1
|
Carnazzo SM, Balconara D, Caruso F, Caltabiano GM. Comprehensive Clinical and Genetic Characterization of Kabuki Syndrome: A Case Series Study. J Child Neurol 2024:8830738241291622. [PMID: 39686690 DOI: 10.1177/08830738241291622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Kabuki syndrome is a rare congenital disorder characterized by a distinctive combination of craniofacial features, developmental anomalies, and intellectual disabilities. This study aims to provide a comprehensive exploration of Kabuki syndrome through a meticulous case series analysis focusing on its clinical features and genetic underpinnings. A cohort of 9 Kabuki syndrome patients was identified through a retrospective examination of medical records spanning from 1996 to 2022. These patients underwent various clinical assessments, radiologic investigations, neuropsychological evaluations, and targeted genetic analyses, specifically focusing on the KMT2D and KDM6A genes.The median age of diagnosis was approximately 4.7 years, with a male-to-female ratio of 6:3. Prominent clinical characteristics included distinctive facial features such as arched eyebrows, elongated eyelashes, ear abnormalities, fingertip pads, nasolabial anomalies, and oral alterations. Ophthalmologic and otologic manifestations were notable, alongside a spectrum of cardiovascular, gastrointestinal, and endocrine aberrations. The prevalence of neuropsychological disorders highlighted the cognitive and behavioral challenges experienced by Kabuki syndrome patients. Genetic investigations confirmed the involvement of variants in the KMT2D and KDM6A genes in the pathogenesis of Kabuki syndrome. In conclusion, this study emphasizes the importance of precise diagnosis, the adoption of a multidisciplinary care approach, and the tailored interventions for individuals affected by Kabuki syndrome. Furthermore, it underscores the need for continued research efforts to unravel the genetic intricacies and molecular mechanisms underlying this enigmatic syndrome.
Collapse
Affiliation(s)
- Salvatore Michele Carnazzo
- Department of Clinical and Experimental Medicine, University Hospital "Policlinico-San Marco of Catania, Catania, Italy
| | - Desirèe Balconara
- Department of Clinical and Experimental Medicine, University Hospital "Policlinico-San Marco of Catania, Catania, Italy
| | - Francesco Caruso
- Hygiene and Preventive Medicine Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Giusi Maria Caltabiano
- Department of Clinical and Experimental Medicine, University Hospital "Policlinico-San Marco of Catania, Catania, Italy
| |
Collapse
|
2
|
Yoon JH, Hwang S, Bae H, Kim D, Seo GH, Koh JY, Ju YS, Do HS, Kim S, Kim GH, Kim JH, Choi JH, Lee BH. Clinical and molecular characteristics of Korean patients with Kabuki syndrome. J Hum Genet 2024; 69:417-423. [PMID: 38824232 DOI: 10.1038/s10038-024-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Kabuki syndrome (KS) is a rare disorder characterized by typical facial features, skeletal anomalies, fetal fingertip pad persistence, postnatal growth retardation, and intellectual disabilities. Heterozygous variants of the KMT2D and KDM6A genes are major genetic causes of KS. This study aimed to report the clinical and genetic characteristics of KS. METHODS This study included 28 Korean patients (14 boys and 14 girls) with KS through molecular genetic testing, including direct Sanger sequencing, whole-exome sequencing, or whole-genome sequencing. RESULTS The median age at clinical diagnosis was 18.5 months (IQR 7-58 months), and the median follow-up duration was 80.5 months (IQR 48-112 months). Molecular genetic testing identified different pathogenic variants of the KMT2D (n = 23) and KDM6A (n = 3) genes, including 15 novel variants. Patients showed typical facial features (100%), such as long palpebral fissure and eversion of the lower eyelid; intellectual disability/developmental delay (96%); short stature (79%); and congenital cardiac anomalies (75%). Although 71% experienced failure to thrive in infancy, 54% of patients showed a tendency toward overweight/obesity in early childhood. Patients with KDM6A variants demonstrated severe genotype-phenotype correlation. CONCLUSION This study enhances the understanding of the clinical and genetic characteristics of KS.
Collapse
Affiliation(s)
- Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University of School of Medicine, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunwoo Bae
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Go Hun Seo
- Division of Medical genetics, 3billion Inc., Seoul, Republic of Korea
| | | | | | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Gangaram B, Lee V, Slavotinek A. Biallelic OTUD6B variants associated with a Kabuki syndrome-like disorder in three siblings: A clinical report and literature review. Am J Med Genet A 2024; 194:e63567. [PMID: 38389298 DOI: 10.1002/ajmg.a.63567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Biallelic variants in the OTUD6B gene have been reported in the literature in association with an intellectual developmental disorder featuring dysmorphic facies, seizures, and distal limb abnormalities. Physical differences described for affected individuals suggest that the disorder may be clinically recognizable, but previous publications have reported an initial clinical suspicion for Kabuki syndrome (KS) in some affected individuals. Here, we report on three siblings with biallelic variants in OTUD6B co-segregating with neurodevelopmental delay, shared physical differences, and other clinical findings similar to those of previously reported individuals. However, clinical manifestations such as long palpebral fissures, prominent and cupped ears, developmental delay, growth deficiency, persistent fetal fingertip pads, vertebral anomaly, and seizures in the proband were initially suggestive of KS. In addition, previously unreported clinical manifestations such as delayed eruption of primary dentition, soft doughy skin with reduced sweating, and mirror movements present in our patients suggest an expansion of the phenotype, and we perform a literature review to update on current information related to OTUD6B and human gene-disease association.
Collapse
Affiliation(s)
- Balram Gangaram
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA
| | - Virgina Lee
- Division of Child Neurology, University of California, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Rosenfeld E, Mitteer LM, Boodhansingh K, Sanders VR, McKnight H, De Leon DD. Clinical and Molecular Characterization of Hyperinsulinism in Kabuki Syndrome. J Endocr Soc 2024; 8:bvae101. [PMID: 38859884 PMCID: PMC11163021 DOI: 10.1210/jendso/bvae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 06/12/2024] Open
Abstract
Context Kabuki syndrome (KS) is associated with congenital hyperinsulinism (HI). Objective To characterize the clinical and molecular features of HI in children with KS. Design Retrospective cohort study of children with KS and HI evaluated between 1998 and 2023. Setting The Congenital Hyperinsulinism Center of the Children's Hospital of Philadelphia. Patients Thirty-three children with KS and HI. Main Outcome Measures HI presentation, treatment, course, and genotype. Results Hypoglycemia was recognized on the first day of life in 25 children (76%). Median age at HI diagnosis was 1.8 months (interquartile range [IQR], 0.6-6.1 months). Median age at KS diagnosis was 5 months (IQR, 2-14 months). Diagnosis of HI preceded KS diagnosis in 20 children (61%). Twenty-four children (73%) had a pathogenic variant in KMT2D, 5 children (15%) had a pathogenic variant in KDM6A, and 4 children (12%) had a clinical diagnosis of KS. Diazoxide trial was conducted in 25 children, 92% of whom were responsive. HI treatment was discontinued in 46% of the cohort at median age 2.8 years (IQR, 1.3-5.7 years). Conclusion Hypoglycemia was recognized at birth in most children with KS and HI, but HI diagnosis was often delayed. HI was effectively managed with diazoxide in most children. In contrast to prior reports, the frequency of variants in KMT2D and KDM6A were similar to their overall prevalence in individuals with KS. Children diagnosed with KS should undergo evaluation for HI, and, because KS features may not be recognized in infancy, KMT2D and KDM6A should be included in the genetic evaluation of HI.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Mitteer
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kara Boodhansingh
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria R Sanders
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Heather McKnight
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diva D De Leon
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Hennocq Q, Willems M, Amiel J, Arpin S, Attie-Bitach T, Bongibault T, Bouygues T, Cormier-Daire V, Corre P, Dieterich K, Douillet M, Feydy J, Galliani E, Giuliano F, Lyonnet S, Picard A, Porntaveetus T, Rio M, Rouxel F, Shotelersuk V, Toutain A, Yauy K, Geneviève D, Khonsari RH, Garcelon N. Next generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome. Sci Rep 2024; 14:2330. [PMID: 38282012 PMCID: PMC10822856 DOI: 10.1038/s41598-024-52691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024] Open
Abstract
The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D-related) from KS2 (KS type 2, KDM6A-related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9-99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729-0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.
Collapse
Affiliation(s)
- Quentin Hennocq
- Imagine Institute, INSERM UMR1163, 75015, Paris, France.
- Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France.
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France.
- Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France.
- Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015, Paris, France.
