1
|
Kaipa BR, Kasetti R, Sundaresan Y, Li L, Yacoub S, Millar C, Cho W, Skowronska-Krawczyk D, Maddineni P, Palczewski K, Zode G. Impaired axonal transport at the optic nerve head contributes to neurodegeneration in a novel Cre-inducible mouse model of myocilin glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613712. [PMID: 39345520 PMCID: PMC11429981 DOI: 10.1101/2024.09.18.613712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction, leading to neurodegeneration, is the pathological hallmark of primary open-angle glaucoma (POAG). Impaired axonal transport is an early and critical feature of glaucomatous neurodegeneration. However, a robust mouse model that replicates these human POAG features accurately has been lacking. We report the development and characterization of a novel Cre-inducible mouse model expressing a DsRed-tagged Y437H mutant of human myocilin (Tg.CreMYOCY437H). A single intravitreal injection of HAd5-Cre induced selective MYOC expression in the TM, causing TM dysfunction, reducing outflow facility, and progressively elevating IOP in Tg.CreMYOCY437H mice. Sustained IOP elevation resulted in significant retinal ganglion cell (RGC) loss and progressive axonal degeneration in Cre-induced Tg.CreMYOCY437H mice. Notably, impaired anterograde axonal transport was observed at the optic nerve head before RGC degeneration, independent of age, indicating that impaired axonal transport contributes to RGC degeneration in Tg.CreMYOCY437H mice. In contrast, axonal transport remained intact in ocular hypertensive mice injected with microbeads, despite significant RGC loss. Our findings indicate that Cre-inducible Tg.CreMYOCY437H mice replicate all glaucoma phenotypes, providing an ideal model for studying early events of TM dysfunction and neuronal loss in POAG.
Collapse
|
2
|
Buonfiglio F, Pfeiffer N, Gericke A. Glaucoma and the ocular renin-angiotensin-aldosterone system: Update on molecular signalling and treatment perspectives. Cell Signal 2024; 122:111343. [PMID: 39127136 DOI: 10.1016/j.cellsig.2024.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Glaucoma, a leading cause of blindness worldwide, encompasses a group of pathological conditions affecting the optic nerve and is characterized by progressive retinal ganglion cell loss, cupping of the optic nerve head, and distinct visual field defects. While elevated intraocular pressure (IOP) is the main risk factor for glaucoma, many patients do not have elevated IOP. Consequently, other risk factors, such as ocular blood flow abnormalities and immunological factors, have been implicated in its pathophysiology. Traditional therapeutic strategies primarily aim to reduce IOP, but there is growing interest in developing novel treatment approaches to improve disease management and reduce the high rates of severe visual impairment. In this context, targeting the ocular renin-angiotensin-aldosterone system (RAAS) has been found as a potential curative strategy. The RAAS contributes to glaucoma development through key effectors such as prorenin, angiotensin II, and aldosterone. Recent evidence has highlighted the potential of using RAAS modulators to combat glaucoma, yielding encouraging results. Our study aims to explore the molecular pathways linking the ocular RAAS and glaucoma, summarizing recent advances that elucidate the role of the RAAS in triggering oxidative stress, inflammation, and remodelling in the pathogenesis of glaucoma. Additionally, we will present emerging therapeutic approaches that utilize RAAS modulators and antioxidants to slow the progression of glaucoma.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Adrian Gericke
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| |
Collapse
|
3
|
Ren J, Xiao Y, Wang D, Cui H, Zhao R, Guo Z, Wang Y, Zhu S, Tang B, Wang J, Wang G, Wang H, Hu X, Thorne RF, Duan S, Li H. Decrease of Prolylcarboxypeptidase Dose of Aqueous Humor is Involved in the Pathogenesis of Primary Open-Angle Glaucoma via Finetuning of the Local Ocular Renin-Angiotensin System. Dose Response 2024; 22:15593258241298062. [PMID: 39484664 PMCID: PMC11526272 DOI: 10.1177/15593258241298062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Objective In this study, we investigated the cause of the AngII dose elevation in aqueous humor of primary open-angle glaucoma (POAG) patients. Methods Enzyme-linked immunosorbent assay (ELISA), western blotting were used to detect concentration of Angiotensin Converting Enzyme 2 (ACE2) and Prolylcarboxypeptidase (PRCP). AngII and AngII + Recombinant PRCP were injected into anterior chamber of mouse eye. Mouse Intraocular pressure (IOP) was measured every week, mouse eye sections were conducted Hematoxylin-and-Eosin (H&E) staining, Masson' staining and Immunofluorescence staining. Western blotting and Immunofluorescence staining assays to detected fibrosis of trabecular meshwork cells. Mass spectrometry was used to identify proteins of aqueous humor. Results PRCP dose are decreased in aqueous humor of POAG patients. There is a negative correlation between PRCP and AngII levels in aqueous humor and between PRCP levels and the IOP. PRCP treatment reverses fibrosis of trabecular meshwork (TM) and prevents IOP elevation induced by AngII. Exogenous PRCP rescues fibrosis induced by AngII in HTMCs. Proteome profiling detected 502 differentially expressed proteins. Conclusion Our study found PRCP dose was decreased in POAG patients' aqueous humor, and it might cause high level of AngII. Restoration of PRCP rescued fibrosis of TM cells and ameliorated IOP in AngII treatment mouse.
Collapse
Affiliation(s)
- Jing Ren
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Yuanyuan Xiao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Di Wang
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huiling Cui
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Rumeng Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Zilu Guo
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Yuhao Wang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shichao Zhu
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Bo Tang
- Huanghe Science and Technology University, Zhengzhou, Henan, China
| | - Jing Wang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Gang Wang
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huaying Wang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xinyuan Hu
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Shichao Duan
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Haijun Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Kim EY, Walker BD, Hopkins NS, Fowler S, Jerkins BM, Kanner EM, Wright CL. Comparison of Efficacy of Micropulse Laser Settings for Glaucoma Management. J Clin Med 2024; 13:5753. [PMID: 39407813 PMCID: PMC11476880 DOI: 10.3390/jcm13195753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Objectives: This study aims to compare micropulse transscleral cyclophotocoagulation (MP-TSCPC) laser parameters and determine the optimal laser setting. Methods: A retrospective study was performed on 351 eyes from patients who underwent MP-TSCPC at four power settings (1500 mW, 2000 mW, 2250 mW, and 2500 mW) from June 2018 to December 2021. The primary measurements of the efficacy of MP-TSCPC were the degree of intraocular pressure (IOP) reduction and the number of glaucoma medication reductions. The rate of hypotony was obtained to assess the safety of MP-TSCPC. Results: At 1500, 2000, and 2500 mW, the mean IOP reduction at each visit was statistically significant compared to the baseline, and at 2250 mW, the mean IOP was only significantly different at 18 months (p < 0.05). The change in the number of medications with 2000 mW has shown significance at 1 and 3 months from the baseline; with 2500 mW, statistical significance was shown at 3, 6, 12, and 18 months (p < 0.05) compared to the baseline. Mean IOP reductions (%) were greater in 2000 mW than in 1500 mW at 1 week, 1 month, and 3 months and were greater in 2500 than in 1500 mW at 1 week (p < 0.05). There was no significance for mean IOP reductions at 6, 12, and 18 months across all powers. Only two occurrences of hypotony were reported. Conclusions: MP-TSCPC at 1500 mW, 2000 mW, and 2500 mW is a safe and effective treatment for IOP reduction. MP-TSCPC at 2250 mW is safe but may show delayed effectiveness in IOP reduction. In the long term, no one specific power setting was found to be superior for IOP reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire L. Wright
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN 38103, USA; (E.Y.K.); (B.D.W.); (N.S.H.); (S.F.); (B.M.J.); (E.M.K.)
