1
|
Wen S, Liu Y, Yang G, Chen W, Wu H, Zhu X, Wang Y. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations. Sci Rep 2024; 14:20490. [PMID: 39227405 PMCID: PMC11371806 DOI: 10.1038/s41598-024-68897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
MicroRNAs (miRNAs) are a key class of endogenous non-coding RNAs that play a pivotal role in regulating diseases. Accurately predicting the intricate relationships between miRNAs and diseases carries profound implications for disease diagnosis, treatment, and prevention. However, these prediction tasks are highly challenging due to the complexity of the underlying relationships. While numerous effective prediction models exist for validating these associations, they often encounter information distortion due to limitations in efficiently retaining information during the encoding-decoding process. Inspired by Multi-layer Heterogeneous Graph Transformer and Machine Learning XGboost classifier algorithm, this study introduces a novel computational approach based on multi-layer heterogeneous encoder-machine learning decoder structure for miRNA-disease association prediction (MHXGMDA). First, we employ the multi-view similarity matrices as the input coding for MHXGMDA. Subsequently, we utilize the multi-layer heterogeneous encoder to capture the embeddings of miRNAs and diseases, aiming to capture the maximum amount of relevant features. Finally, the information from all layers is concatenated to serve as input to the machine learning classifier, ensuring maximal preservation of encoding details. We conducted a comprehensive comparison of seven different classifier models and ultimately selected the XGBoost algorithm as the decoder. This algorithm leverages miRNA embedding features and disease embedding features to decode and predict the association scores between miRNAs and diseases. We applied MHXGMDA to predict human miRNA-disease associations on two benchmark datasets. Experimental findings demonstrate that our approach surpasses several leading methods in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve.
Collapse
Affiliation(s)
- SiJian Wen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - YinBo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Guang Yang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - WenXi Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - HaiTao Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - XiaoLei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
| | - YongMei Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Hefei, 230036, China.
| |
Collapse
|
2
|
Ma Y, Ma Y. Kernel Bayesian logistic tensor decomposition with automatic rank determination for predicting multiple types of miRNA-disease associations. PLoS Comput Biol 2024; 20:e1012287. [PMID: 38976761 PMCID: PMC11257412 DOI: 10.1371/journal.pcbi.1012287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/18/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Identifying the association and corresponding types of miRNAs and diseases is crucial for studying the molecular mechanisms of disease-related miRNAs. Compared to traditional biological experiments, computational models can not only save time and reduce costs, but also discover potential associations on a large scale. Although some computational models based on tensor decomposition have been proposed, these models usually require manual specification of numerous hyperparameters, leading to a decrease in computational efficiency and generalization ability. Additionally, these linear models struggle to analyze complex, higher-order nonlinear relationships. Based on this, we propose a novel framework, KBLTDARD, to identify potential multiple types of miRNA-disease associations. Firstly, KBLTDARD extracts information from biological networks and high-order association network, and then fuses them to obtain more precise similarities of miRNAs (diseases). Secondly, we combine logistic tensor decomposition and Bayesian methods to achieve automatic hyperparameter search by introducing sparse-induced priors of multiple latent variables, and incorporate auxiliary information to improve prediction capabilities. Finally, an efficient deterministic Bayesian inference algorithm is developed to ensure computational efficiency. Experimental results on two benchmark datasets show that KBLTDARD has better Top-1 precision, Top-1 recall, and Top-1 F1 for new type predictions, and higher AUPR, AUC, and F1 values for new triplet predictions, compared to other state-of-the-art methods. Furthermore, case studies demonstrate the efficiency of KBLTDARD in predicting multiple types of miRNA-disease associations.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, China
| | - Yuanyuan Ma
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
3
|
Temgire P, Arthur R, Kumar P. Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm. Inflammopharmacology 2024; 32:1791-1804. [PMID: 38653938 DOI: 10.1007/s10787-024-01477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.
Collapse
Affiliation(s)
- Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
4
|
Jedlickova J, Vajter M, Barta T, Black GCM, Perveen R, Mares J, Fichtl M, Kousal B, Dudakova L, Liskova P. MIR204 n.37C>T variant as a cause of chorioretinal dystrophy variably associated with iris coloboma, early-onset cataracts and congenital glaucoma. Clin Genet 2023; 104:418-426. [PMID: 37321975 DOI: 10.1111/cge.14391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Four members of a three-generation Czech family with early-onset chorioretinal dystrophy were shown to be heterozygous carriers of the n.37C>T in MIR204. The identification of this previously reported pathogenic variant confirms the existence of a distinct clinical entity caused by a sequence change in MIR204. Chorioretinal dystrophy was variably associated with iris coloboma, congenital glaucoma, and premature cataracts extending the phenotypic range of the condition. In silico analysis of the n.37C>T variant revealed 713 novel targets. Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. Haplotype analysis excluded relatedness with the original family reported to harbour the n.37C>T variant in MIR204. Identification of a second independent family confirms the existence of a distinct MIR204-associated clinical entity and suggests that the phenotype may also involve congenital glaucoma.