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France
| | - Jeanne Amiel
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
- Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stéphanie Arpin
- Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Tania Attie-Bitach
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
- Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Bongibault
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Thomas Bouygues
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Valérie Cormier-Daire
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
- Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Corre
- Nantes Université, CHU Nantes, Service de chirurgie maxillo-faciale et stomatologie, 44000, Nantes, France
- Nantes Université, Oniris, UnivAngers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000, Nantes, France
| | - Klaus Dieterich
- Univ. Grenoble Alpes, Inserm, U1209, IAB, CHU Grenoble Alpes, 38000, Grenoble, France
| | | | | | - Eva Galliani
- Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
| | | | - Stanislas Lyonnet
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
- Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Arnaud Picard
- Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Marlène Rio
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
- Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Flavien Rouxel
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Annick Toutain
- Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Kevin Yauy
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France
| | - David Geneviève
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France
| | - Roman H Khonsari
- Imagine Institute, INSERM UMR1163, 75015, Paris, France
- Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Paris, France
- Faculté de Médecine, Université de Paris Cité, 75015, Paris, France
- Laboratoire 'Forme et Croissance du Crâne', Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | | |
Collapse
|
6
|
Jain R, Epstein JA. Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:341-364. [PMID: 38884720 DOI: 10.1007/978-3-031-44087-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Golden CS, Williams S, Serrano MA. Molecular insights of KMT2D and clinical aspects of Kabuki syndrome type 1. Birth Defects Res 2023; 115:1809-1824. [PMID: 37158694 PMCID: PMC10845236 DOI: 10.1002/bdr2.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Kabuki syndrome type 1 (KS1), a rare multisystem congenital disorder, presents with characteristic facial features, intellectual disability, persistent fetal fingertip pads, skeletal abnormalities, and postnatal growth delays. KS1 results from pathogenic variants in the KMT2D gene, which encodes a histone methyltransferase protein involved in chromatin remodeling, promoter and enhancer regulation, and scaffold formation during early development. KMT2D also mediates cell signaling pathways, responding to external stimuli and organizing effector protein assembly. Research on KMT2D's molecular mechanisms in KS1 has primarily focused on its histone methyltransferase activity, leaving a gap in understanding the methyltransferase-independent roles in KS1 clinical manifestations. METHODS This scoping review examines KMT2D's role in gene expression regulation across various species, cell types, and contexts. We analyzed human pathogenic KMT2D variants using publicly available databases and compared them to research organism models of KS1. We also conducted a systematic search of healthcare and governmental databases for clinical trials, studies, and therapeutic approaches. RESULTS Our review highlights KMT2D's critical roles beyond methyltransferase activity in diverse cellular contexts and conditions. We identified six distinct groups of KMT2D as a cell signaling mediator, including evidence of methyltransferase-dependent and -independent activity. A comprehensive search of the literature, clinical databases, and public registries emphasizes the need for basic research on KMT2D's functional complexity and longitudinal studies of KS1 patients to establish objective outcome measurements for therapeutic development. CONCLUSION We discuss how KMT2D's role in translating external cellular communication can partly explain the clinical heterogeneity observed in KS1 patients. Additionally, we summarize the current molecular diagnostic approaches and clinical trials targeting KS1. This review is a resource for patient advocacy groups, researchers, and physicians to support KS1 diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Carly S Golden
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Saylor Williams
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Maria A Serrano
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Yi S, Zhang X, Yang Q, Huang J, Zhou X, Qian J, Pan P, Yi S, Zhang S, Zhang Q, Tang X, Huang L, Zhang Q, Qin Z, Luo J. Clinical and molecular analysis of Guangxi patients with Kabuki syndrome and KMT2D mutations. Heliyon 2023; 9:e20223. [PMID: 37810849 PMCID: PMC10550629 DOI: 10.1016/j.heliyon.2023.e20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Kabuki syndrome (KS) is a multiple congenital anomaly syndrome that is characterized by postnatal growth deficiency, hypotonia, short stature, mild-to-moderate intellectual disability, skeletal abnormalities, persistence of fetal fingertip pads, and distinct facial appearance. It is mainly caused by pathogenic/likely pathogenic variants in the KMT2D or KDM6A genes. Here, we described the clinical features of nine sporadic KS patients with considerable phenotypic heterogeneity. In addition to intellectual disability and short stature, our patients presented with a high prevalence of motor retardation and recurrent otitis media. We recommended that KS should be strongly considered in patients with motor delay, short stature, intellectual disability, language disorder and facial deformities. Nine KMT2D variants, four of which were novel, were identified by whole-exome sequencing. The variants included five nonsense variants, two frameshift variants, one missense variant, and one non-canonical splice site variant. In addition, we reviewed the mutation types of the pathogenic KMT2D variants in the ClinVar database. We also indicated that effective mRNA analysis, using biological materials from patients, is helpful in classifying the pathogenicity of atypical splice site variants. Pedigree segregation analysis may also provide valuable information for pathogenicity classification of novel missense variants. These findings extended the mutation spectrum of KMT2D and provided new insights into the understanding of genotype-phenotype correlations, which are helpful for accurate genetic counseling and treatment optimization.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaofei Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjing Huang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiale Qian
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingshan Pan
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
10
|
Leonardi L, Testa A, Feleppa M, Paparella R, Conti F, Marzollo A, Spalice A, Giona F, Gnazzo M, Andreoli GM, Costantino F, Tarani L. Immune dysregulation in Kabuki syndrome: a case report of Evans syndrome and hypogammaglobulinemia. Front Pediatr 2023; 11:1087002. [PMID: 37360370 PMCID: PMC10288106 DOI: 10.3389/fped.2023.1087002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Kabuki syndrome (KS) is a rare multisystemic disease due to mutations in the KMT2D or KDM6A genes, which act as epigenetic modulators of different processes, including immune response. The syndrome is characterized by anomalies in multiple organ systems, and it is associated with autoimmune and inflammatory disorders, and an underlying immunological phenotype characterized by immunodeficiency and immune dysregulation. Up to 17% of KS patients present with immune thrombocytopenia characterized by a severe, chronic or relapsing course, and often associated to other hematological autoimmune diseases including autoimmune hemolytic anemia, eventually resulting in Evans syndrome (ES). A 23-year-old woman, clinically diagnosed with KS and presenting from the age of 3 years with ES was referred to the Rare Diseases Centre of our Pediatric Department for corticosteroid-induced hyperglycemia. Several ES relapses and recurrent respiratory infections in the previous years were reported. Severe hypogammaglobulinemia, splenomegaly and signs of chronic lung inflammation were diagnosed only at the time of our observation. Supportive treatment with amoxicillin-clavulanate prophylaxis and recombinant human hyaluronidase-facilitated subcutaneous immunoglobulin replacement were immediately started. In KS patients, the failure of B-cell development and the lack of autoreactive immune cells suppression can lead to immunodeficiency and autoimmunity that may be undiagnosed for a long time. Our patient's case is paradigmatic since she presented with preventable morbidity and severe lung disease years after disease onset. This case emphasizes the importance of suspecting immune dysregulation in KS. Pathogenesis and immunological complications of KS are discussed. Moreover, the need to perform immunologic evaluations is highlighted both at the time of KS diagnosis and during disease follow-up, in order to allow proper treatment while intercepting avoidable morbidity in these patients.
Collapse
Affiliation(s)
- Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Testa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariavittoria Feleppa
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Gnazzo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Gian Marco Andreoli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Costantino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Priestley JRC, Rippert AL, Condit C, Izumi K, Kallish S, Drivas TG. Unmasking the challenges of Kabuki syndrome in adulthood: A case series. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023. [PMID: 37296540 DOI: 10.1002/ajmg.c.32054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Kabuki syndrome is a recognizable Mendelian disorder characterized by the clinical constellation of childhood hypotonia, developmental delay or intellectual impairment, and characteristic dysmorphism resulting from monoallelic pathogenic variants in KMT2D or KDM6A. In the medical literature, most reported patients are children, and data is lacking on the natural history of the condition across the lifespan, with little known about adult-specific presentations and symptoms. Here, we report the results of a retrospective chart review of eight adult patients with Kabuki syndrome, seven of whom are molecularly confirmed. We use their trajectories to highlight the diagnostic challenges unique to an adult population, expand on neurodevelopmental/psychiatric phenotypes across the lifespan, and describe adult-onset medical complications, including a potential cancer risk and unusual and striking premature/accelerated aging phenotype.