| |
Collapse
|
5
|
Lamont HC, Wright AL, Devries K, Okur KE, Jones M, Masood I, Hill LJ, Nazhat SN, Grover LM, Haj AJE, Metcalfe AD. Trabecular meshwork cell differentiation in response to collagen and TGFβ-2 spatial interactions. Acta Biomater 2024:S1742-7061(24)00490-2. [PMID: 39218278 DOI: 10.1016/j.actbio.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG) is currently the most prevalent cause of irreversible blindness globally. To date, few in vitro models that can faithfully recapitulate the complex architecture of the trabecular meshwork (TM) and the specialised trabecular meshwork cell (TMC) characteristics that are local to the structurally opposing regions. This study aimed to investigate the parameters that govern TMC phenotype by adapting the extracellular matrix structure to mimic the juxtacanalicular tissue (JCT) region of the TM. Initially, TMC phenotypic characteristics were investigated within type I collagen matrices of controlled fiber density and anisotropy, generated through confined plastic compression (PC). Notably, PC-collagen presented biophysical cues that induced JCT cellular characteristics (elastin, α-β-Crystallin protein expression, cytoskeletal remodelling, increased mesenchymal markers and JCT-specific genetic markers). In parallel, a pathological mesenchymal phenotype associated with POAG was induced through localised transforming growth factor -beta 2 (TGFβ-2) exposure. This resulted in a profile of alternative mesenchymal states (fibroblast/smooth muscle or myofibroblast) displayed by the TMC in vitro. Overall, the study provides an advanced insight into the biophysical cues that modulate TMC fate, inducing a JCT-specific phenotype and transient mesenchymal characteristics that reflect healthy and pathological scenarios. STATEMENT OF SIGNIFICANCE: Glaucoma is a leading cause of blindness, with a lack of long-term efficacy within current drug candidates. Reliable trabecular meshwork (TM) in vitro models will be critical for enhancing the fields understanding of healthy and disease states for pre-clinical testing. Trabecular meshwork cells (TMCs) display heterogeneity throughout the hierarchical TM, however our understanding into recapitulating these phenotypes in vitro, remains elusive. This study hypothesizes the importance of specific matrix/growth factor spatial stimuli in governing TMCs phenotype. By emulating certain biophysical/biochemical in vivo parameters, we introduce an advanced profile of distinct TMC phenotypic states, reflecting healthy and disease scenarios. A notion that has not be stated prior and a fundamental consideration for future 3D TM in vitro modelling.
Collapse
Affiliation(s)
- Hannah C Lamont
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Kerime E Okur
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Jones
- Cell Guidance Systems Ltd, Maia Building, Babraham Bioscience Campus, Cambridge, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anthony D Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Yuan W, Li J, Gao S, Sun W, Zhao F. Novel therapeutic targets for primary open-angle glaucoma identified through multicenter proteome-wide mendelian randomization. Front Pharmacol 2024; 15:1428472. [PMID: 39221148 PMCID: PMC11362091 DOI: 10.3389/fphar.2024.1428472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to identify novel therapeutic targets for primary open-angle glaucoma (POAG). Methods The summary-data-based Mendelian randomization (SMR) method was used to evaluate the genetic association between plasma proteins and POAG. Two sets of plasma protein quantitative trait loci (pQTLs) data considered exposures were obtained from the Icelandic Decoding Genetics Study and UK Biobank Pharma Proteomics Project. The summary-level genome-wide association studies data for POAG were extracted from the latest Round 10 release of the FinnGen consortium (8,530 cases and 391,275 controls) and the UK Biobank (4,737 cases and 458,196 controls). Colocalization analysis was used to screen out pQTLs that share the same variant with POAG as drug targets identified. The two-sample Mendelian randomization, reverse causality testing and phenotype scanning were performed to further validate the main findings. Protein-protein interaction, pathway enrichment analysis and druggability assessment were conducted to determine whether the identified plasma proteins have potential as drug targets. Results After systematic analysis, this study identified eight circulating proteins as potential therapeutic targets for POAG. Three causal proteins with strong evidence of colocalization, ROBO1 (OR = 1.38, p = 1.48 × 10-4, PPH4 = 0.865), FOXO3 (OR = 0.35, p = 4.34 × 10-3, PPH4 = 0.796), ITIH3 (OR = 0.89, p = 2.76 × 10-4, PPH4 = 0.767), were considered tier one targets. Five proteins with medium support evidence of colocalization, NCR1 (OR = 1.25, p = 4.18 × 10-4, PPH4 = 0.682), NID1 (OR = 1.38, p = 1.54 × 10-3, PPH4 = 0.664), TIMP3 (OR = 0.91, p = 4.01 × 10-5, PPH4 = 0.659), SERPINF1 (OR = 0.81, p = 2.77 × 10-4, PPH4 = 0.59), OXT (OR = 1.17, p = 9.51 × 10-4, PPH4 = 0.526), were classified as tier two targets. Additional sensitivity analyses further validated the robustness and directionality of these findings. According to druggability assessment, Pimagedine, Resveratrol, Syringaresinol and Clozapine may potentially be important in the development of new anti-glaucoma agents. Conclusion Our integrated study identified eight potential associated proteins for POAG. These proteins play important roles in neuroprotection, extracellular matrix regulation and oxidative stress. Therefore, they have promising potential as therapeutic targets to combat POAG.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jun Li
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shang Gao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Wei Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
7
|
Shimizu S, Ochiai Y, Kamijima K, Takai N, Watanabe S, Aihara M. Development and characterization of a chronic high intraocular pressure model in New Zealand white rabbits for glaucoma research. Exp Eye Res 2024; 245:109973. [PMID: 38880377 DOI: 10.1016/j.exer.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Glaucoma is a neurodegenerative disease characterized by visual field loss associated with optic nerve damage and ocular hypertension. The biological basis for the elevated intraocular pressure (IOP) is largely unknown, such that lowering the IOP is currently the only established treatment. Several animal models have been developed to elucidate the mechanism underlying the increased IOP and for use in drug discovery research, but their utility is often limited by the occurrence of severe intraocular inflammation and by technical challenges. In this study, we developed a rabbit glaucoma model that does not require experimental disease induction. Rabbits were chosen as the model because their eyeballs are similar in size to those of humans, and they are easy to breed. By crossing rabbit strains with inherited glaucoma, as indicated by obvious buphthalmos, we produced a strain that exhibits ocular hypertension. The IOP of the Ocular Hypertension (OH) rabbits was significantly higher than that of the wild type (WT; normal New Zealand white rabbits) from the age of 3 weeks to at least 22 weeks. The significantly larger corneal diameter of the OH rabbits indicated ocular enlargement, whereas there was no significant difference in corneal thickness compared with WT rabbits. Anterior segment ocular coherence tomography and gonioscopic observations revealed an open angle in the OH rabbits. Hematoxylin and eosin (HE) staining together with Masson's trichrome staining showed abnormal collagen accumulation in the angle of the OH rabbit's eyes. Furthermore, aqueous humor (AH) outflow imaging following an intravitreal injection of a fluorescent probe into the anterior chamber for tissue-section analysis revealed retention of the probe in the area of collagen deposition in the OH eyes. The OH rabbits also had a time-dependent increase in the cup/disc ratio. In conclusion, investigations using our newly developed rabbit model of open-angle ocular hypertension showed that abnormal accumulation of extracellular matrix at the angle increased AH outflow resistance in the conventional outflow pathway, leading to a high IOP. Furthermore, the OH rabbits exhibited glaucomatous optic disc cupping over time. These findings suggest the utility of the OH rabbits as a model for open-angle glaucoma (OAG).