Collapse
Affiliation(s)
- Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marie Vajter
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Graeme C M Black
- Division of Evolution, and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rahat Perveen
- Division of Evolution, and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jan Mares
- Department of Ophthalmology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marek Fichtl
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Wang T, Long Q, Hu Y, Yang Y, Li X, Wei H. miR-181c-5p suppresses neuronal pyroptosis via NLRP1 in Alzheimer's disease. Behav Brain Res 2023; 447:114387. [PMID: 37003492 DOI: 10.1016/j.bbr.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Alzheimer's disease (AD) is neurodegenerative disease common in the elderly, whose pathological mechanism is the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. Pyroptosis is a programmed cell death mediated by Gasdermin protein. After the activation of inflammasomes, the cleaved caspase⁃ 1/4/5/11 activates GSDMD, which promotes the release of inflammatory substances and eventually causes cell swelling and death. Pyroptosis caused by inflammasomes plays a role in AD. However, the specific regulatory mechanism of pyroptosis in AD still needs more experimental studies. To further study the effects of NLRP1-induced pyroptosis on AD, miR-181c-5p, which could targeted bind to NLRP1, was knocked down or overexpression in HT22 cells to detect cell apoptosis with Tunel assay, the expression of inflammasome-related proteins with Western blot and the content of inflammatory factors with ELISA. miR-181c-5p was overexpressed in AD model mice to detect the learning and cognitive ability with morris water maze testing and the expression of inflammasoma-related proteins with Western blot. The results showed that miR-181c-5p mimic attenuated Aβ1-42-induced neuronal pyroptosis in HT22 cells, while up-regulation of NLRP1 aggravated neuronal pyroptosis in HT22 cells. In mice, miR-181c-5p agomir attenuated neuronal pyroptosis in both hippocampal and cortical tissues, and miR-181c-5p antagomir improved neuronal pyroptosis and cognitive impairment through NLRP1. Therefore, the study suggests that miR-181c-5p can alleviated AD process by targeted downregulation of NLRP1, which is expected to be a target site for AD treatment.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qionghua Long
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Hu
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yongli Yang
- Department of Geriatrics, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Xingguo Li
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan, China.
| | - Huan Wei
- Department of Neurology, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.
| |
Collapse
|
6
|
Dos Santos JS, Bonafé GA, Lourenço GJ, Ortega MM. Evaluating Single-Nucleotide Variants in MicroRNA Targeting Sites and Mature MicroRNA In Vitro Cell Culture by Luciferase Reporter Gene Assays. Methods Mol Biol 2023; 2595:185-201. [PMID: 36441463 DOI: 10.1007/978-1-0716-2823-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs of 21-24 nucleotides in length that modulate gene expression by targeting the untranslated region (UTR) of mRNA. Single-nucleotide variants (SNVs) in primary miRs (pri-miRs), precursor miRs (pre-miRs), promoters of pri-miRs, and seed regions can affect miR stability or processing, may influence mature miR expression, and can affect target gene identification, respectively. The present protocol tests the binding and activity of miRs on 3'-UTR target sequences based on the expression of luciferase as a reporter gene fused to the UTR sequence in the presence of plasmids containing pre-miR of interest to test in vitro cell culture assay.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil.
| |
Collapse
|
7
|
MicroRNA and their implications in dental pulp inflammation: current trends and future perspectives. Odontology 2022:10.1007/s10266-022-00762-0. [DOI: 10.1007/s10266-022-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
8
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
9
|
Barish S, Senturk M, Schoch K, Minogue AL, Lopergolo D, Fallerini C, Harland J, Seemann JH, Stong N, Kranz PG, Kansagra S, Mikati MA, Jasien J, El-Dairi M, Galluzzi P, Ariani F, Renieri A, Mari F, Wangler MF, Arur S, Jiang YH, Yamamoto S, Shashi V, Bellen HJ. The microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder. Hum Mol Genet 2022; 31:2934-2950. [PMID: 35405010 PMCID: PMC9433733 DOI: 10.1093/hmg/ddac085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Mumine Senturk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diego Lopergolo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
| | - Jake Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jacob H Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Peter G Kranz
- Division of Neuroradiology, Department of Radiology, Duke Health, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke Health, Durham, NC 27710, USA
| | - Paolo Galluzzi
- Department of Medical Genetics, NeuroImaging and NeuroInterventional Unit, Azienda Ospedaliera e Universitaria, Senese, Siena 53100, Italy
| | - Francesca Ariani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong-Hui Jiang
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Yale School of Medicine, New Haven, CT 06510, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
