1
|
Cerqueira BP, Milhomem EA, de Matos ACC, Pietrobom IG, Leprevost CM, Heilberg IP. Kabuki and CHARGE syndromes: overlapping symptoms and diagnostic challenges. EINSTEIN-SAO PAULO 2025; 23:eRC1142. [PMID: 39969027 PMCID: PMC11869784 DOI: 10.31744/einstein_journal/2025rc1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/18/2024] [Indexed: 02/20/2025] Open
Abstract
Kabuki syndrome is a rare congenital malformation with typical facial features, skeletal anomalies, delayed neuropsychomotor development and growth, and cardiac, genitourinary, gastrointestinal, endocrine, and dental anomalies. One of the main differential diagnoses is CHARGE syndrome, standing for and characterized by Coloboma of the eye, Heart defects, Atresia of the nasal choanae, Restricted intellectual development, Genitourinary malformations, and Ear anomalies. Because these syndromes have similar characteristics, distinguishing them may be challenging. A 24-year-old male patient admitted with reduced renal function had a previous phenotype-based diagnosis of CHARGE syndrome based on many characteristic clinical features. The unveiling of a hypocalcemic crisis diagnosed as primary hypoparathyroidism at the age of 15 years, which did not fit into that diagnosis, led the nephrologist to request a genetic test, which evidenced a missense variant of uncertain significance in exon 38 of the KMT2D gene. This phenotype further suggested Kabuki syndrome, ruling out CHARGE. The present report highlights the importance of genetic testing and discusses phenotype-genotype correlations, which ultimately showed that specific variants in exon 38 rendered a form of Kabuki syndrome distinct from the typical one.
Collapse
Affiliation(s)
- Bruno Pellozo Cerqueira
- Universidade Federal de São PauloEscola Paulista de MedicinaNephrology DivisionSão PauloSPBrazilNephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Elenice Andrade Milhomem
- Universidade Federal de São PauloEscola Paulista de MedicinaNephrology DivisionSão PauloSPBrazilNephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Ana Cristina Carvalho de Matos
- Universidade Federal de São PauloEscola Paulista de MedicinaNephrology DivisionSão PauloSPBrazilNephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Igor Gouveia Pietrobom
- Universidade Federal de São PauloEscola Paulista de MedicinaNephrology DivisionSão PauloSPBrazilNephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Carlos Magno Leprevost
- Secretaria de Saúde do ParanáParanáPRBrazilSecretaria de Saúde do Paraná, Paraná, PR, Brazil.
| | - Ita Pfeferman Heilberg
- Universidade Federal de São PauloEscola Paulista de MedicinaNephrology DivisionSão PauloSPBrazilNephrology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Sezer A, Özdemir Z, Özkan E, Çetinkaya S. Atypical presentation of ACCES syndrome resembling dominant Spondyloepiphyseal dysplasia tarda. Am J Med Genet A 2024; 194:e63852. [PMID: 39149811 DOI: 10.1002/ajmg.a.63852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Aplasia Cutis Congenita with Ectrodactyly Skeletal Syndrome (ACCES, OMIM #619959) is an extremely rare multiple congenital anomalies syndrome caused by haploinsufficiency of the UBA2 gene. This syndrome presents with growth retardation, dysmorphic facial features, neurodevelopmental delay, skeletal problems including ectrodactyly, developmental dysplasia of the hip (DDH) and scoliosis, skin findings such as aplasia cutis, and some internal organ abnormalities. Our 13-year-old female patient and her 38-year-old father had a skeletal dysplasia phenotype with disproportionate short stature, bilateral DDH, mild epiphyseal involvement, scoliosis, and increased lumbar lordosis. Both were neurodevelopmentally normal and had mild dysmorphic facial features and mild ectodermal findings. The dominant inheritance pattern in the pedigree suggested a pre-diagnosis of spondyloepiphyseal dysplasia tarda. The exome sequencing analysis of the patient has identified a novel heterozygous variant, NM_005499.2:c.460-2A >G, in the UBA2 gene, and the father was found heterozygous either. The isolated spondyloepiphyseal involvement of our patients was an unusual presentation compared to patients with ACCES syndrome previously reported in the literature. Considering the highly variable expressiveness of ACCES syndrome and the co-occurrence of familial hip dysplasia and vertebral problems, we suggest that this syndrome can also be classified under "Spondyloepi(meta)physial dysplasia (SE(M)D)" in the nosology of genetic skeletal disorders.