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Ochiai
- Operation Department, Kitayama Labes Co., Ltd., Nagano, Japan
| | - Kazuki Kamijima
- Operation Department, Kitayama Labes Co., Ltd., Nagano, Japan
| | - Naofumi Takai
- Operation Department, Kitayama Labes Co., Ltd., Nagano, Japan
| | - Sumiko Watanabe
- Department of Retinal Biology and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Kim MJ, Ibrahim MM, Jablonski MM. Deepening insights into cholinergic agents for intraocular pressure reduction: systems genetics, molecular modeling, and in vivo perspectives. Front Mol Biosci 2024; 11:1423351. [PMID: 39130374 PMCID: PMC11310038 DOI: 10.3389/fmolb.2024.1423351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Parasympathetic activation in the anterior eye segment regulates various physiological functions. This process, mediated by muscarinic acetylcholine receptors, also impacts intraocular pressure (IOP) through the trabecular meshwork. While FDA-approved M3 muscarinic receptor (M3R) agonists exist for IOP reduction, their systemic cholinergic adverse effects pose limitations in clinical use. Therefore, advancing our understanding of the cholinergic system in the anterior segment of the eye is crucial for developing additional IOP-reducing agents with improved safety profiles. Systems genetics analyses were utilized to explore correlations between IOP and the five major muscarinic receptor subtypes. Molecular docking and dynamics simulations were applied to human M3R homology model using a comprehensive set of human M3R ligands and 1,667 FDA-approved or investigational drugs. Lead compounds from the modeling studies were then tested for their IOP-lowering abilities in mice. Systems genetics analyses unveiled positive correlations in mRNA expressions among the five major muscarinic receptor subtypes, with a negative correlation observed only in M3R with IOP. Through modeling studies, rivastigmine and edrophonium emerged as the most optimally suited cholinergic drugs for reducing IOP via a potentially distinct mechanism from pilocarpine or physostigmine. Subsequent animal studies confirmed comparable IOP reductions among rivastigmine, edrophonium, and pilocarpine, with longer durations of action for rivastigmine and edrophonium. Mild cholinergic adverse effects were observed with pilocarpine and rivastigmine but absent with edrophonium. These findings advance ocular therapeutics, suggesting a more nuanced role of the parasympathetic system in the anterior eye segment for reducing IOP than previously thought.
Collapse
Affiliation(s)
- Minjae J. Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mohamed M. Ibrahim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Monica M. Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
10
|
Mok JH, Park DY, Han JC. Differential protein expression and metabolite profiling in glaucoma: Insights from a multi-omics analysis. Biofactors 2024. [PMID: 38818964 DOI: 10.1002/biof.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, n = 5), exfoliation glaucoma (XFG, n = 4), primary open-angle glaucoma (POAG, n = 11), and cataracts (control group, n = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.
Collapse
Affiliation(s)
- Jeong-Hun Mok
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Maddala R, Eldawy C, Ho LTY, Challa P, Rao PV. Influence of Growth Differentiation Factor 15 on Intraocular Pressure in Mice. J Transl Med 2024; 104:102025. [PMID: 38290601 PMCID: PMC11031300 DOI: 10.1016/j.labinv.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Growth differentiation factor 15 (GDF15), a stress-sensitive cytokine, and a distant member of the transforming growth factor β superfamily, has been shown to exhibit increased levels with aging, and in various age-related pathologies. Although GDF15 levels are elevated in the aqueous humor (AH) of glaucoma (optic nerve atrophy) patients, the possible role of this cytokine in the modulation of intraocular pressure (IOP) or AH outflow is unknown. The current study addresses this question using transgenic mice expressing human GDF15 and GDF15 null mice, and by perfusing enucleated mouse eyes with recombinant human GDF15 (rhGDF15). Treatment of primary cultures of human trabecular meshwork cells with a telomerase inhibitor, an endoplasmic reticulum stress-inducing agent, hydrogen peroxide, or an autophagy inhibitor resulted in significant elevation in GDF15 levels relative to the respective control cells. rhGDF15 stimulated modest but significant increases in the expression of genes encoding the extracellular matrix, cell adhesion proteins, and chemokine receptors (C-C chemokine receptor type 2) in human trabecular meshwork cells compared with controls, as deduced from the differential transcriptional profiles using RNA-sequencing analysis. There was a significant increase in IOP in transgenic mice expressing human GDF15, but not in GDF15 null mice, compared with the respective wild-type control mice. The AH outflow facility was decreased in enucleated wild-type mouse eyes perfused with rhGDF15. Light microcopy-based histologic examination of the conventional AH outflow pathway tissues did not reveal identifiable differences between the GDF15-targeted and control mice. Taken together, these results reveal the modest elevation of IOP in mice expressing human GDF15 possibly stemming from decreased AH outflow through the trabecular pathway.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Camelia Eldawy
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Leona T Y Ho
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
12
|
Cartwright VA, Smith JR. Women in ophthalmology. Clin Exp Ophthalmol 2024; 52:133-134. [PMID: 38454207 DOI: 10.1111/ceo.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/09/2024]
Affiliation(s)
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Xiao Y, McGhee CNJ, Zhang J. Adult stem cells in the eye: Identification, characterisation, and therapeutic application in ocular regeneration - A review. Clin Exp Ophthalmol 2024; 52:148-166. [PMID: 38214071 DOI: 10.1111/ceo.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Adult stem cells, present in various parts of the human body, are undifferentiated cells that can proliferate and differentiate to replace dying cells within tissues. Stem cells have specifically been identified in the cornea, trabecular meshwork, crystalline lens, iris, ciliary body, retina, choroid, sclera, conjunctiva, eyelid, lacrimal gland, and orbital fat. The identification of ocular stem cells broadens the potential therapeutic strategies for untreatable eye diseases. Currently, stem cell transplantation for corneal and conjunctival diseases remains the most common stem cell-based therapy in ocular clinical management. Lens epithelial stem cells have been applied in the treatment of paediatric cataracts. Several early-phase clinical trials for corneal and retinal regeneration using ocular stem cells are also underway. Extensive preclinical studies using ocular stem cells have been conducted, showing encouraging outcomes. Ocular stem cells currently demonstrate great promise in potential treatments of eye diseases. In this review, we focus on the identification, characterisation, and therapeutic application of adult stem cells in the eye.