do Canto LM, da Silva JM, Castelo-Branco PV, da Silva IM, Nogueira L, Fonseca-Alves CE, Khayat A, Birbrair A, Pereira SR. Mutational Signature and Integrative Genomic Analysis of Human Papillomavirus-Associated Penile Squamous Cell Carcinomas from Latin American Patients. Cancers (Basel) 2022; 14:cancers14143514. [PMID: 35884575 PMCID: PMC9316960 DOI: 10.3390/cancers14143514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary DNA sequencing has been crucial to comprehending cancer mutational patterns, leading to the identification of driver genes and altered signaling pathways. Thus, identifying new pathogenic variants and their impact on tumor onset, progression, and treatment response has fueled tumor biology research. Here, we present novel findings addressing the first whole-exome sequencing (WES) of human papillomavirus (HPV)-associated penile squamous cell carcinoma (PSCC) from Latin Americans and its association with pathogenesis. We also compared the molecular profile of the tumors to that of three previous studies from populations with different genetic and socioeconomic backgrounds, the majority of which was HPV-negative. We describe the most altered genes and the main pathogenic variants found in the Latin Americans, ten of which are exclusive to our study sample. The data allowed us to identify molecular pathways and druggable targets with potential treatment value for this still-neglected HPV-associated carcinoma. Abstract High-throughput DNA sequencing has allowed for the identification of genomic alterations and their impact on tumor development, progression, and therapeutic responses. In PSCC, for which the incidence has progressively increased worldwide, there are still limited data on the molecular mechanisms involved in the disease pathogenesis. In this study, we characterized the mutational signature of 30 human papillomavirus (HPV)-associated PSCC cases from Latin Americans, using whole-exome sequencing. Copy number variations (CNVs) were also identified and compared to previous array-generated data. Enrichment analyses were performed to reveal disrupted pathways and to identify alterations mapped to HPV integration sites (HPVis) and miRNA–mRNA hybridization regions. Among the most frequently mutated genes were NOTCH1, TERT, TTN, FAT1, TP53, CDKN2A, RYR2, CASP8, FBXW7, HMCN2, and ITGA8. Of note, 92% of these altered genes were localized at HPVis. We also found mutations in ten novel genes (KMT2C, SMARCA4, PTPRB, AJUBA, CR1, KMT2D, NBEA, FAM135B, GTF2I, and CIC), thus increasing our understanding of the potential HPV-disrupted pathways. Therefore, our study reveals innovative targets with potential therapeutic benefits for HPV-associated PSCCs. The CNV analysis by sequencing (CNV-seq) revealed five cancer-associated genes as the most frequent with gains (NOTCH1, MYC, NUMA1, PLAG1, and RAD21), while 30% of the tumors showed SMARCA4 with loss. Additionally, four cancer-associated genes (CARD11, CSMD3, KDR, and TLX3) carried untranslated regions (UTRs) variants, which may impact gene regulation by affecting the miRNAs hybridization regions. Altogether, these data contribute to the characterization of the mutational spectrum and its impact on cellular signaling pathways in PSCC, thus reinforcing the pivotal role of HPV infection in the molecular pathogenesis of these tumors.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- Clinical Genetics Department, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Jenilson Mota da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | - Patrícia Valèria Castelo-Branco
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | - Ingrid Monteiro da Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | | | | | - André Khayat
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil;
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
- Correspondence: ; Tel.: +55-98-32728543
| |
Collapse
|
11
|
Bonafé GA, Boschiero MN, Sodré AR, Ziegler JV, Rocha T, Ortega MM. Natural Plant Compounds: Does Caffeine, Dipotassium Glycyrrhizinate, Curcumin, and Euphol Play Roles as Antitumoral Compounds in Glioblastoma Cell Lines? Front Neurol 2022; 12:784330. [PMID: 35300350 PMCID: PMC8923017 DOI: 10.3389/fneur.2021.784330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Many plant-derived compounds are shown to be promising antitumor therapeutic agents by enhancing apoptosis-related pathways and cell cycle impairment in tumor cells, including glioblastoma (GBM) cell lines. We aimed to review four natural plant compounds effective in GBM cell lines as caffeine, dipotassium glycyrrhizinate (DPG), curcumin, and euphol. Furthermore, antitumoral effect of these plant compounds on GBM cell lines through microRNAs (miRs) modulation was investigated. However, only DPG and curcumin were found as effective on miR modulation. Caffeine arrests GBM cell cycle in G0/G1 phase by cyclin-dependent kinases (CDK) complex inhibition and by decreasing BCL-2 and increasing FOXO1 expression levels causing greater apoptotic activity. Caffeine can also directly inhibit IP3R3, p38 phosphorylation, and rho-associated protein kinase (ROCK), decreasing cell invasion and migration capacity or indirectly by inhibiting the tissue inhibitor metalloproteinase-1 (TIMP-1) and integrins β1 and β3, leading to lower matrix metalloproteinases, MMP-2 and MMP-9. DPG presents antitumoral effect in GBM cells related to nuclear factor kappa B (NF-κB) pathway suppression by IRAK2 and TRAF6-mediating miR-16 and miR-146a, respectively. More recently, it was observed that DPG upregulated miR-4443 and miR-3620, responsible for post-transcriptional inhibition of the NF-κB pathway by CD209 and TNC modulation, respectively leading to lower MMP-9 and migration capacity. Curcumin is able to increase miR-223-3p, miR-133a-3p, miR-181a-5p, miR-34a-5p, miR-30c-5p, and miR-1290 expression leading to serine or threonine kinase (AKT) pathway impairment and also it decreases miR-27a-5p, miR-221-3p, miR-21-5p, miR-125b-5p, and miR-151-3p expression causing p53-BCL2 pathway inhibition and consequently, cellular apoptosis. Interestingly, lower expression of miR-27a by curcumin action enhanced the C/EBP homologous protein(CHOP) expression, leading to paraptosis. Curcumin can inhibit miR-21 expression and consequently activate apoptosis through caspase 3 and death receptor (DR) 4 and 5 activation. Autophagy is controlled by the LC-3 protein that interacts with Atg family for the LC3-II formation and autophagy activation. Euphol can enhance LC3-II levels directly in GBM cells or inhibits tumor invasion and migration through PDK1 modulation.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | - André Rodrigues Sodré