Collapse
Affiliation(s)
- Abdullah Sezer
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Zeynep Özdemir
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Erdem Özkan
- Department of Radiology, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Semra Çetinkaya
- Department of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Children's Health and Disease Training and Research Hospital, Ankara, Türkiye
| |
Collapse
|
3
|
Chen L, Li Y, Liu M, Lan Z, Zhang X, Yang X, Zhao Q, Wang S, Xu L, Zhou Y, Kuang Y, Suzuki T, Tabuchi K, Takahashi E, Zhou M, Chen CD, Xu T, Li W. Desipramine reverses remote memory deficits by activating calmodulin-CaMKII pathway in a UTX knockout mouse model of Kabuki syndrome. Gen Psychiatr 2024; 37:e101430. [PMID: 39493372 PMCID: PMC11529476 DOI: 10.1136/gpsych-2023-101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/12/2024] [Indexed: 11/05/2024] Open
Abstract
Background Kabuki syndrome (KS) is a rare developmental disorder characterised by multiple congenital anomalies and intellectual disability. UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome), which encodes a histone demethylase, is one of the two major pathogenic risk genes for KS. Although intellectual disability is a key phenotype of KS, the role of UTX in cognitive function remains unclear. Currently, no targeted therapies are available for KS. Aims This study aimed to investigate how UTX regulates cognition, to explore the mechanisms underlying UTX dysfunction and to identify potential molecular targets for treatment. Methods We generated UTX conditional knockout mice and found that UTX deletion downregulated calmodulin transcription by disrupting H3K27me3 (trimethylated histone H3 at lysine 27) demethylation. Results UTX-knockout mice showed decreased phosphorylation of calcium / calmodulin-dependent protein kinase II, impaired long-term potentiation and deficit in remote contextual fear memory. These effects were reversed by an Food and Drug Administration-approved drug desipramine. Conclusions Our results reveal an epigenetic mechanism underlying the important role of UTX in synaptic plasticity and cognitive function, and suggest that desipramine could be a potential treatment for KS.
Collapse
Affiliation(s)
- Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Minggang Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Zhaohui Lan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xiujuan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Longyong Xu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yifang Kuang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Tatsuo Suzuki
- Shinshu University School of Medicine, Nagano, Japan
| | | | - Eiki Takahashi
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Miou Zhou
- Western University of Health Sciences, Pomona, California, USA
| | - Charlie Degui Chen
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianle Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Brain Health and Brain Technology Center at Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, World Laureates Association, Shanghai, China
| |
Collapse
|
4
|
Yoon JH, Hwang S, Bae H, Kim D, Seo GH, Koh JY, Ju YS, Do HS, Kim S, Kim GH, Kim JH, Choi JH, Lee BH. Clinical and molecular characteristics of Korean patients with Kabuki syndrome. J Hum Genet 2024; 69:417-423. [PMID: 38824232 DOI: 10.1038/s10038-024-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Kabuki syndrome (KS) is a rare disorder characterized by typical facial features, skeletal anomalies, fetal fingertip pad persistence, postnatal growth retardation, and intellectual disabilities. Heterozygous variants of the KMT2D and KDM6A genes are major genetic causes of KS. This study aimed to report the clinical and genetic characteristics of KS. METHODS This study included 28 Korean patients (14 boys and 14 girls) with KS through molecular genetic testing, including direct Sanger sequencing, whole-exome sequencing, or whole-genome sequencing. RESULTS The median age at clinical diagnosis was 18.5 months (IQR 7-58 months), and the median follow-up duration was 80.5 months (IQR 48-112 months). Molecular genetic testing identified different pathogenic variants of the KMT2D (n = 23) and KDM6A (n = 3) genes, including 15 novel variants. Patients showed typical facial features (100%), such as long palpebral fissure and eversion of the lower eyelid; intellectual disability/developmental delay (96%); short stature (79%); and congenital cardiac anomalies (75%). Although 71% experienced failure to thrive in infancy, 54% of patients showed a tendency toward overweight/obesity in early childhood. Patients with KDM6A variants demonstrated severe genotype-phenotype correlation. CONCLUSION This study enhances the understanding of the clinical and genetic characteristics of KS.