Collapse
Affiliation(s)
- Yuting Xiao
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Faralli JA, Filla MS, Yang YF, Sun YY, Johns K, Keller KE, Peters DM. Digital spatial profiling of segmental outflow regions in trabecular meshwork reveals a role for ADAM15. PLoS One 2024; 19:e0298802. [PMID: 38394161 PMCID: PMC10889904 DOI: 10.1371/journal.pone.0298802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions. These transcriptome analyses revealed that 16 genes were statistically upregulated in high outflow regions and 57 genes were statistically downregulated in high outflow regions when compared to low outflow regions. Gene ontology enrichment analysis indicated that the top three biological categories of these differentially expressed genes were ECM/cell adhesion, signal transduction, and transcription. The ECM/cell adhesion genes that showed the largest differential expression (Log2FC ±1.5) were ADAM15, BGN, LDB3, and CRKL. ADAM15, which is a metalloproteinase that can bind integrins, was upregulated in high outflow regions, while the proteoglycan BGN and two genes associated with integrin signaling (LDB3, and CRKL) were downregulated. Immunolabeling studies supported the differential expression of ADAM15 and showed that it was specifically upregulated in high outflow regions along the inner wall of Schlemm's canal and in the juxtacanalicular (JCT) region of the TM. In addition to these genes, the studies showed that genes for decorin, a small leucine-rich proteoglycan, and the α8 integrin subunit were enriched in high outflow regions. These studies identify several novel genes that could be involved in segmental outflow, thus demonstrating that digital spatial profiling could be a useful approach for understanding segmental flow through the TM. Furthermore, this study suggests that changes in the expression of genes involved in regulating the activity and/or organization of the ECM and integrins in the TM are likely to be key players in segmental outflow.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark S. Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kassidy Johns
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Dang M, Shoichet MS. Long-Acting Ocular Injectables: Are We Looking In The Right Direction? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306463. [PMID: 38018313 PMCID: PMC10885661 DOI: 10.1002/advs.202306463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
The complex anatomy and physiological barriers of the eye make delivering ocular therapeutics challenging. Generally, effective drug delivery to the eye is hindered by rapid clearance and limited drug bioavailability. Biomaterial-based approaches have emerged to enhance drug delivery to ocular tissues and overcome existing limitations. In this review, some of the most promising long-acting injectables (LAIs) in ocular drug delivery are explored, focusing on novel design strategies to improve therapeutic outcomes. LAIs are designed to enable sustained therapeutic effects, thereby extending local drug residence time and facilitating controlled and targeted drug delivery. Moreover, LAIs can be engineered to enhance drug targeting and penetration across ocular physiological barriers.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
16
|
Sharma Y, Patel P, Kurmi BD. A Mini-review on New Developments in Nanocarriers and Polymers for Ophthalmic Drug Delivery Strategies. Curr Drug Deliv 2024; 21:488-508. [PMID: 37143264 DOI: 10.2174/1567201820666230504115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The eye is an important and vital organ of the human body consisting of two segments - anterior and posterior segments and these segments are associated with many diseases. This review elaborates upon the various eye-related diseases with their medications and carriers used to deliver them. Delivery strategies include drugs encapsulated into liposomes, polymeric micelles of drugs, solid lipid nanoparticles, nanostructured lipid carriers, nano emulsions, and Nanosuspension used to improve penetrating properties, bioavailability, and residence time of the drugs as examples available in the literature. With regard to this, different forms of ocular drug delivery are classified and elaborated. Additionally, the possibility of addressing the physical and chemical complexities of ocular diseases and how they could be overcome with environmentally stable nanoformulations are briefly discussed. Enhanced drug delivery efficiency with various novel pharmaceuticals along with enhanced uptake by different routes/modes of drug administration. Current advancements in drug carrier systems, i.e., nanocarriers, have shown promise for improving the retention time, drug permeation and prolonging the duration of release of the drug in the ocular site. Bio-degradable polymers investigated for the preparation of nanocarriers for the entrapment of drugs and to enhance the efficacy through improved adherence of tissue in the eye, sustained release measures, enhanced bioavailability, lower toxicity, and targeted delivery is applicable. This review covers the introduction of various nanocarriers and polymers for ocular drug delivery with the purpose of enhancing the absorption, retention and bioavailability of medications in the eye.
Collapse
Affiliation(s)
- Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
17
|
Kim HJ, Cha S, Choi JS, Lee JY, Kim KE, Kim JK, Kim J, Moon SY, Lee SHS, Park K, Won SY. scAAV2-Mediated Expression of Thioredoxin 2 and C3 Transferase Prevents Retinal Ganglion Cell Death and Lowers Intraocular Pressure in a Mouse Model of Glaucoma. Int J Mol Sci 2023; 24:16253. [PMID: 38003443 PMCID: PMC10671512 DOI: 10.3390/ijms242216253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.
Collapse
Affiliation(s)
- Hee Jong Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Seho Cha
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Jun-Sub Choi
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea; (J.Y.L.); (K.E.K.)
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Ko Eun Kim
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea; (J.Y.L.); (K.E.K.)
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea
| | - Jin Kwon Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Jin Kim
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| | - So-Yoon Won
- Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea; (H.J.K.); (S.C.); (J.-S.C.); (J.K.K.); (J.K.); (S.Y.M.); (S.H.S.L.); (K.P.)
- Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea
| |
Collapse
|
18
|
Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet 2023; 402:1788-1801. [PMID: 37742700 DOI: 10.1016/s0140-6736(23)01289-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023]
Abstract
The glaucomas are a group of conditions leading to irreversible sight loss and characterised by progressive loss of retinal ganglion cells. Although not always elevated, intraocular pressure is the only modifiable risk factor demonstrated by large clinical trials. It remains the leading cause of irreversible blindness, but timely treatment to lower intraocular pressure is effective at slowing the rate of vision loss from glaucoma. Methods for lowering intraocular pressure include laser treatments, topical medications, and surgery. Although modern surgical innovations aim to be less invasive, many have been introduced with little supporting evidence from randomised controlled trials. Many cases remain undiagnosed until the advanced stages of disease due to the limitations of screening and poor access to opportunistic case finding. Future research aims to generate evidence for intraocular pressure-independent neuroprotective treatments, personalised treatment through genetic risk profiling, and exploration of potential advanced cellular and gene therapies.
Collapse
Affiliation(s)
- Hari Jayaram
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK
| | - Miriam Kolko
- Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; University of Copenhagen, Department of Drug Design and Pharmacology, Copenhagen, Denmark
| | - David S Friedman
- Massachusetts Eye and Ear Hospital, Glaucoma Center of Excellence, Boston, MA, USA; Harvard University, Boston, MA, USA
| | - Gus Gazzard
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK; UCL Institute of Ophthalmology, London, UK; National Institute for Health and Care Research Moorfields Biomedical Research Centre, London, UK.
| |
Collapse
|
19
|
Ekici E, Moghimi S. Advances in understanding glaucoma pathogenesis: A multifaceted molecular approach for clinician scientists. Mol Aspects Med 2023; 94:101223. [PMID: 39492376 DOI: 10.1016/j.mam.2023.101223] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/17/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is a spectrum of neurodegenerative diseases characterized by the gradual deterioration of retinal ganglion cells (RGCs) and optic neuropathy. With complex etiology, glaucoma's major risk factors include elevated intraocular pressure (IOP), advanced age, ethnicity, systemic vascular factors, and genetic predisposition. By 2040, glaucoma is expected to affect over 110 million individuals aged 40 to 80, posing a significant economic burden. Glaucoma can be classified into open-angle, angle-closure, and developmental subtypes, with primary and secondary forms. The disease often progresses silently, gradually impairing the visual field (VF) until it reaches an advanced stage. Understanding the abnormal functional changes associated with glaucoma at the tissue, cellular, molecular, and genetic levels is crucial for comprehending its pathogenesis. This review examines the published data from the past two decades to shed light on the biological mechanisms underlying glaucoma development. The most evident factors in the development of glaucomatous optic neuropathy include elevated IOP, aging, genetic influences, followed by impaired ocular blood flow regulation. These factors are interconnected processes that lead to optic nerve damage, compromised circulation, and structural changes in glial and connective tissues. Contributing factors involve extracellular matrix remodeling, excitotoxicity, nitric oxide, oxidative stress, and neuroinflammation. Ultimately, all types of glaucoma result in RGC dysfunction and loss, causing irreversible visual impairment. While our understanding of glaucoma pathogenesis is evolving, further research is crucial for a comprehensive understanding of glaucoma pathogenesis and the development of effective treatments.
Collapse
Affiliation(s)
- Eren Ekici
- T.R. (Republic of Turkey) Ministry of Health, Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Turkiye.