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | | | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
- *Correspondence: Manoela Marques Ortega
| |
Collapse
|
12
|
Landeros N, Corvalan AH, Musleh M, Quiñones LA, Varela NM, Gonzalez-Hormazabal P. Novel Risk Associations between microRNA Polymorphisms and Gastric Cancer in a Chilean Population. Int J Mol Sci 2021; 23:ijms23010467. [PMID: 35008894 PMCID: PMC8745138 DOI: 10.3390/ijms23010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) is the fifth leading cause of cancer deaths in the world, with variations across geographical regions and ethnicities. Emerging evidence indicates that miRNA expression is dysregulated in GC and its polymorphisms may contribute to these variations, which has yet to be explored in Latin American populations. In a case-control study of 310 GC patients and 311 healthy donors from Chile, we assessed the association of 279 polymorphisms in 242 miRNA genes. Two novel polymorphisms were found to be associated with GC: rs4822739:C>G (miR-548j) and rs701213:T>C (miR-4427). Additionally, rs1553867776:T>TCCCCA (miR-4274) and rs12416605:C>T (miR-938) were associated with intestinal-type GC, and rs4822739:C>G (miR-548j) and rs1439619:T>G (miR-3175) with TNM I-II stage. The polymorphisms rs6149511:T> TGAAGGGCTCCA (miR-6891), rs404337:G>A (miR-8084), and rs1439619:T>G (miR-3175) were identified among H.pylori-infected GC patients and rs7500280:T>C (miR-4719) and rs1439619:T>G (miR-3175) were found among H. pylori cagPAI+ infected GC cases. Prediction analysis suggests that seven polymorphisms could alter the secondary structure of the miRNA, and the other one is located in the seed region of miR-938. Targets of miRNAs are enriched in GC pathways, suggesting a possible biological effect. In this study, we identified seven novel associations and replicated one previously described in Caucasian population. These findings contribute to the understanding of miRNA genetic polymorphisms in the GC pathogenesis.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (A.H.C.)
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (A.H.C.)
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile
| | - Maher Musleh
- Department of Surgery, University of Chile Clinical Hospital, Santiago 8380456, Chile;
| | - Luis A. Quiñones
- Department of Basic-Clinical Oncology, School of Medicine, University of Chile, Santiago 8380453, Chile; (L.A.Q.); (N.M.V.)
- Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
| | - Nelson M. Varela
- Department of Basic-Clinical Oncology, School of Medicine, University of Chile, Santiago 8380453, Chile; (L.A.Q.); (N.M.V.)
- Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
| | - Patricio Gonzalez-Hormazabal
- Human Genetics Program, Institute of Biomedical Sciences (ICBM), School of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Correspondence:
| |
Collapse
|
13
|
Dong X, Cong S. MicroRNAs in Huntington's Disease: Diagnostic Biomarkers or Therapeutic Agents? Front Cell Neurosci 2021; 15:705348. [PMID: 34421543 PMCID: PMC8377808 DOI: 10.3389/fncel.2021.705348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
MicroRNA (miRNA) is a non-coding single-stranded small molecule of approximately 21 nucleotides. It degrades or inhibits the translation of RNA by targeting the 3′-UTR. The miRNA plays an important role in the growth, development, differentiation, and functional execution of the nervous system. Dysregulated miRNA expression has been associated with several pathological processes of neurodegenerative disorders, including Huntington’s disease (HD). Recent studies have suggested promising roles of miRNAs as biomarkers and potential therapeutic targets for HD. Here, we review the emerging role of dysregulated miRNAs in HD and describe general biology of miRNAs, their pathophysiological implications, and their potential roles as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
The Ambivalent Role of miRNAs in Carcinogenesis: Involvement in Renal Cell Carcinoma and Their Clinical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040322. [PMID: 33918154 PMCID: PMC8065760 DOI: 10.3390/ph14040322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
The analysis of microRNA (miRNAs), small, non-coding endogenous RNA, plays a crucial role in oncology. These short regulatory sequences, acting on thousands of messenger RNAs (mRNAs), modulate gene expression at the transcriptional and post-transcriptional level leading to translational repression or degradation of target molecules. Although their function is required for several physiological processes, such as proliferation, apoptosis and cell differentiation, miRNAs are also responsible for development and/or progression of several cancers, since they may interact with classical tumor pathways. In this review, we highlight recent advances in deregulated miRNAs in cancer focusing on renal cell carcinoma (RCC) and provide an overview of the potential use of miRNA in their clinical settings, such as diagnostic and prognostic markers.
