and at 4, 7, 14, 28, 56, 98, 147 and 196 dpi following i.c. infection. Serial sections of formalin-fixed, paraffin-embedded SC and peripheral nerves (PN) were investigated using hematoxylin and eosin (HE) and immunohistochemistry. I.s. infected mice developed clinical signs and a deterioration of motor coordination approximately 12 weeks earlier than i.c. infected animals. SC inflammation, demyelination and axonal damage occurred approximately 6 weeks earlier in i.s. infected animals. Interestingly, i.s. infected mice developed PN lesions, characterized by vacuolation, inflammation, demyelination and axonal damage, which was not seen following i.c. infection. The i.s. infection model offers the advantage of a significantly earlier onset of clinical signs, inflammatory and demyelinating SC lesions and additionally enables the investigation of virus-mediated PN lesions.
Collapse
Affiliation(s)
- Wen Jin
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Sandra Goebbels
- Department of Neurogenetics, Max-Planck-Institute for experimental Medicine, 37075 Göttingen, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute for experimental Medicine, 37075 Göttingen, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
10
|
Leitzen E, Raddatz BB, Jin W, Goebbels S, Nave KA, Baumgärtner W, Hansmann F. Virus-triggered spinal cord demyelination is followed by a peripheral neuropathy resembling features of Guillain-Barré Syndrome. Sci Rep 2019; 9:4588. [PMID: 30872675 PMCID: PMC6418285 DOI: 10.1038/s41598-019-40964-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/27/2019] [Indexed: 12/29/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV)-induces a demyelinating disease in the spinal cord (SC) of susceptible but not in resistant (B6) mouse strains. The aim of the present study was to induce SC demyelination and a peripheral neuropathy in resistant mice by switching the infection site from cerebrum to SC. B6 mice were intraspinally inoculated with TMEV. Infected mice showed clinical signs starting at 7 days post infection (dpi). Histopathology revealed a mononuclear myelitis, centred on the injection site at 3 dpi with subsequent antero- and retrograde spread, accompanied by demyelination and axonal damage within the SC. Virus protein was detected in the SC at all time points. SC inflammation decreased until the end of the investigation period (28 dpi). Concurrent with the amelioration of SC inflammation, the emergence of a peripheral neuropathy, characterized by axonal damage, demyelination and macrophage infiltration, contributing to persistent clinical sings, was observed. Intraspinal TMEV infection of resistant mice induced inflammation, demyelination and delayed viral clearance in the spinal cord and more interestingly, subsequent, virus-triggered inflammation and degeneration within the PN associated with dramatic and progressive clinical signs. The lesions observed in the PN resemble important features of Guillain-Barré syndrome, especially of acute motor/motor-sensory axonal forms.
Collapse
Affiliation(s)
- Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Barbara B Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Wen Jin
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Klaus-Armin Nave
- Center for Systems Neuroscience, Hannover, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
11
|
Gerhauser I, Hansmann F, Ciurkiewicz M, Löscher W, Beineke A. Facets of Theiler's Murine Encephalomyelitis Virus-Induced Diseases: An Update. Int J Mol Sci 2019; 20:ijms20020448. [PMID: 30669615 PMCID: PMC6358740 DOI: 10.3390/ijms20020448] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV), a naturally occurring, enteric pathogen of mice is a Cardiovirus of the Picornaviridae family. Low neurovirulent TMEV strains such as BeAn cause a severe demyelinating disease in susceptible SJL mice following intracerebral infection. Furthermore, TMEV infections of C57BL/6 mice cause acute polioencephalitis initiating a process of epileptogenesis that results in spontaneous recurrent epileptic seizures in approximately 50% of affected mice. Moreover, C3H mice develop cardiac lesions after an intraperitoneal high-dose application of TMEV. Consequently, TMEV-induced diseases are widely used as animal models for multiple sclerosis, epilepsy, and myocarditis. The present review summarizes morphological lesions and pathogenic mechanisms triggered by TMEV with a special focus on the development of hippocampal degeneration and seizures in C57BL/6 mice as well as demyelination in the spinal cord in SJL mice. Furthermore, a detailed description of innate and adaptive immune responses is given. TMEV studies provide novel insights into the complexity of organ- and mouse strain-specific immunopathology and help to identify factors critical for virus persistence.
Collapse
Affiliation(s)
- Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Wolfgang Löscher
- Center for System Neuroscience, 30559 Hannover, Germany.
- Department of Pharmacology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
12
|
Park AM, Omura S, Fujita M, Sato F, Tsunoda I. Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer's disease: 10 pitfalls of microbiome studies. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2017; 8:215-232. [PMID: 29158778 DOI: 10.1111/cen3.12401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alteration of microbiota has been associated with intestinal, inflammatory, and neurological diseases. Abundance of "good bacteria" such as Bifidobacterium, or their products have been generally believed to be beneficial for any diseases, while "bad bacteria" such as pathogenic Helicobacter pylori are assumed to be always detrimental for hosts. However, this is not the case when we compare and contrast the association of the gut microbiota with two neurological diseases, multiple sclerosis (MS) and Alzheimer's disease (AD). Following H. pylori infection, pro-inflammatory T helper (Th)1 and Th17 immune response are initially induced to eradicate bacteria. However, H. pylori evades the host immune response by inducing Th2 cells and regulatory T cells (Tregs) that produce anti-inflammatory interleukin (IL)-10. Suppression of anti-bacterial Th1/Th17 cells by Tregs may enhance gastric H. pylori propagation, followed by a cascade reaction involving vitamin B12 and folic acid malabsorption, plasma homocysteine elevation, and reactive oxygen species induction. This can damage the blood-brain barrier (BBB), leading to accumulation of amyloid-β in the brain, a hallmark of AD. On the other hand, this suppression of pro-inflammatory Th1/Th17 responses to H. pylori has protective effects on the hosts, since it prevents uncontrolled gastritis as well as suppresses the induction of encephalitogenic Th1/Th17 cells, which can mediate neuroinflammation in MS. The above scenario may explain why chronic H. pylori infection is positively associated with AD, while it is negatively associated with MS. Lastly, we list "10 pitfalls of microbiota studies", which will be useful for evaluating and designing clinical and experimental microbiota studies.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| |
Collapse
|