Collapse
Affiliation(s)
- Jessica R C Priestley
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Courtney Condit
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Kaiser Permanente, Tysons Corners Medical Center, Virginia, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Staci Kallish
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodore G Drivas
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Ng R, Kalinousky A, Harris J. Epigenetics of cognition and behavior: insights from Mendelian disorders of epigenetic machinery. J Neurodev Disord 2023; 15:16. [PMID: 37245029 PMCID: PMC10224589 DOI: 10.1186/s11689-023-09482-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 05/29/2023] Open
Abstract
Epigenetics, one mechanism by which gene expression can change without any changes to the DNA sequence, was described nearly a century ago. However, the importance of epigenetic processes to neurodevelopment and higher order neurological functions like cognition and behavior is only now being realized. A group of disorders known as the Mendelian disorders of the epigenetic machinery are caused by the altered function of epigenetic machinery proteins, which consequently affects downstream expression of many genes. These disorders almost universally have cognitive dysfunction and behavioral issues as core features. Here, we review what is known about the neurodevelopmental phenotypes of some key examples of these disorders divided into categories based on the underlying function of the affected protein. Understanding these Mendelian disorders of the epigenetic machinery can illuminate the role of epigenetic regulation in typical brain function and can lead to future therapies and better management for a host of neurodevelopmental and neuropsychological disorders.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allison Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Namitz KEW, Tan S, Cosgrove MS. Hierarchical assembly of the MLL1 core complex regulates H3K4 methylation and is dependent on temperature and component concentration. J Biol Chem 2023; 299:102874. [PMID: 36623730 PMCID: PMC9939731 DOI: 10.1016/j.jbc.2023.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Enzymes of the mixed lineage leukemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases are critical for cellular differentiation and development and are regulated by interaction with a conserved subcomplex consisting of WDR5, RbBP5, Ash2L, and DPY30. While pairwise interactions between complex subunits have been determined, the mechanisms regulating holocomplex assembly are unknown. In this investigation, we systematically characterized the biophysical properties of a reconstituted human MLL1 core complex and found that the MLL1-WDR5 heterodimer interacts with the RbBP5-Ash2L-DPY30 subcomplex in a hierarchical assembly pathway that is highly dependent on concentration and temperature. Surprisingly, we found that the disassembled state is favored at physiological temperature, where the enzyme rapidly becomes irreversibly inactivated, likely because of complex components becoming trapped in nonproductive conformations. Increased protein concentration partially overcomes this thermodynamic barrier for complex assembly, suggesting a potential regulatory mechanism for spatiotemporal control of H3K4 methylation. Together, these results are consistent with the hypothesis that regulated assembly of the MLL1 core complex underlies an important mechanism for establishing different H3K4 methylation states in mammalian genomes.
Collapse
Affiliation(s)
- Kevin E W Namitz
- State University of New York (SUNY) Upstate Medical University, Department of Biochemistry and Molecular Biology, Syracuse, NY, USA
| | - Song Tan
- Penn State University, Department of Biochemistry and Molecular Biology, University Park, PA, USA
| | - Michael S Cosgrove
- State University of New York (SUNY) Upstate Medical University, Department of Biochemistry and Molecular Biology, Syracuse, NY, USA.
| |
Collapse
|
14
|
Xp11.3 microdeletion causing Norrie disease and X-linked Kabuki syndrome. Am J Ophthalmol Case Rep 2023; 29:101798. [PMID: 36703904 PMCID: PMC9871737 DOI: 10.1016/j.ajoc.2023.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Purpose To describe a novel case of Norrie disease and X-linked Kabuki syndrome caused by a microdeletion encompassing multiple genes on the X chromosome. Observations A 3-day-old boy born at full term had bilateral retrolental fibrovascular plaques. Surgery with lensectomy and vitrectomy revealed bilateral, closed funnel retinal detachments consistent with a clinical diagnosis of Norrie disease. In addition, the baby had congenital heart defects, hearing loss, and dysmorphic facies. His mother carried a clinical diagnosis of Kabuki syndrome. Genetic testing of the baby revealed an Xp11.3 microdeletion that included the NDP and KDM6A genes, confirming the baby had both Norrie disease and X-linked Kabuki syndrome. The mother was found via ultrawide-field fluorescein angiography to have asymptomatic peripheral retinal vascular anomalies, consistent with NDP-associated familial exudative vitreoretinopathy (FEVR). Conclusions and importance This is the first reported case of Norrie disease together with X-linked Kabuki syndrome. Contiguous gene deletions may explain some of the variable systemic involvement in Norrie disease.
Collapse
|
15
|
Usluer E, Sayın GY, Güneş N, Kasap B, Tüysüz B. Investigation of genetic and phenotypic heterogeneity in 37 Turkish patients with Kabuki and Kabuki-like phenotype. Am J Med Genet A 2022; 188:2976-2987. [PMID: 36097644 DOI: 10.1002/ajmg.a.62944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.
Collapse
Affiliation(s)
- Esra Usluer
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Bezmialem University, Medical School, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Buşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
16
|
Barry KK, Tsaparlis M, Hoffman D, Hartman D, Adam MP, Hung C, Bodamer OA. From Genotype to Phenotype-A Review of Kabuki Syndrome. Genes (Basel) 2022; 13:1761. [PMID: 36292647 PMCID: PMC9601850 DOI: 10.3390/genes13101761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Kabuki syndrome (KS) is a rare neuro-developmental disorder caused by variants in genes of histone modification, including KMT2D and KDM6A. This review assesses our current understanding of KS, which was originally named Niikawa-Kuroki syndrome, and aims to guide surveillance and medical care of affected individuals as well as identify gaps in knowledge and unmet patient needs. Ovid MEDLINE and EMBASE databases were searched from 1981 to 2021 to identify reports related to genotype and systems-based phenotype characterization of KS. A total of 2418 articles were retrieved, and 152 were included in this review, representing a total of 1369 individuals with KS. Genotype, phenotype, and the developmental and behavioral profile of KS are reviewed. There is a continuous clinical phenotype spectrum associated with KS with notable variability between affected individuals and an emerging genotype-phenotype correlation. The observed clinical variability may be attributable to differences in genotypes and/or unknown genetic and epigenetic factors. Clinical management is symptom oriented, fragmented, and lacks established clinical care standards. Additional research should focus on enhancing understanding of the burden of illness, the impact on quality of life, the adult phenotype, life expectancy and development of standard-of-care guidelines.
Collapse
Affiliation(s)
- Kelly K. Barry
- Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | - Margaret P. Adam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Olaf A. Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Identification of unique DNA methylation sites in Kabuki syndrome using whole genome bisulfite sequencing and targeted hybridization capture followed by enzymatic methylation sequencing. J Hum Genet 2022; 67:711-720. [PMID: 36167771 DOI: 10.1038/s10038-022-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Kabuki syndrome (KS) is a congenital malformation syndrome caused by mutations in the KMT2D and KDM6A genes that encode histone modification enzymes. Although KS is considered a single gene disorder, its symptoms vary widely. Recently, disease-specific DNA methylation patterns, or episignatures, have been recognized and used as a diagnostic tool for KS. Because of various crosstalk mechanisms between histone modifications and DNA methylation, DNA methylation analysis may have high potential for investigations into the pathogenesis of KS. RESULTS In this study, we investigated altered CpG-methylation sites that were specific to KS to find important genes associated with the various phenotypes or pathogenesis of KS. Whole genome bisulfite sequencing (WGBS) was performed to select target CpG islands, and enzymatic conversion technology was applied after hybridization capture to confirm KS-specific episignatures of 130 selected differently methylated target regions (DMTRs) in DNA samples from the 65 participants, 31 patients with KS and 34 unaffected individuals, in this study. We identified 26 candidate genes in 22 DMTRs that may be associated with KS. Our results indicate that disease-specific methylation sites can be identified from a small number of WGBS samples, and hybridization capture followed by enzymatic methylation sequencing can simultaneously test the sites. CONCLUSIONS Although DNA methylation can be tissue-specific, our results suggest that methylation profiling of DNA extracted from peripheral blood may be a powerful approach to study the pathogenesis of diseases.
Collapse
|
18
|
Liu SB, Meng XM, Li YM, Wang JM, Guo HH, Wang C, Zhu BM. Histone methyltransferase KMT2D contributes to the protection of myocardial ischemic injury. Front Cell Dev Biol 2022; 10:946484. [PMID: 35938163 PMCID: PMC9354747 DOI: 10.3389/fcell.2022.946484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.
Collapse
Affiliation(s)
- Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Meng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| |
Collapse
|
19
|
Benina AR, Melikyan MA. [Congenital hyperinsulinism as a part of Kabuki syndrome]. PROBLEMY ENDOKRINOLOGII 2022; 68:91-96. [PMID: 36337023 DOI: 10.14341/probl13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022]
Abstract
Kabuki syndrome is a rare hereditary disease characterized by distinctive facial features, skeletal abnormalities, mental retardation, developmental delay, and anomalies in multiple organ systems development.Congenital hyperinsulinism is a rare manifestation of his Kabuki syndrome. However, early diagnosis is crucial to prevent neurological complications of hypoglycemia.There are 2 types of Kabuki Syndrome depending on severity of symptoms. Kabuki syndrome Type 1 is associated with heterozygous mutations in gene KMT2D. Kabuki syndrome Type 2 is inherited in an X-linked manner. It's associated with heterozygous mutations in gene KDM6A and characterized by more severe course of the disease.This paper presents 2 cases of children with congenital hyperinsulinism as the feature of Kabuki syndrome Type 1 and Type 2.