Collapse
|
15
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
16
|
Raval N, Kumawat A, Kalyane D, Kalia K, Tekade RK. Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. Drug Discov Today 2020; 25:862-878. [PMID: 31981791 DOI: 10.1016/j.drudis.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Diabetes and related complications are becoming a global encumbrance. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). The available therapeutic modalities related to DN do not treat DN at the molecular level, proposing further amendments in the management of DN based on the pathogenesis of DN. This manuscript discusses the concept and applications of nanomedicine for the treatment of DN that can improve renal targeting, retention and localization. This review also highlights the current issues related to targeting DN, challenges and allied opportunities toward the development of next-generation drugs and treatments for the management of DN.
Collapse
Affiliation(s)
- Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Akshant Kumawat
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India; Indian Institute of Technology-Jammu, Jagti, PO Nagrota, Jammu 181 221, J&K, India.
| |
Collapse
|
17
|
Huang Q, Li H, Dai X, Zhao D, Guan B, Xia W. miR‑497 inhibits the proliferation and migration of A549 non‑small‑cell lung cancer cells by targeting FGFR1. Mol Med Rep 2019; 20:3959-3967. [PMID: 31485617 DOI: 10.3892/mmr.2019.10611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/14/2018] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) signaling has been reported to contribute to the carcinogenic progression of various cancer types. Previous studies have demonstrated that FGFR1 expression is increased in non‑small cell lung cancer (NSCLC) and promotes cancer cell metastasis. However, the molecular mechanisms underlying increased FGFR1 expression in NSCLC remains largely unknown. In the current study, microRNA (miR)‑497 levels were observed to be inversely correlated with FGFR1 expression in tumor samples from patients with NSCLC. In the NSCLC cell line A549, miR‑497 overexpression inhibited cell proliferation and migration. Increased expression of miR‑497 led to a reduction in FGFR1 expression, at the mRNA and protein levels. In addition, transfection of miR‑497 mimics inactivated the protein kinase B (AKT) and c‑Jun N‑terminal kinase (JNK) signaling pathways, as reduced matrix metallopeptidase 26 expression; all of which are regulated by FGFR1. Using TargetScan software, FGFR1 was also identified as a predicted target gene of miR‑497, and a dual luciferase reporter assay confirmed that miR‑497 directly regulated FGFR1. Transfection of a recombinant FGFR1 overexpression vector reversed miR‑497 mimic‑induced arrest of cell growth and migration in A549 cells. In conclusion, the results of the present study identified miR‑497 as a potential tumor suppressor gene in NSCLC that may function via repressing FGFR1 expression, and AKT and JNK signaling.
Collapse
Affiliation(s)
- Qibin Huang
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Hongtao Li
- Department of Oncology, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Xiaofeng Dai
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Di Zhao
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Bingfeng Guan
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Wen Xia
- Department of Anesthesiology, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
18
|
Ansari A, Maffioletti E, Milanesi E, Marizzoni M, Frisoni GB, Blin O, Richardson JC, Bordet R, Forloni G, Gennarelli M, Bocchio-Chiavetto L. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer's disease. Neurobiol Aging 2019; 82:102-109. [PMID: 31437718 DOI: 10.1016/j.neurobiolaging.2019.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
The identification of mechanisms associated with Alzheimer's disease (AD) development in mild cognitive impairment (MCI) would be of great usefulness to clarify AD pathogenesis and to develop preventive and therapeutic strategies. In this study, blood levels of the candidate microRNAs (small noncoding RNAs that play a pivotal role in gene expression) miR-146a, miR-181a, miR-181b, miR-24-3p, miR-186a, miR-101, miR-339, miR-590, and miR-22 have been investigated for association to AD conversion within 2 years in a group of 45 patients with MCI. Baseline miR-146a (p = 0.036) and miR-181a (p = 0.026) showed a significant upregulation in patients with MCI who later converted to AD. These alterations were related to AD hallmarks: a significant negative correlation was found with amyloid beta cerebrospinal fluid concentration for miR-146a (p = 0.006) and miR-181a (p = 0.001). Moreover, higher levels of miR-146a were associated to apolipoprotein E ε4 allele presence, smaller volume of the hippocampus (p = 0.045) and of the CA1 (p = 0.013) and the subiculum (p = 0.027) subfields. Increased levels of miR-146a (p = 0.031) and miR-181a (p = 0.002) were also linked with diffusivity alterations in the cingulum. These data support a role for miR-146a and miR-181a in the mechanisms of AD progression.