| | - Sasan Moghimi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Faralli JA, Filla MS, Peters DM. Role of integrins in the development of fibrosis in the trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1274797. [PMID: 38983065 PMCID: PMC11182094 DOI: 10.3389/fopht.2023.1274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 07/11/2024]
Abstract
Primary open angle glaucoma (POAG) is a progressive and chronic disease exhibiting many of the features of fibrosis. The extracellular matrix (ECM) in the trabecular meshwork (TM) undergoes extensive remodeling and enhanced rigidity, resembling fibrotic changes. In addition, there are changes associated with myofibroblast activation and cell contractility that further drives tissue fibrosis and stiffening. This review discusses what is known about the integrins in the TM and their involvement in fibrotic processes.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S Filla
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
21
|
Patel PD, Kodati B, Clark AF. Role of Glucocorticoids and Glucocorticoid Receptors in Glaucoma Pathogenesis. Cells 2023; 12:2452. [PMID: 37887296 PMCID: PMC10605158 DOI: 10.3390/cells12202452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
The glucocorticoid receptor (GR), including both alternative spliced isoforms (GRα and GRβ), has been implicated in the development of primary open-angle glaucoma (POAG) and iatrogenic glucocorticoid-induced glaucoma (GIG). POAG is the most common form of glaucoma, which is the leading cause of irreversible vision loss and blindness in the world. Glucocorticoids (GCs) are commonly used therapeutically for ocular and numerous other diseases/conditions. One serious side effect of prolonged GC therapy is the development of iatrogenic secondary ocular hypertension (OHT) and OAG (i.e., GC-induced glaucoma (GIG)) that clinically and pathologically mimics POAG. GC-induced OHT is caused by pathogenic damage to the trabecular meshwork (TM), a tissue involved in regulating aqueous humor outflow and intraocular pressure. TM cells derived from POAG eyes (GTM cells) have a lower expression of GRβ, a dominant negative regulator of GC activity, compared to TM cells from age-matched control eyes. Therefore, GTM cells have a greater pathogenic response to GCs. Almost all POAG patients develop GC-OHT when treated with GCs, in contrast to a GC responder rate of 40% in the normal population. An increased expression of GRβ can block GC-induced pathogenic changes in TM cells and reverse GC-OHT in mice. The endogenous expression of GRβ in the TM may relate to differences in the development of GC-OHT in the normal population. A number of studies have suggested increased levels of endogenous cortisol in POAG patients as well as differences in cortisol metabolism, suggesting that GCs may be involved in the development of POAG. Additional studies are warranted to better understand the molecular mechanisms involved in POAG and GIG in order to develop new disease-modifying therapies to better treat these two sight threatening forms of glaucoma. The purpose of this timely review is to highlight the pathological and clinical features of GC-OHT and GIG, mechanisms responsible for GC responsiveness, potential therapeutic options, as well as to compare the similar features of GIG with POAG.
Collapse
Affiliation(s)
| | | | - Abbot F. Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.D.P.); (B.K.)
| |
Collapse
|
22
|
Wang X, Tan S, Yang S, Liu X, Lei J, Li H. Activation of Sonic Hedgehog Signaling Pathway Regulates Human Trabecular Meshwork Cell Function. J Ocul Pharmacol Ther 2023; 39:430-438. [PMID: 37307020 DOI: 10.1089/jop.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Purpose: To investigate the effects of Sonic hedgehog (Shh) signaling on primary human trabecular meshwork (HTM) cells. Methods: Primary HTM cells were isolated from healthy donors and cultured. Recombinant Shh (rShh) protein and cyclopamine were used to activate and inhibit the Shh signaling pathway, respectively. A cell viability assay was performed to assess the effects of rShh on the activity of primary HTM cells. Functional assessment of cell adhesion and phagocytosis was also performed. The proportion of apoptotic cells was examined using flow cytometry. Fibronectin (FN) and transforming growth factor beta2 (TGF-β2) protein were detected to assess the influence of rShh on the metabolism of the extracellular matrix (ECM). Real-time polymerase chain reaction (RT-PCR) and western blot analyses were used to examine mRNA and protein expression of Shh signaling pathway-associated factors GLI Family Zinc Finger 1 (GLI1) and Suppressor of Fused (SUFU). Results: rShh significantly enhanced primary HTM cell viability at a concentration of 0.5 μg/mL. rShh increased the adhesion and phagocytic abilities of primary HTM cells, and decreased cell apoptosis. FN and TGF-β2 protein expression increased in primary HTM cells treated with rShh. rShh upregulated the transcriptional activity and protein levels of GLI1, and downregulated those of SUFU. Correspondingly, the rShh-induced GLI1 upexpression was partially blocked by pretreatment with the Shh pathway inhibitor cyclopamine at a concentration of 10 μM. Conclusions: Activation of Shh signaling can regulate the function of primary HTM cells through GLI1. Regulation of Shh signaling may be a potential target for attenuating cell damage in glaucoma.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shuang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xianmao Liu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Junqin Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
23
|
Mueller A, Anter A, Edwards G, Junk AK, Liu Y, Ziebarth N, Bhattacharya SK. Glaucomatous aqueous humor vesicles are smaller and differ in composition compared to controls. Exp Eye Res 2023; 234:109562. [PMID: 37385533 PMCID: PMC10528935 DOI: 10.1016/j.exer.2023.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Cells communicate with each other using vesicles of varying sizes, including a specific repertoire known as exosomes. We isolated aqueous humor (AH)-derived vesicles using two different methods: ultracentrifugation and an exosome isolation kit. We confirmed a unique vesicle size distribution in the AH derived from control and primary open-angle glaucoma (POAG) patients using various techniques, including Nanotracker, dynamic light scattering, atomic force imaging, and electron microscopy. Bonafide vesicle and/or exosome markers were present by dot blot in both control and POAG AH-derived vesicles. Marker levels differed between POAG and control samples, while non-vesicle negative markers were absent in both. Quantitative labeled (iTRAQ) proteomics showed a reduced presence of a specific protein, STT3B, in POAG compared to controls, which was further confirmed using dot blot, Western blot, and ELISA assays. Along the lines of previous findings with AH profiles, we found vast differences in the total phospholipid composition of AH vesicles in POAG compared to controls. Electron microscopy further showed that the addition of mixed phospholipids alters the average size of vesicles in POAG. We found that the cumulative particle size of type I collagen decreased in the presence of Cathepsin D, which normal AH vesicles were able to protect against, but POAG AH vesicles did not. AH alone had no effect on collagen particles. We observed a protective effect on collagen particles with an increase in artificial vesicle sizes, consistent with the protective effects observed with larger control AH vesicles but not with the smaller-sized POAG AH vesicles. Our experiments suggest that AH vesicles in the control group provide greater protection for collagen beams compared to POAG, and their increased vesicle sizes are likely contributing factors to this protection.
Collapse
Affiliation(s)
- Anna Mueller
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA; Miami Integrative Metabolomics Research Center, Miami, FL, 33136, USA; Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Abdelrahman Anter
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA; Miami Integrative Metabolomics Research Center, Miami, FL, 33136, USA
| | - Genea Edwards
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA; Miami Integrative Metabolomics Research Center, Miami, FL, 33136, USA; Graduate Program in Biochemistry, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA
| | - Anna K Junk
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA; Miami Integrative Metabolomics Research Center, Miami, FL, 33136, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Noel Ziebarth
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA; Miami Integrative Metabolomics Research Center, Miami, FL, 33136, USA; Department of Biomedical Engineering, School of Engineering, University of Miami, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, 33136, USA; Miami Integrative Metabolomics Research Center, Miami, FL, 33136, USA.
| |
Collapse
|
24
|
Tran MN, Medveczki T, Besztercei B, Torok G, Szabo AJ, Gasull X, Kovacs I, Fekete A, Hodrea J. Sigma-1 Receptor Activation Is Protective against TGFβ2-Induced Extracellular Matrix Changes in Human Trabecular Meshwork Cells. Life (Basel) 2023; 13:1581. [PMID: 37511956 PMCID: PMC10381521 DOI: 10.3390/life13071581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The trabecular meshwork (TM) route is the principal outflow egress of the aqueous humor. Actin cytoskeletal remodeling in the TM and extracellular matrix (ECM) deposition increase TM stiffness, outflow resistance, and elevate intraocular pressure (IOP). These alterations are strongly linked to transforming growth factor-β2 (TGFβ2), a known profibrotic cytokine that is markedly elevated in the aqueous humor of glaucomatous eyes. Sigma-1 receptor (S1R) has been shown to have neuroprotective effects in the retina, but data are lacking about its role in the TM. In this study, we identified the presence of S1R in mouse TM tissue and investigated the effect of an S1R agonist fluvoxamine (FLU) on TGFβ2-induced human TM cells regarding cell proliferation; ECM-related functions, including F-actin reorganization; and the accumulation of ECM elements. TGFβ2 increased the proliferation, cytoskeletal remodeling, and protein levels of fibronectin, collagen type IV, and connective tissue growth factor, and decreased the level of matrix metalloproteinase-2. Most importantly, FLU reversed all these effects of TGFβ2, suggesting that S1R agonists could be potential candidates for preserving TM function and thus maintaining normal IOP.