Collapse
Affiliation(s)
- Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University of School of Medicine, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunwoo Bae
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Go Hun Seo
- Division of Medical genetics, 3billion Inc., Seoul, Republic of Korea
| | | | | | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Soyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Medical Genetics Center, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lee CL, Chuang CK, Chen MR, Lin JL, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Genetic and Phenotypic Spectrum of KMT2D Variants in Taiwanese Case Series of Kabuki Syndrome. Diagnostics (Basel) 2024; 14:1815. [PMID: 39202303 PMCID: PMC11353766 DOI: 10.3390/diagnostics14161815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by distinct facial features, intellectual disability, and multiple congenital anomalies. We conducted a comprehensive analysis of the genetic and phenotypic spectrum of KS in a Taiwanese patient group of 23 patients. KMT2D variants were found in 22 individuals, with missense (26.1%), nonsense (21.7%), and frameshift (17.4%) variants being the most prevalent. One patient had a KMT2D variant of uncertain significance. The most common clinical characteristics included distinct facial features (100%), intellectual disability (100%), developmental delay (95.7%), speech delay (78.3%), hypotonia (69.6%), congenital heart abnormalities (69.6%), and recurrent infections (65.2%). Other abnormalities included hearing loss (39.1%), seizures (26.1%), cleft palate (26.1%), and renal anomalies (21.7%). This study broadens the mutational and phenotypic spectrum of KS in the Taiwanese population, highlighting the importance of comprehensive genetic testing and multidisciplinary clinical evaluations for diagnosis and treatment.
Collapse
Grants
- MMH-MM-113-13, MMH-E-113-13, MMH-MM-112-14, MMH-E-112-13, and MMH-E-111-13 Mackay Memorial Hospital
- NSTC-112-2314-B-195-014-MY3, NSTC-112-2811-B-195-001, NSTC-112-2314-B-195-003, NSTC-111-2314-B-195-017, NSTC-111-2811-B-195-002, NSTC-111-2811-B-195-001, NSTC-110-2314-B-195-014, NSTC-110-2314-B-195-010-MY3, and NSTC-110-2314-B-195-029 Ministry of Science and Technology
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ming-Ren Chen
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
| | - Ju-Li Lin
- Division of Endocrine & Medical Genetics, Department of Pediatrics, Chang Gung Children’s Medical Center, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan;
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| |
Collapse
|
6
|
Niceta M, Ciolfi A, Ferilli M, Pedace L, Cappelletti C, Nardini C, Hildonen M, Chiriatti L, Miele E, Dentici ML, Gnazzo M, Cesario C, Pisaneschi E, Baban A, Novelli A, Maitz S, Selicorni A, Squeo GM, Merla G, Dallapiccola B, Tumer Z, Digilio MC, Priolo M, Tartaglia M. DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism. Eur J Hum Genet 2024; 32:819-826. [PMID: 38528056 PMCID: PMC11220151 DOI: 10.1038/s41431-024-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.