Collapse
Affiliation(s)
- Abulaish Ansari
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Maffioletti
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena Milanesi
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Cellular and Molecular Medicine, 'Victor Babes' National Institute of Pathology, Bucharest, Romania
| | - Moira Marizzoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneve, Geneve, Switzerland
| | - Oliver Blin
- AP-HM, CHU Timone, CIC CPCET, Service de Pharmacologie Clinique et Pharmacovigilance, Marseille, France
| | - Jill C Richardson
- Neurosciences Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK; MRL UK, MSD, 2 Royal College Street, London, UK
| | - Regis Bordet
- U1171 Inserm, CHU Lille, Degenerative and Vascular Cognitive Disorders, University of Lille, Lille, France
| | - Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Gennarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Luisella Bocchio-Chiavetto
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Faculty of Psychology, eCampus University, Novedrate (Como), Italy
| | | |
Collapse
|
19
|
Chen B, Chen J, Du Q, Zhou D, Wang L, Xie J, Li Y, Zhang D. Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus. THE NEW PHYTOLOGIST 2018; 219:1263-1282. [PMID: 29916214 DOI: 10.1111/nph.15262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) function as key regulators of complex traits, but how genetic alterations in miRNA biogenesis genes (miRBGs) affect quantitative variation has not been elucidated. We conducted transcript analyses and association genetics to investigate how miRBGs, miRNA genes (MIRNAs) and their respective targets contribute to secondary growth in a natural population of 435 Populus tomentosa individuals. This analysis identified 29 843 common single-nucleotide polymorphisms (SNPs; frequency > 0.10) within 682 genes (80 miRBGs, 152 MIRNAs, and 457 miRNA targets). Single-SNP association analysis found SNPs in 234 candidate genes exhibited significant additive/dominant effects on phenotypes. Among these, specific candidates that associated with the same traits produced 791 miRBG-MIRNA-target combinations, suggesting possible genetic miRBG-MIRNA and MIRNA-target interactions, providing an important clue for the regulatory mechanisms of miRBGs. Multi-SNP association found 4672 epistatic pairs involving 578 genes that showed significant associations with traits and identified 106 miRBG-MIRNA-target combinations. Two multi-hierarchical networks were constructed based on correlations of miRBG-miRNA and miRNA-target expression to further probe the mechanisms of trait diversity underlying changes in miRBGs. Our study opens avenues for the investigation of miRNA function in perennial plants and underscored miRBGs as potentially modulating quantitative variation in traits.
Collapse
Affiliation(s)
- Beibei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jinhui Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
20
|
Rassi DM, De Paiva CS, Dias LC, Módulo CM, Adriano L, Fantucci MZ, Rocha EM. Review: MicroRNAS in ocular surface and dry eye diseases. Ocul Surf 2017; 15:660-669. [PMID: 28483646 DOI: 10.1016/j.jtos.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
|
21
|
Schoen C, Aschrafi A, Thonissen M, Poelmans G, Von den Hoff JW, Carels CEL. MicroRNAs in Palatogenesis and Cleft Palate. Front Physiol 2017; 8:165. [PMID: 28420997 PMCID: PMC5378724 DOI: 10.3389/fphys.2017.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate.
Collapse
Affiliation(s)
- Christian Schoen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands
| | - Armaz Aschrafi
- Laboratory of Molecular Biology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of HealthBethesda, MD, USA
| | - Michelle Thonissen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical CenterNijmegen, Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegen, Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences, Radboud UniversityNijmegen, Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical CenterNijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical CenterNijmegen, Netherlands.,Department of Oral Health Sciences, University Hospitals-KU LeuvenLeuven, Belgium
| |
Collapse
|
22
|
Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:47-94. [PMID: 28253991 DOI: 10.1016/bs.pmbts.2016.12.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are found in the circulatory biofluids considering the important molecules for biomarker study in aging and age-related diseases. Blood or blood components (serum/plasma) are primary sources of circulatory miRNAs and can release these in cell-free form either bound with some protein components or encapsulated with microvesicle particles, called exosomes. miRNAs are quite stable in the peripheral circulation and can be detected by high-throughput techniques like qRT-PCR, microarray, and sequencing. Intracellular miRNAs could modulate mRNA activity through target-specific binding and play a crucial role in intercellular communications. At a pathological level, changes in cellular homeostasis lead to the modulation of molecular function of cells; as a result, miRNA expression is deregulated. Deregulated miRNAs came out from cells and frequently circulate in extracellular body fluids as part of various human diseases. Most common aging-associated diseases are cardiovascular disease, cancer, arthritis, dementia, cataract, osteoporosis, diabetes, hypertension, and neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Variation in the miRNA signature in a diseased peripheral circulatory system opens up a new avenue in the field of biomarker discovery. Here, we measure the biomarker potential of circulatory miRNAs in aging and various aging-related pathologies. However, further more confirmatory researches are needed to elaborate these findings at the translation level.