Collapse
|
20
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
21
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Marwaha A, Costain G, Cytrynbaum C, Mendoza-Londano R, Chad L, Awamleh Z, Chater-Diehl E, Choufani S, Weksberg R. The utility of DNA methylation signatures in directing genome sequencing workflow: Kabuki syndrome and CDK13-related disorder. Am J Med Genet A 2022; 188:1368-1375. [PMID: 35043535 PMCID: PMC9303780 DOI: 10.1002/ajmg.a.62650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a neurodevelopmental disorder characterized by hypotonia, intellectual disability, skeletal anomalies, and postnatal growth restriction. The characteristic facial appearance is not pathognomonic for KS as several other conditions demonstrate overlapping features. For 20‐30% of children with a clinical diagnosis of KS, no causal variant is identified by conventional genetic testing of the two associated genes, KMT2D and KDM6A. Here, we describe two cases of suspected KS that met clinical diagnostic criteria and had a high gestalt match on the artificial intelligence platform Face2Gene. Although initial KS testing was negative, genome‐wide DNA methylation (DNAm) was instrumental in guiding genome sequencing workflow to establish definitive molecular diagnoses. In one case, a positive DNAm signature for KMT2D led to the identification of a cryptic variant in KDM6A by genome sequencing; for the other case, a DNAm signature different from KS led to the detection of another diagnosis in the KS differential, CDK13‐related disorder. This approach illustrates the clinical utility of DNAm signatures in the diagnostic workflow for the genome analyst or clinical geneticist—especially for disorders with overlapping clinical phenotypes.
Collapse
Affiliation(s)
- Ashish Marwaha
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londano
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Zain Awamleh
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Di Candia F, Fontana P, Paglia P, Falco M, Rosano C, Piscopo C, Cappuccio G, Siano MA, De Brasi D, Mandato C, De Maggio I, Squeo GM, Monica MD, Scarano G, Lonardo F, Strisciuglio P, Merla G, Melis D. Clinical heterogeneity of Kabuki syndrome in a cohort of Italian patients and review of the literature. Eur J Pediatr 2022; 181:171-187. [PMID: 34232366 PMCID: PMC8760211 DOI: 10.1007/s00431-021-04108-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological findings. We found high prevalence of EEG's abnormalities (43%) and MRI brain abnormalities (60%). Microcephaly resulted more common in our series (33%), if compared with major cohorts described in literature. Biochemical features of immunodeficiency and autoimmune diseases including thyroid autoimmunity, polyserositis, and vitiligo were observed with high prevalence (54.5%). Low immunoglobulins levels were a frequent finding. Lymphocyte class investigation showed significantly reduced CD8 levels in one patient.Conclusions: These data confirm great heterogeneity of clinical manifestations in KS and suggest to introduce further clinical diagnostic criteria in order to perform a correct and precocious diagnosis. What is Known • Kabuki syndrome is characterized by growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability • Immune dysfunction is a common finding but autoimmune diseases are rarely seen • Neurological features are common What is New • Some particular facial features could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).
Collapse
Affiliation(s)
- Francesca Di Candia
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento, Italy
| | - Pamela Paglia
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo, 1 – 84131 Salerno, Italy
| | - Carmen Rosano
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Carmelo Piscopo
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gerarda Cappuccio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Daniele De Brasi
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Claudia Mandato
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Ilaria De Maggio
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gabriella Maria Squeo
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | - Pietro Strisciuglio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Giuseppe Merla
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Melis
- Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy. .,Pediatric Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", (Salerno), Baronissi, Italy. .,Pediatric Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Via San Leonardo, 1 - 84131, Salerno, Italy.
| |
Collapse
|
24
|
Guo HX, Li BW, Hu M, Si SY, Feng K. Novel KDM6A mutation in a Chinese infant with Kabuki syndrome: A case report. World J Clin Cases 2021; 9:10257-10264. [PMID: 34904097 PMCID: PMC8638061 DOI: 10.12998/wjcc.v9.i33.10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/09/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a rare syndrome characterized by multisystem congenital anomalies and developmental disorder. KMT2D and KDM6A mutations were identified as the main causative genes in KS patients. There are few case reports and genetic analyses, especially of KDM6A gene mutation, in China.
CASE SUMMARY This study reports a de novo KDM6A mutation in a Chinese infant with KS. A 2-month-old Chinese baby was diagnosed with KS, which manifested as hypoglycemia, congenital anal atresia at birth, feeding difficulties, hypotonia, and serious postnatal growth retardation. He died of recurrent respiratory infections at age 13 mo. DNA sequencing of his blood DNA revealed a novel KDM6A frameshift mutation (c.704_705delAG, p. N236Sfs*26) (GRCh37/hg19).
CONCLUSION We present a Chinese KS patient with a novel KDM6A frameshift mutation (c.704_705delAG, p. N236Sfs*26) (GRCh37/hg19), broadening the mutation spectrum.
Collapse
Affiliation(s)
- Hong-Xian Guo
- Department of Paediatrics, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Bao-Wei Li
- Department of ENT, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Mei Hu
- ICU, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Shao-Yan Si
- Special Medical Center, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| | - Kai Feng
- Special Medical Center, Strategic Support Force Medical Center of PLA, Beijing 100101, China
| |
Collapse
|
25
|
Challenges in liver transplantation for common variable immunodeficiency-related liver disease: a case series and systematic review. JOURNAL OF LIVER TRANSPLANTATION 2021. [DOI: 10.1016/j.liver.2021.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
26
|
Tamura S, Kosako H, Furuya Y, Yamashita Y, Mushino T, Mishima H, Kinoshita A, Nishikawa A, Yoshiura KI, Sonoki T. A Patient with Kabuki Syndrome Mutation Presenting with Very Severe Aplastic Anemia. Acta Haematol 2021; 145:89-96. [PMID: 34515044 DOI: 10.1159/000518227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Kabuki syndrome (KS) is a rare congenital disorder commonly complicated by humoral immunodeficiency. Patients with KS present with mutation in the histone-lysine N-methyltransferase 2D (KMT2D) gene. Although various KMT2D mutations are often identified in lymphoma and leukemia, those encountered in aplastic anemia (AA) are limited. Herein, we present the case of a 45-year-old Japanese man who developed severe pancytopenia and hypogammaglobulinemia. He did not present with any evident malformations, intellectual disability, or detectable levels of autoantibodies. However, B-cell development was impaired. Therefore, a diagnosis of very severe AA due to a hypoplastic marrow, which did not respond to granulocyte colony-stimulating factor, was made. The patient received umbilical cord blood transplantation but died from a Pseudomonas infection before neutrophil engraftment. Trio whole-exome sequencing revealed a novel missense heterozygous mutation c.15959G >A (p.R5320H) in exon 50 of the KMT2D gene. Moreover, Sanger sequencing of peripheral blood and bone marrow mononuclear cells and a skin biopsy specimen obtained from this patient identified this heterozygous mutation, suggesting that de novo mutation associated with KS occurred in the early embryonic development. Our case showed a novel association between KS mutation and adult-onset AA.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshiaki Furuya
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Toshiki Mushino
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akinori Nishikawa
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Ko-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
27
|
Romero OA, Vilarrubi A, Alburquerque-Bejar JJ, Gomez A, Andrades A, Trastulli D, Pros E, Setien F, Verdura S, Farré L, Martín-Tejera JF, Llabata P, Oaknin A, Saigi M, Piulats JM, Matias-Guiu X, Medina PP, Vidal A, Villanueva A, Sanchez-Cespedes M. SMARCA4 deficient tumours are vulnerable to KDM6A/UTX and KDM6B/JMJD3 blockade. Nat Commun 2021; 12:4319. [PMID: 34262032 PMCID: PMC8280185 DOI: 10.1038/s41467-021-24618-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the genetic inactivation of SMARCA4, a core component of the SWI/SNF-complex commonly found in cancer, there are no therapies that effectively target SMARCA4-deficient tumours. Here, we show that, unlike the cells with activated MYC oncogene, cells with SMARCA4 inactivation are refractory to the histone deacetylase inhibitor, SAHA, leading to the aberrant accumulation of H3K27me3. SMARCA4-mutant cells also show an impaired transactivation and significantly reduced levels of the histone demethylases KDM6A/UTX and KDM6B/JMJD3, and a strong dependency on these histone demethylases, so that its inhibition compromises cell viability. Administering the KDM6 inhibitor GSK-J4 to mice orthotopically implanted with SMARCA4-mutant lung cancer cells or primary small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), had strong anti-tumour effects. In this work we highlight the vulnerability of KDM6 inhibitors as a characteristic that could be exploited for treating SMARCA4-mutant cancer patients. SMARCA4 is commonly inactivated in lung and ovarian cancers. Here the authors show that SMARCA4-deficient tumours have significantly reduced levels of the histone demethylases KDM6s and a strong dependency on these demethylases for tumour growth, so that they are vulnerable to KDM6s inhibition.