Collapse
Affiliation(s)
- Minh Ngoc Tran
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Semmelweis University Pediatric Center, MTA Center of Excellence, 1083 Budapest, Hungary
- Department of Biochemistry, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 72712, Vietnam
| | - Timea Medveczki
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Semmelweis University Pediatric Center, MTA Center of Excellence, 1083 Budapest, Hungary
| | - Balazs Besztercei
- Institute of Clinical Experimental Research, Semmelweis University, 1094 Budapest, Hungary
| | - Gyorgy Torok
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Attila J Szabo
- Semmelweis University Pediatric Center, MTA Center of Excellence, 1083 Budapest, Hungary
| | - Xavier Gasull
- Department of Biomedicine, Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Andrea Fekete
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Semmelweis University Pediatric Center, MTA Center of Excellence, 1083 Budapest, Hungary
| | - Judit Hodrea
- MTA-SE Lendület "Momentum" Diabetes Research Group, Semmelweis University, 1083 Budapest, Hungary
- Semmelweis University Pediatric Center, MTA Center of Excellence, 1083 Budapest, Hungary
| |
Collapse
|
25
|
Wang L, Wei X. Exosome-based crosstalk in glaucoma pathogenesis: a focus on oxidative stress and neuroinflammation. Front Immunol 2023; 14:1202704. [PMID: 37529047 PMCID: PMC10388248 DOI: 10.3389/fimmu.2023.1202704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Exosomes are membrane-bound tiny particles that are released by all live cells that contain multiple signal molecules and extensively participate in numerous normal physical activities and pathologies. In glaucoma, the crucial role of exosome-based crosstalk has been primarily revealed in animal models and ex vivo cell studies in the recent decade. In the aqueous drainage system, exosomes derived from non-pigment ciliary epithelium act in an endocrine manner and specifically regulate the function of the trabecular meshwork to cope with persistent oxidative stress challenges. In the retina, a more complicated regulatory network among microglia, retinal neurons, retinal ganglial cells, retinal pigment epithelium, and other immune effector cells by exosomes are responsible for the elaborate modulation of tissue homeostasis under physical state and the widespread propagation of neuroinflammation and its consequent neurodegeneration in glaucoma pathogenesis. Accumulating evidence indicates that exosome-based crosstalk depends on numerous factors, including the specific cargos they carried (particularly micro RNA), concentration, size, and ionization potentials, which largely remain elusive. In this narrative review, we summarize the latest research focus of exosome-based crosstalk in glaucoma pathogenesis, the current research progress of exosome-based therapy for glaucoma and provide in-depth perspectives on its current research gap.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, ShangjinNanfu Hospital, Chengdu, China
| |
Collapse
|
26
|
Karimi A, Khan S, Razaghi R, Rahmati SM, Gathara M, Tudisco E, Aga M, Kelley MJ, Jian Y, Acott TS. Developing an experimental-computational workflow to study the biomechanics of the human conventional aqueous outflow pathway. Acta Biomater 2023; 164:346-362. [PMID: 37072067 PMCID: PMC10226761 DOI: 10.1016/j.actbio.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023]
Abstract
The aqueous humor actively interacts with the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) through a dynamic fluid-structure interaction (FSI) coupling. Despite the fact that intraocular pressure (IOP) undergoes significant fluctuations, our understanding of the hyperviscoelastic biomechanical properties of the aqueous outflow tissues is limited. In this study, a quadrant of the anterior segment from a normal human donor eye was dynamically pressurized in the SC lumen, and imaged using a customized optical coherence tomography (OCT). The TM/JCT/SC complex finite element (FE) with embedded collagen fibrils was reconstructed based on the segmented boundary nodes in the OCT images. The hyperviscoelastic mechanical properties of the outflow tissues' extracellular matrix with embedded viscoelastic collagen fibrils were calculated using an inverse FE-optimization method. Thereafter, the 3D microstructural FE model of the TM, with adjacent JCT and SC inner wall, from the same donor eye was constructed using optical coherence microscopy and subjected to a flow load-boundary from the SC lumen. The resultant deformation/strain in the outflow tissues was calculated using the FSI method, and compared to the digital volume correlation (DVC) data. TM showed larger shear modulus (0.92 MPa) compared to the JCT (0.47 MPa) and SC inner wall (0.85 MPa). Shear modulus (viscoelastic) was larger in the SC inner wall (97.65 MPa) compared to the TM (84.38 MPa) and JCT (56.30 MPa). The conventional aqueous outflow pathway is subjected to a rate-dependent IOP load-boundary with large fluctuations. This necessitates addressing the biomechanics of the outflow tissues using hyperviscoelastic material-model. STATEMENT OF SIGNIFICANCE: While the human conventional aqueous outflow pathway is subjected to a large-deformation and time-dependent IOP load-boundary, we are not aware of any studies that have calculated the hyperviscoelastic mechanical properties of the outflow tissues with embedded viscoelastic collagen fibrils. A quadrant of the anterior segment of a normal humor donor eye was dynamically pressurized from the SC lumen with relatively large fluctuations. The TM/JCT/SC complex were OCT imaged and the mechanical properties of the tissues with embedded collagen fibrils were calculated using the inverse FE-optimization algorithm. The resultant displacement/strain in the FSI outflow model was validated versus the DVC data. The proposed experimental-computational workflow may significantly contribute to understanding of the effects of different drugs on the biomechanics of the conventional aqueous outflow pathway.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shanjida Khan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Michael Gathara
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erika Tudisco
- Division of Geotechnical Engineering, Lund University, Lund, Sweden
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
27
|
Dammak A, Sanchez Naves J, Huete-Toral F, Carracedo G. New Biomarker Combination Related to Oxidative Stress and Inflammation in Primary Open-Angle Glaucoma. Life (Basel) 2023; 13:1455. [PMID: 37511830 PMCID: PMC10381240 DOI: 10.3390/life13071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease and the second leading cause of blindness. Detection of clinically relevant biomarkers would aid better diagnoses and monitoring during treatment. In glaucoma, the protein composition of aqueous humor (AH) is relevant for the discovery of biomarkers. This study analyzes AH protein concentrations of putative biomarkers in patients with primary open-angle glaucoma (POAG) compared to a control group. Biomarkers were selected from known oxidative-stress and inflammatory pathways. Osteopontin (OPN), matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), and interleukin-10 (IL-10) were measured using the ELISA technique. Thirty-two patients were recruited to the study, including sixteen control and sixteen glaucoma patients. The glaucoma group consisted of patients diagnosed with glaucoma. In both groups, the aqueous humor sample was obtained during cataract surgery. A significant increase in OPN, MMP-9, TNF-alpha, and IL-10 was observed in the POAG aqueous humor, compared to the control group (p < 0.05). Of note, the AH of POAG patients contained 5.6 ± 1.2-fold more OPN compared to that of control patients. Different expression profiles of oxidative stress-related and inflammatory biomarkers were observed between patients with POAG and controls. This confirms the reported involvement of inflammatory and oxidative stress pathways in POAG pathophysiology. In the future, several, targeted AH proteins may be used to generate a potential biomarker expression profile of this disease, aiding diagnoses and disease progression monitoring. This approach highlights the importance of biomarkers in the future. Biomarkers provide a way to measure disease progression and response to treatment. In the future, biomarkers will play a more critical role in the toolkit of ophthalmology healthcare professionals as the field moves towards personalized medicine and precision healthcare.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Juan Sanchez Naves
- Institute of Ophthalmology Palma de Mallorca, 07012 Palma de Mallorca, Spain
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Faculty of Optic and Optometry, Department Optometry and Vision, C/Arcos del Jalon 118, 28032 Madrid, Spain
| |
Collapse
|
28
|
Palchunova K, Kaji Y, Fujita A, Oshika T. RNA-seq analysis of human trabecular endothelial cells after treatment with timolol maleate. Jpn J Ophthalmol 2023:10.1007/s10384-023-00998-5. [PMID: 37314597 DOI: 10.1007/s10384-023-00998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Timolol maleate (timolol), a β-receptor blocker, reduces intraocular pressure by decreasing aqueous humor production. Timolol reportedly also protects ganglion cells, decreases aqueous humor outflow facility, and destroys the extracellular matrix in the trabecular meshwork. In this study, we investigated the effects of timolol on cultured human trabecular endothelial cells purchased from ScienCell using next-generation sequencing. STUDY DESIGN Experimental investigation. METHODS Total ribonucleic acid (RNA) was extracted after 24 h. More than 100 million RNAs in control and timolol-treated group were sequenced using a next-generation sequencer. The expression of 55,778 RNAs was analyzed. RESULTS A total of 2,105 genes were significantly upregulated and 2,125 genes were downregulated, after the addition of timolol. VGF nerve growth factor inducible (VGF) (388-fold) had the maximum increase in expression, followed by amphiregulin (333-fold), a member of the epidermal growth factor family. Moreover, the expression of extracellular matrix-degrading enzymes, matrix metalloproteinases (MMPs) 1, 2, 3, 10, 12, and 14, increased. CONCLUSION Timolol exerts various effects on human trabecular endothelial cells. The increase in MMP expression may contribute to the decrease in the aqueous humor outflow facility.