Collapse
Affiliation(s)
- S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
23
|
Yao K, Ricardo SD. Mesenchymal stem cells as novel micro-ribonucleic acid delivery vehicles in kidney disease. Nephrology (Carlton) 2017; 21:363-71. [PMID: 26437381 DOI: 10.1111/nep.12643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/19/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are short single strands of RNA responsible for post-transcriptional regulation of gene expression and have been implicated in the pathogenesis of chronic kidney disease (CKD). Emerging evidence reports that miRNAs can reduce kidney fibrosis through regulation of targets associated with collagen and extracellular matrix accumulation. However, the development of miRNA therapies has been hampered by the lack of targeted and sustainable methods of systemic miRNA delivery. Mesenchymal stem cells (MSCs) provide a promising miRNA delivery platform to overcome toxicity, the potential for insertional mutations and the low efficiency of previous methods. MSCs are endogenously immunoprivileged and home to sites of inflammation. They also release trophic growth factors to modulate the immune system, alter the polarization of macrophages and provide renal protection and repair. The potential to engineer MSCs to express or overexpress miRNAs, released by exosomes, may enhance their natural functions. Clinical studies are already being conducted individually for the use of miRNAs in cancer and MSCs in diseases associated with CKD. Hence, the combination of miRNAs and MSCs may provide an unparalleled cell-based therapy for treating CKD.
Collapse
Affiliation(s)
- Kevin Yao
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, Mirsaeidi M, Velayati A. The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol 2016; 791:395-404. [PMID: 27634639 PMCID: PMC7094636 DOI: 10.1016/j.ejphar.2016.09.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which can act as master regulators of gene expression, modulate almost all biological process and are essential for maintaining cellular homeostasis. Dysregulation of miRNA expression has been associated with aberrant gene expression and may lead to pathological conditions. Evidence suggests that miRNA expression profiles are altered between health and disease and as such may be considered as biomarkers of disease. Evidence is increasing that miRNAs are particularly important in lung homeostasis and development and have been demonstrated to be the involved in many pulmonary diseases such as asthma, COPD, sarcoidosis, lung cancer and other smoking related diseases. Better understanding of the function of miRNA and the mechanisms underlying their action in the lung, would help to improve current diagnosis and therapeutics strategies in pulmonary diseases. Recently, some miRNA-based drugs have been introduced as possible therapeutic agents. In this review we aim to summarize the recent findings regarding the role of miRNAs in the airways and lung and emphasise their potential therapeutic roles in pulmonary diseases.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Esmaeil Mortaz
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK; Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Smedley D, Schubach M, Jacobsen J, Köhler S, Zemojtel T, Spielmann M, Jäger M, Hochheiser H, Washington N, McMurry J, Haendel M, Mungall C, Lewis S, Groza T, Valentini G, Robinson P. A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease. Am J Hum Genet 2016; 99:595-606. [PMID: 27569544 DOI: 10.1016/j.ajhg.2016.07.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease.
Collapse
|
26
|
Kumar S, Reddy PH. Are circulating microRNAs peripheral biomarkers for Alzheimer's disease? BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1617-27. [PMID: 27264337 PMCID: PMC5343750 DOI: 10.1016/j.bbadis.2016.06.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, multiple cognitive abnormalities and intellectual impairments. Currently, there are no drugs or agents that can delay and/or prevent the progression of disease in elderly individuals, and there are no peripheral biomarkers that can detect AD early in its pathogenesis. Research has focused on identifying biomarkers for AD so that treatment can be begun as soon as possible in order to restrict or prevent intellectual impairments, memory loss, and other cognitive abnormalities that are associated with the disease. One such potential biomarker is microRNAs that are found in circulatory biofluids, such as blood and blood components, serum and plasma. Blood and blood components are primary sources where miRNAs are released in either cell-free form and then bind to protein components, or are in an encapsulated form with microvesicle particles. Exosomal miRNAs are known to be stable in biofluids and can be detected by high throughput techniques, like microarray and RNA sequencing. In AD brain, enriched miRNAs encapsulated with exosomes crosses the blood brain barrier and secreted in the CSF and blood circulations. This review summarizes recent studies that have identified miRNAs in the blood, serum, plasma, exosomes, cerebral spinal fluids, and extracellular fluids as potential biomarkers of AD. Recent research has revealed only six miRNAs - miR-9, miR-125b, miR-146a, miR-181c, let-7g-5p, and miR-191-5p - that were reported by multiple investigators. Some studies analyzed the diagnostic potential of these six miRNAs through receiver operating curve analysis which indicates the significant area-under-curve values in different biofluid samples. miR-191-5p was found to have the maximum area-under-curve value (0.95) only in plasma and serum samples while smaller area-under-curve values were found for miR-125, miR-181c, miR-191-5p, miR-146a, and miR-9. This article shortlisted the promising miRNA candidates and discussed their diagnostic properties and cellular functions in order to search for potential biomarker for AD.