Collapse
Affiliation(s)
- Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.
| | - Andrea Vilarrubi
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Juan J Alburquerque-Bejar
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Antonio Gomez
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Alvaro Andrades
- Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain.,GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Deborah Trastulli
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL Barcelona, Barcelona, Spain
| | - Eva Pros
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Fernando Setien
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Sara Verdura
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL Barcelona, Barcelona, Spain
| | - Lourdes Farré
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Juan F Martín-Tejera
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Paula Llabata
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Ana Oaknin
- Department of Medical Oncology, Vall d'Hebrón Hospital, Barcelona, Spain
| | - Maria Saigi
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Josep M Piulats
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, CIBERONC, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Pedro P Medina
- Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain.,GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, CIBERONC, L'Hospitalet del Llobregat, Barcelona, Spain.,Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Xenopat S.L., Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - Montse Sanchez-Cespedes
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.
| |
Collapse
|
28
|
Ufartes R, Grün R, Salinas G, Sitte M, Kahl F, Wong MTY, van Ravenswaaij-Arts CMA, Pauli S. CHARGE syndrome and related disorders: A mechanistic link. Hum Mol Genet 2021; 30:2215-2224. [PMID: 34230955 DOI: 10.1093/hmg/ddab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
CHARGE syndrome is an autosomal dominant malformation disorder caused by pathogenic variants in the chromatin remodeler CHD7. Affected are craniofacial structures, cranial nerves and multiple organ systems. Depending on the combination of malformations present, its distinction from other congenital disorders can be challenging. To gain a better insight into the regulatory disturbances in CHARGE syndrome, we performed RNA-Seq analysis on blood samples of 19 children with CHARGE syndrome and a confirmed disease-causing CHD7 variant in comparison to healthy control children. Our analysis revealed a distinct CHARGE syndrome pattern with downregulation of genes that are linked to disorders described to mimic the CHARGE phenotype, i.e. KMT2D and KDM6A (Kabuki syndrome), EP300 and CREBBP (Rubinstein-Taybi syndrome) and ARID1A and ARID1B (Coffin-Siris syndrome). Furthermore, by performing protein-protein interaction studies using co-immunoprecipitation, direct yeast-two hybrid and in situ proximity ligation assays, we could demonstrate an interplay between CHD7, KMT2D, KDM6A and EP300. In summary, our data demonstrate a mechanistic and regulatory link between the developmental disorders CHARGE-, Kabuki- and Rubinstein Taybi-syndrome providing an explanation for the overlapping phenotypes.
Collapse
Affiliation(s)
- Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Regina Grün
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Fritz Kahl
- Department of General-, Visceral- and Pediatric Surgery, University Medical Center Goettingen, UMG, Göttingen, Germany
| | - Monica T Y Wong
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| |
Collapse
|
29
|
Kawano J, Fujino H. Dohsa-hou intervention for reciprocal interpersonal interaction for a girl with Kabuki syndrome and autism spectrum disorder. Clin Case Rep 2021; 9:e04296. [PMID: 34194798 PMCID: PMC8223694 DOI: 10.1002/ccr3.4296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Although available evidence for psychosocial treatment for patients with Kabuki syndrome is limited, Dohsa-hou, a psychomotor therapy, could be a treatment option for autism spectrum disorder associated with the disorder.
Collapse
Affiliation(s)
- Juri Kawano
- Department of Special Needs EducationOita UniversityOitaJapan
| | - Haruo Fujino
- Department of Special Needs EducationOita UniversityOitaJapan
- Department of Child DevelopmentUnited Graduate School of Child DevelopmentOsaka UniversitySuitaJapan
- Graduate School of Human SciencesOsaka UniversitySuitaJapan
| |
Collapse
|
30
|
Yan S, Lu J, Jiao K. Epigenetic Regulation of Cardiac Neural Crest Cells. Front Cell Dev Biol 2021; 9:678954. [PMID: 33968946 PMCID: PMC8097001 DOI: 10.3389/fcell.2021.678954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.
Collapse
Affiliation(s)
| | | | - Kai Jiao
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Luo S, Chen L, Wei W, Tan L, Zhang M, Duan Z, Cao J, Zhou Y, Zhou A, He X. Prenatal Genetic Diagnosis in Three Fetuses With Left Heart Hypoplasia (LHH) From Three Unrelated Families. Front Cardiovasc Med 2021; 8:631374. [PMID: 33898534 PMCID: PMC8062744 DOI: 10.3389/fcvm.2021.631374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Congenital heart defects (CHDs) are the most common birth defects, and left heart hypoplasia (LHH) is a severe form of CHD and responsible for more than 20% cardiac deaths during the first week of life, however, its genetic causes remain largely elusive. Methods: Three families with fetal LHH were recruited. Genomic DNA from amniotic fluid or peripheral blood, and trio whole exome sequencing (trio-WES) and copy number variation sequencing (CNV-seq) were performed. Results: All the three couples had no family history, and mid-gestation ultrasound revealed LHH and other variable cardiovascular defects in the fetuses. Trio-WES revealed de novo pathogenic variations in KMT2D (p.Gly3465Aspfs*37) (NM_003482) and WDFY3 (p.Ser117Xfs*) (NM_014991), and CNV-seq identified a deletion of 150 kb encompassing NOTCH1. KMT2D and NOTCH1 previously have been reported to be associated with CHDs, however, WDFY3 is reported for the first time to be possibly related to CHD in human. Conclusion: Our study suggested that genetic component is an important risk factor for the development of LHH, and next generation sequencing is a powerful tool for genetic diagnosis in fetuses with CHDs and genetic counseling, however, more studies and data are need to establish the correlation of fetal phenotypes and genotypes.
Collapse
Affiliation(s)
- Sukun Luo
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Luyi Chen
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Wei
- Ultrasonic Diagnosis Department, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Ultrasonic Diagnosis Department, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Duan
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Jiangxia Cao
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhou
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Aifen Zhou
- Prenatal Diagnosis Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Reichel CA. Rare Diseases of the Oral Cavity, Neck, and Pharynx. Laryngorhinootologie 2021; 100:S1-S24. [PMID: 34352905 PMCID: PMC8432966 DOI: 10.1055/a-1331-2851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diseases occurring with an incidence of less than 1-10 cases per 10 000 individuals are considered as rare. Currently, between 5 000 and 8 000 rare or orphan diseases are known, every year about 250 rare diseases are newly described. Many of those pathologies concern the head and neck area. In many cases, a long time is required to diagnose an orphan disease. The lives of patients who are affected by those diseases are often determined by medical consultations and inpatient stays. Most orphan diseases are of genetic origin and cannot be cured despite medical progress. However, during the last years, the perception of and the knowledge about rare diseases has increased also due to the fact that publicly available databases have been created and self-help groups have been established which foster the autonomy of affected people. Only recently, innovative technical progress in the field of biogenetics allows individually characterizing the genetic origin of rare diseases in single patients. Based on this, it should be possible in the near future to elaborate tailored treatment concepts for patients suffering from rare diseases in the sense of translational and personalized medicine. This article deals with orphan diseases of the lip, oral cavity, pharynx, and cervical soft tissues depicting these developments. The readers will be provided with a compact overview about selected diseases of these anatomical regions. References to further information for medical staff and affected patients support deeper knowledge and lead to the current state of knowledge in this highly dynamic field.