Collapse
Affiliation(s)
- Kseniya Palchunova
- Department of Ophthalmology, University of Tsukuba Majors in Medical Sciences, 1-1-1 Tennoudai Tsukuba, Ibaraki, 3058575, Japan
| | - Yuichi Kaji
- Department of Ophthalmology, University of Tsukuba Majors in Medical Sciences, 1-1-1 Tennoudai Tsukuba, Ibaraki, 3058575, Japan.
- Matsumoto Eye Clinic, 2-25-2F Toride-i-center, Chuo-machi Toride, Ibaraki, 3020014, Japan.
| | - Akari Fujita
- Kagurazaka Eye Clinic, 115 Yarai-cho Shinjyuku, Tokyo, 1620805, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba Majors in Medical Sciences, 1-1-1 Tennoudai Tsukuba, Ibaraki, 3058575, Japan
| |
Collapse
|
29
|
Karimi A, Crouch DJ, Razaghi R, Crawford Downs J, Acott TS, Kelley MJ, Behnsen JG, Bosworth LA, Sheridan CM. Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107485. [PMID: 37149973 DOI: 10.1016/j.cmpb.2023.107485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Intraocular pressure (IOP) is maintained via a dynamic balance between the production of aqueous humor and its drainage through the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway. Primary open angle glaucoma (POAG) is often associated with IOP elevation that occurs due to an abnormally high outflow resistance across the outflow pathway. Outflow tissues are viscoelastic and actively interact with aqueous humor dynamics through a two-way fluid-structure interaction coupling. While glaucoma affects the morphology and stiffness of the outflow tissues, their biomechanics and hydrodynamics in glaucoma eyes remain largely unknown. This research aims to develop an image-to-model method allowing the biomechanics and hydrodynamics of the conventional aqueous outflow pathway to be studied. METHODS We used a combination of X-ray computed tomography and scanning electron microscopy to reconstruct high-fidelity, eye-specific, 3D microstructural finite element models of the healthy and glaucoma outflow tissues in cellularized and decellularized conditions. The viscoelastic TM/JCT/SC complex finite element models with embedded viscoelastic beam elements were subjected to a physiological IOP load boundary; the stresses/strains and the flow state were calculated using fluid-structure interaction and computational fluid dynamics. RESULTS Based on the resultant hydrodynamics parameters across the outflow pathway, the primary site of outflow resistance in healthy eyes was in the JCT and immediate vicinity of the SC inner wall, while the majority of the outflow resistance in the glaucoma eyes occurred in the TM. The TM and JCT in the glaucoma eyes showed 1.32-fold and 1.13-fold larger beam thickness and smaller trabecular space size (2.24-fold and 1.50-fold) compared to the healthy eyes. CONCLUSIONS Characterizing the accurate morphology of the outflow tissues may significantly contribute to constructing more accurate, robust, and reliable models, that can eventually help to better understand the dynamic IOP regulation, hydrodynamics of the aqueous humor, and outflow resistance dynamic in the human eyes. This model demonstrates proof of concept for determining changes to outflow resistance in healthy and glaucomatous tissues and thus may be utilized in larger cohorts of donor tissues where disease specificity, race, age, and gender of the eye donors may be accounted for.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Devon J Crouch
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States; Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States; Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Julia G Behnsen
- Department of Mechanical, Materials, and Aerospace Engineering, University of Liverpool, Liverpool, L69 6GB, United Kingdom
| | - Lucy A Bosworth
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom.
| |
Collapse
|
30
|
Sung MS, Kim SY, Eom GH, Park SW. High VEGF Concentrations Accelerate Human Trabecular Meshwork Fibrosis in a TAZ-Dependent Manner. Int J Mol Sci 2023; 24:ijms24119625. [PMID: 37298577 DOI: 10.3390/ijms24119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 μM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
31
|
Somsuan K, Aluksanasuwan S. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Genomics Inform 2023; 21:e22. [PMID: 37423640 PMCID: PMC10326534 DOI: 10.5808/gi.23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/08/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OSkirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
32
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
33
|
Zavarzadeh PG, Abedi Z. Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis. Genomics Inform 2023; 21:e6. [PMID: 37037464 PMCID: PMC10085733 DOI: 10.5808/gi.22070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/07/2023] [Indexed: 04/03/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.
Collapse
Affiliation(s)
- Parisima Ghaffarian Zavarzadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
34
|
Twenty Novel MicroRNAs in the Aqueous Humor of Pseudoexfoliation Glaucoma Patients. Cells 2023; 12:cells12050737. [PMID: 36899874 PMCID: PMC10000531 DOI: 10.3390/cells12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The microRNAs (miRNAs) are short non-coding RNAs (19-25 nt) that regulate the level of gene expression at the post-transcriptional stage. Altered miRNAs expression can lead to the development of various diseases, e.g., pseudoexfoliation glaucoma (PEXG). In this study, we assessed the levels of miRNA expression in the aqueous humor of PEXG patients using the expression microarray method. Twenty new miRNA molecules have been selected as having the potential to be associated with the development or progression of PEXG. Ten miRNAs were downregulated in PEXG (hsa-miR-95-5p, hsa-miR-515-3p, hsa-mir-802, hsa-miR-1205, hsa-miR-3660, hsa-mir-3683, hsa -mir-3936, hsa-miR-4774-5p, hsa-miR-6509-3p, hsa-miR-7843-3p) and ten miRNAs were upregulated in PEXG (hsa-miR-202 -3p, hsa-miR-3622a-3p, hsa-mir-4329, hsa-miR-4524a-3p, hsa-miR-4655-5p, hsa-mir-6071, hsa-mir-6723-5p, hsa-miR-6847-5p, hsa-miR-8074, and hsa-miR-8083). Functional analysis and enrichment analysis showed that the mechanisms that can be regulated by these miRNAs are: extracellular matrix (ECM) imbalance, cell apoptosis (possibly retinal ganglion cells (RGCs)), autophagy, and elevated calcium cation levels. Nevertheless, the exact molecular basis of PEXG is unknown and further research is required on this topic.