Collapse
Affiliation(s)
- Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
27
|
Abstract
MicroRNAs (miRs, miRNAs) are small molecules of 18-22 nucleotides that serve as important regulators of gene expression at the post-transcriptional level. One of the mechanisms through which miRNAs regulate gene expression involves the interaction of their "seed" sequences primarily with 3'-end and more rarely with 5'-end, of mRNA transcribed from target genes. Numerous studies over the past decade have been devoted to quantitative and qualitative assessment of miRNAs expression and have shown remarkable changes in miRNA expression profiles in various diseases. Thus, profiling of miRNA expression can be an important tool for diagnostics and treatment of disease. However, less attention has been paid towards understanding the underlying reasons for changes in miRNA expression, especially in cancer cells. The purpose of this review is to analyze and systematize current data that explains reasons for changes in the expression of miRNAs. The review will cover both transcriptional (changes in gene expression and promoter hypermethylation) and post-transcriptional (changes in miRNA processing) mechanisms of regulation of miRNA expression, as well as effects of endogenous (hormones, cytokines) and exogenous (xenobiotics) compounds on the miRNA expression. The review will summarize the complex multilevel regulation of miRNA expression, in relation to cell type, physiological state of the body and various external factors.
Collapse
Affiliation(s)
- Lyudmila F. Gulyaeva
- />Research Institute of Molecular Biology and Biophysics, Timakov St., 2/12, Novosibirsk, 630117 Russia
- />Novosibirsk State University, Pirogova 2, Novosibirsk, 630090 Russia
| | - Nicolay E. Kushlinskiy
- />The Russian Oncological Scientific Center of N. N. Blochin of Ministry of Health of the Russian Federation, Kashirskoye Highway 24, Moscow, 115478 Russia
| |
Collapse
|
28
|
Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Wise AF, Ricardo SD. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Mol Ther 2016; 24:1290-301. [PMID: 27203438 DOI: 10.1038/mt.2016.90] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
The advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-β1, and TGF-β type 1 receptor (TGF-βR1) in UUO kidneys, compared with controls. In vitro analysis confirmed that the transfer of miR-let7c from miR-let7c-MSCs occurred via secreted exosomal uptake, visualized in NRK52E cells using cyc3-labeled pre-miRNA-transfected MSCs with/without the exosomal inhibitor, GW4869. The upregulated expression of fibrotic genes in NRK52E cells induced by TGF-β1 was repressed following the addition of isolated exosomes or indirect coculture of miR-let7c-MSCs, compared with NTC-MSCs. Furthermore, the cotransfection of NRK52E cells using the 3'UTR of TGF-βR1 confirmed that miR-let7c attenuates TGF-β1-driven TGF-βR1 gene expression. Taken together, the effective antifibrotic function of engineered MSCs is able to selectively transfer miR-let7c to damaged kidney cells and will pave the way for the use of MSCs for therapeutic delivery of miRNA targeted at kidney disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Kevin Yao
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Brooke M Huuskes
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Hsin-Hui Shen
- Department of Microbiology, Monash University, Victoria, Australia
| | - Junli Zhuang
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| |
Collapse
|
29
|
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) refer to a spectrum of structural renal malformations and are the leading cause of end-stage renal disease in children. The genetic diagnosis of CAKUT has proven to be challenging due to genetic and phenotypic heterogeneity and incomplete genetic penetrance. Monogenic causes of CAKUT have been identified using different approaches, including single gene screening, and gene panel and whole exome sequencing. The majority of the identified mutations, however, lack substantial evidence to support a pathogenic role in CAKUT. Copy number variants or single nucleotide variants that are associated with CAKUT have also been identified. Numerous studies support the influence of epigenetic and environmental factors on kidney development and the natural history of CAKUT, suggesting that the pathogenesis of this syndrome is multifactorial. In this Review we describe the current knowledge regarding the genetic susceptibility underlying CAKUT and the approaches used to investigate the genetic basis of CAKUT. We outline the associated environmental risk factors and epigenetic influences on CAKUT and discuss the challenges and strategies used to fully address the involvement and interplay of these factors in the pathogenesis of the disease.
Collapse
|
30
|
Cammaerts S, Strazisar M, De Rijk P, Del Favero J. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 2015; 6:186. [PMID: 26052338 PMCID: PMC4439572 DOI: 10.3389/fgene.2015.00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented.
Collapse
Affiliation(s)
- Sophia Cammaerts
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium
| | - Mojca Strazisar
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium
| | - Peter De Rijk
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium
| | - Jurgen Del Favero
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp Antwerp, Belgium ; Multiplicom N.V., Niel Belgium
| |
Collapse
|
31
|
Zhang X, Dong H, Tian Y. miRNA Biology in Pathological Processes. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2015. [DOI: 10.1007/978-3-662-47293-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|