Collapse
Affiliation(s)
- Christoph A Reichel
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, KUM-Klinikum, Ludwig-Maximilians-Universität München, München
| |
Collapse
|
33
|
Merdler-Rabinowicz R, Prat D, Pode-Shakked B, Abel G, Chorin O, Somech R, Raas-Rothschild A. Ophthalmic manifestations in Kabuki (make-up) syndrome: A single-center pediatric cohort and systematic review of the literature. Eur J Med Genet 2021; 64:104210. [PMID: 33794347 DOI: 10.1016/j.ejmg.2021.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/28/2022]
Abstract
Kabuki syndrome (KS) is a genetic disorder caused by pathogenic variants in KMT2D or KDM6A, and manifesting with multi-systemic involvement, including recognizable facial features, developmental delay and multiple congenital anomalies. Ophthalmological involvement has been described in varying rates in several studies. We aimed to evaluate the prevalence and nature of ophthalmological findings in a cohort of KS patients in Israel. Medical records of all patients diagnosed with KS in our tertiary center between 2004 and 2020 were retrospectively reviewed. Data collected included physical examination findings, molecular analysis as well as comprehensive ophthalmic characteristics including visual acuity, ocular alignment and motility, ocular adnexa, anterior segments and dilated fundus exams. Finally, an updated systematic review of the literature was performed. Thirteen unrelated patients were included in the study, diagnosed at an age raging from the first months of life to 20 years. Of these, three (23%) showed significant ophthalmological abnormalities, beyond the characteristic structural findings of long palpebral fissures and lower eyelid eversion. These included bilateral posterior colobomata in the first patient; bilateral ptosis, hypermetropia, esotropia, blue sclera and anisocoria in the second; and bilateral congenital cataracts in the third. To conclude, our findings underscore the importance of a comprehensive ophthalmological evaluation as part of the routine multidisciplinary assessment of children suspected/diagnosed with KS.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Prat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Gali Abel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Odelia Chorin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel HaShomer, Israel
| | - Annick Raas-Rothschild
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
34
|
Boniel S, Szymańska K, Śmigiel R, Szczałuba K. Kabuki Syndrome-Clinical Review with Molecular Aspects. Genes (Basel) 2021; 12:468. [PMID: 33805950 PMCID: PMC8064399 DOI: 10.3390/genes12040468] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare developmental disorder principally comprised of developmental delay, hypotonia and a clearly defined dysmorphism: elongation of the structures surrounding the eyes, a shortened and depressed nose, thinning of the upper lip and thickening of the lower lip, large and prominent ears, hypertrichosis and scoliosis. Other characteristics include poor physical growth, cardiac, gastrointestinal and renal anomalies as well as variable behavioral issues, including autistic features. De novo or inherited pathogenic/likely pathogenic variants in the KMT2D gene are the most common cause of KS and account for up to 75% of patients. Variants in KDM6A cause up to 5% of cases (X-linked dominant inheritance), while the etiology of about 20% of cases remains unknown. Current KS diagnostic criteria include hypotonia during infancy, developmental delay and/or intellectual disability, typical dysmorphism and confirmed pathogenic/likely pathogenic variant in KMT2D or KDM6A. Care for KS patients includes the control of physical and psychomotor development during childhood, rehabilitation and multi-specialist care. This paper reviews the current clinical knowledge, provides molecular and scientific links and sheds light on the treatment of Kabuki syndrome individuals.
Collapse
Affiliation(s)
- Snir Boniel
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| | - Krystyna Szymańska
- Mossakowski Medical Research Center, Department of Experimental and Clinical Neuropathology, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Robert Śmigiel
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Medical University, 51-618 Wroclaw, Poland;
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University, Pawinskiego 3c, 02-106 Warsaw, Poland;
| |
Collapse
|
35
|
Mazen I, Mekkawy M, Kamel A, Essawi M, Hassan H, Abdel-Hamid M, Amr K, Soliman H, El-Ruby M, Torky A, El Gammal M, Elaidy A, Bashamboo A, McElreavey K. Advances in genomic diagnosis of a large cohort of Egyptian patients with disorders of sex development. Am J Med Genet A 2021; 185:1666-1677. [PMID: 33742552 DOI: 10.1002/ajmg.a.62129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Disorders/differences of sex development (DSD) comprise a group of congenital disorders that affect the genitourinary tract and usually involve the endocrine and reproductive system. The aim of this work was to identify genetic variants responsible for disorders of human urogenital development in a cohort of Egyptian patients. This three-year study included 225 patients with various DSD forms, referred to the genetic DSD and endocrinology clinic, National Research Centre, Egypt. The patients underwent thorough clinical examination, hormonal and imaging studies, detailed cytogenetic and fluorescence in situ hybridization analysis, and molecular sequencing of genes known to commonly cause DSD including AR, SRD5A2, 17BHSD3, NR5A1, SRY, and WT1. Whole exome sequencing (WES) was carried out for 18 selected patients. The study revealed a high rate of sex chromosomal DSD (33%) with a wide array of cytogenetic abnormalities. Sanger sequencing identified pathogenic variants in 33.7% of 46,XY patients, while the detection rate of WES reached 66.7%. Our patients showed a different mutational profile compared with that reported in other populations with a predominance of heritable DSD causes. WES identified rare and novel pathogenic variants in NR5A1, WT1, HHAT, CYP19A1, AMH, AMHR2, and FANCA and in the X-linked genes ARX and KDM6A. In addition, digenic inheritance was observed in two of our patients and was suggested to be a cause of the phenotypic variability observed in DSD.
Collapse
Affiliation(s)
- Inas Mazen
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Mona Mekkawy
- Department of Human Cytogenetics, National Research Center, Cairo, Egypt
| | - Alaa Kamel
- Department of Human Cytogenetics, National Research Center, Cairo, Egypt
| | - Mona Essawi
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Heba Hassan
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mohamed Abdel-Hamid
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Khalda Amr
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Hala Soliman
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mona El-Ruby
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Ahmed Torky
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Mona El Gammal
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Aya Elaidy
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Anu Bashamboo
- Developmental Genetics and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Kenneth McElreavey
- Developmental Genetics and Stem Cell Biology, Institut Pasteur, Paris, France
| |
Collapse
|
36
|
Rossetti R, Moleri S, Guizzardi F, Gentilini D, Libera L, Marozzi A, Moretti C, Brancati F, Bonomi M, Persani L. Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset. Front Endocrinol (Lausanne) 2021; 12:664645. [PMID: 34803902 PMCID: PMC8600266 DOI: 10.3389/fendo.2021.664645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10-25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI.
Collapse
Affiliation(s)
- Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Fabiana Guizzardi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Libera
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Anna Marozzi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Costanzo Moretti
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesco Brancati
- Medical Genetics, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Human Functional Genomics, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| |
Collapse
|
37
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
38
|
So PL, Luk HM, Yu KPT, Cheng SSW, Hau EWL, Ho SKL, Lam STS, Lo IFM. Clinical and molecular characterization study of Chinese Kabuki syndrome in Hong Kong. Am J Med Genet A 2020; 185:675-686. [PMID: 33314698 DOI: 10.1002/ajmg.a.62003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 11/14/2020] [Indexed: 01/21/2023]
Abstract
Kabuki syndrome (OMIM #147920 and 300867) is a rare genetic disorder characterized by a distinctive facial gestalt, intellectual disability and multiple congenital anomalies. We summarized the clinical features and molecular findings of the Kabuki syndrome (KS) patients diagnosed in Hong Kong between January 1991 and December 2019. There were 21 molecularly confirmed KS. Twenty of them were due to pathogenic KMT2D variants and one patient had KDM6A deletion. Nine KMT2D variants were novel. The clinical phenotype of our Chinese KS patients was largely comparable with that reported in patients of other ethnicities. This study expands the mutation spectrum but also provide important natural history information of Chinese KS in literature.
Collapse
Affiliation(s)
- Po L So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Ho M Luk
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kris P T Yu
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Shirley S W Cheng
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Edgar W L Hau
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Stephanie K L Ho
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Stephen T S Lam
- Clinical Genetics Service, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| |
Collapse
|
39
|
Piro E, Schierz IAM, Antona V, Pappalardo MP, Giuffrè M, Serra G, Corsello G. Neonatal hyperinsulinemic hypoglycemia: case report of kabuki syndrome due to a novel KMT2D splicing-site mutation. Ital J Pediatr 2020; 46:136. [PMID: 32948218 PMCID: PMC7499940 DOI: 10.1186/s13052-020-00902-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Persistent neonatal hypoglycemia, owing to the possibility of severe neurodevelopmental consequences, is a leading cause of neonatal care admission. Hyperinsulinemic hypoglycemia is often resistant to dextrose infusion and needs rapid diagnosis and treatment. Several congenital conditions, from single gene defects to genetic syndromes should be considered in the diagnostic approach. Kabuki syndrome type 1 (MIM# 147920) and Kabuki syndrome type 2 (MIM# 300867), can be associated with neonatal hyperinsulinemic hypoglycemia. Patient presentation We report a female Italian (Sicilian) child, born preterm at 35 weeks gestation, with persistent hypoglycemia. Peculiar facial dysmorphisms, neonatal hypotonia, and cerebellar vermis hypoplasia raised suspicion of Kabuki syndrome. Hyperinsulinemic hypoglycemia was confirmed with glucagon test and whole-exome sequencing (WES) found a novel heterozygous splicing-site mutation (c.674-1G > A) in KMT2D gene. Hyperinsulinemic hypoglycemia was successfully treated with diazoxide. At 3 months corrected age for prematurity, a mild global neurodevelopmental delay, postnatal weight and occipitofrontal circumference growth failure were reported. Conclusions Kabuki syndrome should be considered when facing neonatal persistent hypoglycemia. Diazoxide may help to improve hyperinsulinemic hypoglycemia. A multidisciplinary and individualized follow-up should be carried out for early diagnosis and treatment of severe pathological associated conditions.