Collapse
|
35
|
TGF-β-3 Induces Different Effects from TGF-β-1 and -2 on Cellular Metabolism and the Spatial Properties of the Human Trabecular Meshwork Cells. Int J Mol Sci 2023; 24:ijms24044181. [PMID: 36835591 PMCID: PMC9960590 DOI: 10.3390/ijms24044181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
To compare the effects among three TGF-β isoforms (TGF-β-1, TGF-β-2, and TGF-β-3) on the human trabecular meshwork (HTM), two-dimensional (2D) and three-dimensional (3D) cultures of commercially available certified immortalized HTM cells were used, and the following analyses were conducted: (1) trans-endothelial electrical resistance (TEER) and FITC dextran permeability measurements (2D); (2) a real-time cellular metabolic analysis (2D); (3) analysis of the physical property of the 3D HTM spheroids; and (4) an assessment of the gene expression levels of extracellular matrix (ECM) components (2D and 3D). All three TGF-β isoforms induced a significant increase in TEER values and a relative decrease in FITC dextran permeability in the 2D-cultured HTM cells, but these effects were the most potent in the case of TGF-β-3. The findings indicated that solutions containing 10 ng/mL of TGF-β-1, 5 ng/mL of TGF-β-2, and 1 ng/mL of TGF-β-3 had nearly comparable effects on TEER measurements. However, a real-time cellular metabolic analysis of the 2D-cultured HTM cells under these concentrations revealed that TGF-3-β induced quite different effects on the metabolic phenotype, with a decreased ATP-linked respiration, increased proton leakage, and decreased glycolytic capacity compared with TGF-β-1 and TGF-β-2. In addition, the concentrations of the three TGF-β isoforms also caused diverse effects on the physical properties of 3D HTM spheroids and the mRNA expression of ECMs and their modulators, in many of which, the effects of TGF-β-3 were markedly different from TGF-β-1 and TGF-β-2. The findings presented herein suggest that these diverse efficacies among the TGF-β isoforms, especially the unique action of TGF-β-3 toward HTM, may induce different effects within the pathogenesis of glaucoma.
Collapse
|
36
|
TIPARP is involved in the regulation of intraocular pressure. Commun Biol 2022; 5:1386. [PMID: 36536086 PMCID: PMC9763400 DOI: 10.1038/s42003-022-04346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the major risk factor for glaucoma. The molecular mechanism of elevated IOP is unclear, which impedes glaucoma therapy. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly-ADP-ribose Polymerase (TIPARP), a member of the PARP family, catalyses mono-ADP-ribosylation. Here we showed that TIPARP was widely expressed in the cornea, trabecular meshwork, iris, retina, optic nerve, sclera, and choroid of human eyes. The expression of TIPARP was significantly upregulated in the blood and trabecular meshwork of patients with primary open angle glaucoma compared with that of healthy controls. Transcriptome analysis revealed that the expression of genes related to extracellular matrix deposition and cell adhesion was decreased in TIPARP-upregulated human trabecular meshwork (HTM) cells. Moreover, western blot analysis showed that collagen types I and IV, fibronectin, and α-SMA were increased in TIPARP-downregulated or TIPARP-inhibited HTM cells. In addition, cross-linked actin networks were produced, and vinculin was upregulated in these cells. Subconjunctival injection of the TIPARP inhibitor RBN-2397 increased the IOP in Sprague-Dawley rats. Therefore, we identified TIPARP as a regulator of IOP through modulation of extracellular matrix and cell cytoskeleton proteins in HTM cells. These results indicate that TIPARP is a potential therapeutic target for ocular hypertension and glaucoma.
Collapse
|
37
|
Karimi A, Razaghi R, Padilla S, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes. J Clin Med 2022; 11:6049. [PMID: 36294371 PMCID: PMC9605362 DOI: 10.3390/jcm11206049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) inner wall are largely unknown. METHODS A quadrant of the anterior segment from two human donor eyes at low- and high-flow (LF and HF) outflow regions was pressurized and imaged using optical coherence tomography (OCT). A finite element (FE) model of the TM, the adjacent JCT, and the SC inner wall was constructed and viscoelastic beam elements were distributed in the extracellular matrix (ECM) of the TM and JCT to represent anisotropic collagen. An inverse FE-optimization algorithm was used to calculate the viscoelastic properties of the ECM/beam elements such that the TM/JCT/SC model and OCT imaging data best matched over time. RESULTS The ECM of the glaucoma tissues showed significantly larger time-dependent shear moduli compared to the heathy tissues. Significantly larger shear moduli were also observed in the LF regions of both the healthy and glaucoma eyes compared to the HF regions. CONCLUSIONS The outflow tissues in both glaucoma eyes and HF regions are stiffer and less able to respond to dynamic IOP.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Steven Padilla
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
38
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
39
|
Faralli JA, Filla MS, Peters DM. Integrin Crosstalk and Its Effect on the Biological Functions of the Trabecular Meshwork/Schlemm’s Canal. Front Cell Dev Biol 2022; 10:886702. [PMID: 35573686 PMCID: PMC9099149 DOI: 10.3389/fcell.2022.886702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Integrins are a family of heterodimeric receptors composed of an α- and β-subunit that mediate cell-adhesion to a number of extracellular matrix (ECM) proteins in the Trabecular Meshwork/Schlemm’s canal (TM/SC) of the eye. Upon binding an ECM ligand, integrins transmit signals that activate a number of signaling pathways responsible for regulating actin-mediated processes (i.e phagocytosis, cell contractility, and fibronectin fibrillogenesis) that play an important role in regulating intraocular pressure (IOP) and may be involved in glaucoma. An important function of integrin-mediated signaling events is that the activity of one integrin can affect the activity of other integrins in the same cell. This creates a crosstalk that allows TM/SC cells to respond to changes in the ECM presumably induced by the mechanical forces on the TM/SC, aging and disease. In this review, we discuss how integrin crosstalk influences the function of the human TM/SC pathway. In particular, we will discuss how different crosstalk pathways mediated by either the αvβ3 or α4β1 integrins can play opposing roles in the TM when active and therefore act as on/off switches to modulate the cytoskeleton-mediated processes that regulate the outflow of aqueous humor through the TM/SC.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S. Filla
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- *Correspondence: Donna M. Peters,
| |
Collapse
|
40
|
Yang YF, Sun YY, Peters DM, Keller KE. The Effects of Mechanical Stretch on Integrins and Filopodial-Associated Proteins in Normal and Glaucomatous Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886706. [PMID: 35573666 PMCID: PMC9100841 DOI: 10.3389/fcell.2022.886706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The trabecular meshwork (TM) is the tissue responsible for regulating aqueous humor fluid egress from the anterior eye. If drainage is impaired, intraocular pressure (IOP) becomes elevated, which is a primary risk factor for primary open angle glaucoma. TM cells sense elevated IOP via changes in their biomechanical environment. Filopodia cellular protrusions and integrin transmembrane proteins may play roles in detecting IOP elevation, yet this has not been studied in detail in the TM. Here, we investigate integrins and filopodial proteins, such as myosin-X (Myo10), in response to mechanical stretch, an in vitro technique that produces mechanical alterations mimicking elevated IOP. Pull-down assays showed Myo10 binding to α5 but not the β1 subunit, αvβ3, and αvβ5 integrins. Several of these integrins colocalized in nascent adhesions in the filopodial tip and shaft. Using conformation-specific antibodies, we found that β1 integrin, but not α5 or αvβ3 integrins, were activated following 1-h mechanical stretch. Cadherin -11 (CDH11), a cell adhesion molecule, did not bind to Myo10, but was associated with filopodia. Interestingly, CDH11 was downregulated on the TM cell surface following 1-h mechanical stretch. In glaucoma cells, CDH11 protein levels were increased. Finally, mechanical stretch caused a small, yet significant increase in Myo10 protein levels in glaucoma cells, but did not affect cellular communication of fluorescent vesicles via filopodia-like tunneling nanotubes. Together, these data suggest that TM cell adhesion proteins, β1 integrin and CDH11, have relatively rapid responses to mechanical stretch, which suggests a central role in sensing changes in IOP elevation in situ.
Collapse
Affiliation(s)
- Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Kate E. Keller,
| |
Collapse
|