Collapse
Affiliation(s)
- Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", University of Palermo, Piazza delle Cliniche, 2, 90127, Palermo, Italy.
| | - Ingrid Anne Mandy Schierz
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", University of Palermo, Piazza delle Cliniche, 2, 90127, Palermo, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", University of Palermo, Piazza delle Cliniche, 2, 90127, Palermo, Italy
| | - Maria Pia Pappalardo
- Pediatric Radiology Unit, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Piazza N. Leotta, 4, 90127, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", University of Palermo, Piazza delle Cliniche, 2, 90127, Palermo, Italy
| | - Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", University of Palermo, Piazza delle Cliniche, 2, 90127, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", University of Palermo, Piazza delle Cliniche, 2, 90127, Palermo, Italy
| |
Collapse
|
40
|
Izarzugaza JMG, Ellesøe SG, Doganli C, Ehlers NS, Dalgaard MD, Audain E, Dombrowsky G, Banasik K, Sifrim A, Wilsdon A, Thienpont B, Breckpot J, Gewillig M, Brook JD, Hitz MP, Larsen LA, Brunak S. Systems genetics analysis identifies calcium-signaling defects as novel cause of congenital heart disease. Genome Med 2020; 12:76. [PMID: 32859249 PMCID: PMC7453558 DOI: 10.1186/s13073-020-00772-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) occurs in almost 1% of newborn children and is considered a multifactorial disorder. CHD may segregate in families due to significant contribution of genetic factors in the disease etiology. The aim of the study was to identify pathophysiological mechanisms in families segregating CHD. METHODS We used whole exome sequencing to identify rare genetic variants in ninety consenting participants from 32 Danish families with recurrent CHD. We applied a systems biology approach to identify developmental mechanisms influenced by accumulation of rare variants. We used an independent cohort of 714 CHD cases and 4922 controls for replication and performed functional investigations using zebrafish as in vivo model. RESULTS We identified 1785 genes, in which rare alleles were shared between affected individuals within a family. These genes were enriched for known cardiac developmental genes, and 218 of these genes were mutated in more than one family. Our analysis revealed a functional cluster, enriched for proteins with a known participation in calcium signaling. Replication in an independent cohort confirmed increased mutation burden of calcium-signaling genes in CHD patients. Functional investigation of zebrafish orthologues of ITPR1, PLCB2, and ADCY2 verified a role in cardiac development and suggests a combinatorial effect of inactivation of these genes. CONCLUSIONS The study identifies abnormal calcium signaling as a novel pathophysiological mechanism in human CHD and confirms the complex genetic architecture underlying CHD.
Collapse
Affiliation(s)
- Jose M G Izarzugaza
- Department of Health Technology, Technical University of Denmark, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | - Sabrina G Ellesøe
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen, Denmark
| | - Canan Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen, Denmark
| | - Natasja Spring Ehlers
- Department of Health Technology, Technical University of Denmark, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | - Marlene D Dalgaard
- Department of Health Technology, Technical University of Denmark, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
- DTU Multi Assay Core (DMAC), Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, Germany
| | - Gregor Dombrowsky
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, Germany
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen, Denmark
| | - Alejandro Sifrim
- Wellcome Trust Sanger Institute, Cambridge, UK
- Centre for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anna Wilsdon
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Bernard Thienpont
- Centre for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Centre for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Marc Gewillig
- Pediatric Cardiology Unit, University Hospitals Leuven, Leuven, Belgium
| | - J David Brook
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, Germany
- Wellcome Trust Sanger Institute, Cambridge, UK
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen, Denmark.
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
41
|
Abstract
Kabuki syndrome (KS) is characterized by typical facial features and patients are also affected by multiple congenital anomalies, of which congenital heart anomalies (CHAs) are present in 28.0 to 80.0%. In approximately 75.0% of patients, the genetic causes of KS are caused by mutation in the KMT2D gene. Although KS is a well-characterized syndrome, reaching the diagnosis in neonates is still challenging. Namely, newborns usually display mild facial features; therefore the diagnosis is mainly based on congenital malformations. In our case, a newborn was referred for next generation sequencing (NGS) testing due to the prenatally observed CHA. After birth, a ventricular septal defect (VSD), vesicoureteral reflux, muscular hypotonia, cleft palate, mild microcephaly, and some dysmorphic features, were noted. The NGS analysis was performed on the proband’s genomic DNA using the TruSight One Sequencing Panel, which enriches exons of 4813 genes with clinical relevance to the disease. After variant calling, NGS data analysis was predominantly focused on rare variants in genes involved in VSD, microcephaly, and muscular hypotonia; features observed predominantly in our proband. With the aforementioned protocol, we were able to determine the previously unreported de novo frameshift deletion in the KMT2D gene resulting in translation termination. Although our proband is a typical representative of KS, his diagnosis was reached only after NGS analysis. Our proband thus represents the importance of genotypephenotype driven NGS analysis in diagnosis of patients with congenital anomalies.
Collapse
|
42
|
Petrizzelli F, Biagini T, Barbieri A, Parca L, Panzironi N, Castellana S, Caputo V, Vescovi AL, Carella M, Mazza T. Mechanisms of pathogenesis of missense mutations on the KDM6A-H3 interaction in type 2 Kabuki Syndrome. Comput Struct Biotechnol J 2020; 18:2033-2042. [PMID: 32802275 PMCID: PMC7412721 DOI: 10.1016/j.csbj.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
Mutations in genes encoding for histone methylation proteins are associated with several developmental disorders. Among them, KDM6A is the disease causative gene of type 2 Kabuki Syndrome, a rare multisystem disease. While nonsense mutations and short insertions/deletions are known to trigger pathogenic mechanisms, the functional effects of missense mutations are still uncharacterized. In this study, we demonstrate that a selected set of missense mutations significantly hamper the interaction between KDM6A and the histone H3, by modifying the dynamics of the linker domain, and then causing a loss of function effect.
Collapse
Affiliation(s)
- Francesco Petrizzelli
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Alessandro Barbieri
- School of Biology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Luca Parca
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angelo Luigi Vescovi
- IRCSS Casa Sollievo della Sofferenza, ISBReMIT Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, San Giovanni Rotondo FG, Italy
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| |
Collapse
|
43
|
Abstract
Kabuki syndrome is an uncommon genetic disease associated with skeletal, cardiac, neurological, and ocular manifestations. Strabismus is an ophthalmic manifestation of Kabuki syndrome; however, it is infrequently documented in detail. We report a case of Kabuki syndrome in a patient who presented with large angle congenital esotropia. This case report highlights the importance of early eye examinations and subsequent interventions in patients diagnosed with Kabuki syndrome.
Collapse
|
44
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
Yap CS, Jamuar SS, Lai AH, Tan ES, Ng I, Ting TW, Tan EC. Identification of KMT2D and KDM6A variants by targeted sequencing from patients with Kabuki syndrome and other congenital disorders. Gene 2020; 731:144360. [DOI: 10.1016/j.gene.2020.144360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
|
46
|
Schwenty-Lara J, Nehl D, Borchers A. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. Hum Mol Genet 2020; 29:305-319. [PMID: 31813957 PMCID: PMC7003132 DOI: 10.1093/hmg/ddz284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Denise Nehl
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
47
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
48
|
Ruault V, Corsini C, Duflos C, Akouete S, Georgescu V, Abaji M, Alembick Y, Alix E, Amiel J, Amouroux C, Barat-Houari M, Baumann C, Bonnard A, Boursier G, Boute O, Burglen L, Busa T, Cordier MP, Cormier-Daire V, Delrue MA, Doray B, Faivre L, Fradin M, Gilbert-Dussardier B, Giuliano F, Goldenberg A, Gorokhova S, Héron D, Isidor B, Jacquemont ML, Jacquette A, Jeandel C, Lacombe D, Le Merrer M, Sang KHLQ, Lyonnet S, Manouvrier S, Michot C, Moncla A, Moutton S, Odent S, Pelet A, Philip N, Pinson L, Reversat J, Roume J, Sanchez E, Sanlaville D, Sarda P, Schaefer E, Till M, Touitou I, Toutain A, Willems M, Gatinois V, Geneviève D. Growth charts in Kabuki syndrome 1. Am J Med Genet A 2019; 182:446-453. [PMID: 31876365 DOI: 10.1002/ajmg.a.61462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022]
Abstract
Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.
Collapse
Affiliation(s)
- Valentin Ruault
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Carole Corsini
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Claire Duflos
- Clinical Research and Epidemiolgy Unit, Département de l'Information Médicale, CHU, University Montpellier, Montpellier, France
| | - Sandrine Akouete
- Clinical Research and Epidemiolgy Unit, Département de l'Information Médicale, CHU, University Montpellier, Montpellier, France
| | - Véra Georgescu
- Clinical Research and Epidemiolgy Unit, Département de l'Information Médicale, CHU, University Montpellier, Montpellier, France
| | - Mario Abaji
- Département de Génétique Médicale, Hôpital de la Timone, CLAD Sud-PACA, Marseille, France
| | - Yves Alembick
- Service de Génétique, Hôpital de Hautepierre, CHU Strasbourg, CLAD Est, Strasbourg, France
| | - Eudeline Alix
- Département de Cytogénétique, Hospices civil de Lyon, Centre des neurosciences, Tiger, Université Claude Bernard Lyon 1, Lyon, France
| | - Jeanne Amiel
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Cyril Amouroux
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Mouna Barat-Houari
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Clarisse Baumann
- Département de Génétique, Hôpital Robert Debré, CLAD Ile de France, Paris, France
| | - Adeline Bonnard
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Guilaine Boursier
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Odile Boute
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CLAD Nord, Lille, France
| | - Lydie Burglen
- Service de Génétique, CHU Trousseau, CLAD Ile de France, Paris, France
| | - Tiffany Busa
- Département de Génétique Médicale, Hôpital de la Timone, CLAD Sud-PACA, Marseille, France
| | - Marie-Pierre Cordier
- Département de Cytogénétique, Hospices civil de Lyon, Centre des neurosciences, Tiger, Université Claude Bernard Lyon 1, Lyon, France
| | - Valérie Cormier-Daire
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Marie-Ange Delrue
- Service de Génétique, Hôpital Pellegrin, CLAD Sud-Ouest, Bordeaux, France
| | - Bérénice Doray
- Service de Génétique, Hôpital de Hautepierre, CHU Strasbourg, CLAD Est, Strasbourg, France
| | - Laurence Faivre
- Centre de Génétique, Hôpital d'enfant, CLAD Est, Dijon, France
| | - Mélanie Fradin
- Service de Génétique médicale, Hôpital Sud, CLAD Ouest, Rennes, France
| | | | | | | | - Svetlana Gorokhova
- Département de Génétique Médicale, Hôpital de la Timone, CLAD Sud-PACA, Marseille, France
| | - Delphine Héron
- Département de Génétique, CHU La Pitié-Salpêtrière, CLAD Ile de France, Paris, France
| | - Bertrand Isidor
- Service de Génétique, CHU Nantes, CLAD Ouest, Nantes, France
| | - Marie-Line Jacquemont
- Service de Génétique, Hôpital Saint Pierre, GH Sud Réunion, Ile de la Réunion, Saint Pierre, France
| | - Aurélia Jacquette
- Département de Génétique, CHU La Pitié-Salpêtrière, CLAD Ile de France, Paris, France
| | - Claire Jeandel
- Service de Pédiatrie, CHU de Montpellier, Montpellier, France
| | - Didier Lacombe
- Service de Génétique, Hôpital Pellegrin, CLAD Sud-Ouest, Bordeaux, France
| | - Martine Le Merrer
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Kim Hanh Le Quan Sang
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Stanislas Lyonnet
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Sylvie Manouvrier
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CLAD Nord, Lille, France
| | - Caroline Michot
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Anne Moncla
- Département de Génétique Médicale, Hôpital de la Timone, CLAD Sud-PACA, Marseille, France
| | - Sébastien Moutton
- Service de Génétique, Hôpital Pellegrin, CLAD Sud-Ouest, Bordeaux, France
| | - Sylvie Odent
- Service de Génétique médicale, Hôpital Sud, CLAD Ouest, Rennes, France
| | - Anna Pelet
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Nicole Philip
- Département de Génétique Médicale, Hôpital de la Timone, CLAD Sud-PACA, Marseille, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Julie Reversat
- Département de Cytogénétique, Hospices civil de Lyon, Centre des neurosciences, Tiger, Université Claude Bernard Lyon 1, Lyon, France
| | - Joëlle Roume
- Service de Génétique, Hôpital Poissy-saint Germain, Poissy, France
| | - Elodie Sanchez
- Département de Génétique, Unité Inserm U781, Institut Imagine, Hôpital Necker enfants Malades, CLAD Ile de France, Paris, France
| | - Damien Sanlaville
- Département de Cytogénétique, Hospices civil de Lyon, Centre des neurosciences, Tiger, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Sarda
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Elise Schaefer
- Service de Génétique, Hôpital de Hautepierre, CHU Strasbourg, CLAD Est, Strasbourg, France
| | - Marianne Till
- Département de Cytogénétique, Hospices civil de Lyon, Centre des neurosciences, Tiger, Université Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Touitou
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, CLAD Ouest, Tours, France
| | - Marjolaine Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - Vincent Gatinois
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| | - David Geneviève
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France
| |
Collapse
|
49
|
Lim C, Jung ST, Shin CH, Park MS, Yoo WJ, Chung CY, Choi IH, Ko JM, Cho TJ. Diagnosis and Management of Hip Dislocation in Patients with Kabuki Syndrome. Clin Orthop Surg 2019; 11:474-481. [PMID: 31788172 PMCID: PMC6867925 DOI: 10.4055/cios.2019.11.4.474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/26/2019] [Indexed: 12/03/2022] Open
Abstract
Background Kabuki syndrome is a rare genetic disorder characterized by distinct dysmorphic facial features, growth deficiency, intellectual disabilities, unusual dermatoglyphic patterns, and skeletal abnormalities. The incidence of hip dislocation in Kabuki syndrome ranges from 18% to 62%. We reviewed the outcomes of management of hip dislocations in patients with Kabuki syndrome with special attention to the diagnostic processes for hip dislocation and Kabuki syndrome. Methods Among 30 patients with mutation-confirmed Kabuki syndrome, we selected six patients who had hip dislocations and reviewed their medical records and plain radiographs. The modes of presentation and diagnostic processes for both hip dislocations and Kabuki syndrome were investigated. The management and treatment outcomes of hip dislocations in patients with Kabuki syndrome were evaluated. Results The average age of patients at the time of diagnosis of hip dislocation was 7.7 months (range, 1 week to 22 months). None of the patients were diagnosed as having Kabuki syndrome at that time. Two patients were treated with a Pavlik harness; one, with closed reduction; two, with open reduction and later pelvic and/or femoral osteotomies; and one, with open reduction combined with pelvic osteotomy. The patients were followed up for 5.8 years on average (range, 2.0 to 10.5 years). The radiologic outcome was graded as Severin IA or IB for three patients who were older than 6 years at the latest follow-up (mean age, 9.9 years; range, 7.8 to 12.4 years). In the remaining three patients younger than 6 years (mean age, 3.8 years; range, 2.7 to 5.3 years), the lateral center edge angle was more than 15°. The clinical diagnosis of Kabuki syndrome was made during follow-up after hip dislocation treatment and confirmed by mutational analysis at a mean age of 4.7 years. The mean interval between the diagnosis of hip dislocation and Kabuki syndrome was 4.0 years. Conclusions The management of hip dislocation by conservative or surgical method showed successful results. Awareness of Kabuki syndrome could lead to an early diagnosis of this rare disease in patients with hip dislocation and allow for early detection of other underlying conditions and multidisciplinary management.
Collapse
Affiliation(s)
- Chaemoon Lim
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Sung-Taek Jung
- Department of Orthopedic Surgery, Chonnam National University Hospital, Gwangju, Korea
| | - Chang Ho Shin
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Moon Seok Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Won Joon Yoo
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Chin Youb Chung
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Ho Choi
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
50
|
Rosenberg CE, Daly T, Hung C, Hsueh I, Lindsley AW, Bodamer O. Prenatal and perinatal history in Kabuki Syndrome. Am J Med Genet A 2019; 182:85-92. [PMID: 31654559 DOI: 10.1002/ajmg.a.61387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/04/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Kabuki syndrome (KS) is a disorder of epigenetic dysregulation due to heterozygous mutations in KMT2D or KDM6A, genes encoding a lysine-specific methyltransferase or demethylase, respectively. The phenotype is highly variable, including congenital cardiac and renal anomalies, developmental delay, hypotonia, failure to thrive, short stature, and immune dysfunction. All affected individuals have characteristic facial features. As KS natural history has not been fully delineated, limited information exists on its prenatal and perinatal history. Two tertiary centers collected retrospective data from individuals with KS (N = 49) using a questionnaire followed by review of medical records. Data from 49 individuals (age range: 7 months-33 years; 37% male; 36 with KMT2D mutations, 2 with KDM6A mutations, and 11 diagnosed clinically) were examined. Polyhydramnios affected 16 of 39 (41%) pregnancies. Abnormal quad screens in four out of nine (44%) pregnancies and reduced placental weights also complicated KS pregnancies. These data comprise the first large dataset on prenatal and perinatal history in individuals with confirmed (genetically or clinically) KS. Over a third of pregnancies were complicated by polyhydramnios, possibly secondary to abnormal craniofacial structures and functional impairment of swallowing. The differential diagnosis for polyhydramnios in the absence of intrauterine growth retardation should include KS.
Collapse
Affiliation(s)
- Chen E Rosenberg
- Division of Allergy & Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tara Daly
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Christina Hung
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Irene Hsueh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Andrew W Lindsley
- Division of Allergy & Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Broad Metabolism Program, Broad Institute of Harvard University and MIT, Boston, Massachusetts
| |
Collapse
|