Collapse
Affiliation(s)
- Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University, 00185, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Nardini
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Mathis Hildonen
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
| | - Luigi Chiriatti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Anwar Baban
- Pediatric Cardiology and Cardiac Arrhythmias Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Silvia Maitz
- Genetica Clinica Pediatrica, Fondazione MBBM, ASST Monza Ospedale San Gerardo, 20900, Monza, Italy
| | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Zeynep Tumer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Manuela Priolo
- Medical and Laboratory Genetics, Antonio Cardarelli Hospital, 80131, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
7
|
Rosenfeld E, Mitteer LM, Boodhansingh K, Sanders VR, McKnight H, De Leon DD. Clinical and Molecular Characterization of Hyperinsulinism in Kabuki Syndrome. J Endocr Soc 2024; 8:bvae101. [PMID: 38859884 PMCID: PMC11163021 DOI: 10.1210/jendso/bvae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 06/12/2024] Open
Abstract
Context Kabuki syndrome (KS) is associated with congenital hyperinsulinism (HI). Objective To characterize the clinical and molecular features of HI in children with KS. Design Retrospective cohort study of children with KS and HI evaluated between 1998 and 2023. Setting The Congenital Hyperinsulinism Center of the Children's Hospital of Philadelphia. Patients Thirty-three children with KS and HI. Main Outcome Measures HI presentation, treatment, course, and genotype. Results Hypoglycemia was recognized on the first day of life in 25 children (76%). Median age at HI diagnosis was 1.8 months (interquartile range [IQR], 0.6-6.1 months). Median age at KS diagnosis was 5 months (IQR, 2-14 months). Diagnosis of HI preceded KS diagnosis in 20 children (61%). Twenty-four children (73%) had a pathogenic variant in KMT2D, 5 children (15%) had a pathogenic variant in KDM6A, and 4 children (12%) had a clinical diagnosis of KS. Diazoxide trial was conducted in 25 children, 92% of whom were responsive. HI treatment was discontinued in 46% of the cohort at median age 2.8 years (IQR, 1.3-5.7 years). Conclusion Hypoglycemia was recognized at birth in most children with KS and HI, but HI diagnosis was often delayed. HI was effectively managed with diazoxide in most children. In contrast to prior reports, the frequency of variants in KMT2D and KDM6A were similar to their overall prevalence in individuals with KS. Children diagnosed with KS should undergo evaluation for HI, and, because KS features may not be recognized in infancy, KMT2D and KDM6A should be included in the genetic evaluation of HI.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Mitteer
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kara Boodhansingh
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria R Sanders
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Heather McKnight
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diva D De Leon
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Rossini L, Ricci S, Montin D, Azzari C, Gambineri E, Tellini M, Conti F, Pession A, Saettini F, Naviglio S, Valencic E, Magnolato A, Baselli L, Azzolini S, Consolini R, Leonardi L, D'Alba I, Carraro E, Romano R, Melis D, Stagi S, Cirillo E, Giardino G, Biffi A, Pignata C, Putti MC, Marzollo A. Immunological Aspects of Kabuki Syndrome: A Retrospective Multicenter Study of the Italian Primary Immunodeficiency Network (IPINet). J Clin Immunol 2024; 44:105. [PMID: 38676773 DOI: 10.1007/s10875-024-01676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 04/29/2024]
Abstract
Kabuki Syndrome (KS) is a multisystemic genetic disorder. A portion of patients has immunological manifestations characterized by increased susceptibility to infections and autoimmunity. Aiming to describe the clinical and laboratory immunological aspects of KS, we conducted a retrospective multicenter observational study on patients with KS treated in centers affiliated to the Italian Primary Immunodeficiency Network.Thirty-nine patients were enrolled, with a median age at evaluation of 10 years (range: 3 m-21y). All individuals had organ malformations of variable severity. Congenital heart defect (CHD) was present in 19/39 patients (49%) and required surgical correction in 9/39 (23%), with associated thymectomy in 7/39 (18%). Autoimmune cytopenia occurred in 6/39 patients (15%) and was significantly correlated with thymectomy (p < 0.002), but not CHD. Individuals with cytopenia treated with mycophenolate as long-term immunomodulatory treatment (n = 4) showed complete response. Increased susceptibility to infections was observed in 22/32 patients (69%). IgG, IgA, and IgM were low in 13/29 (45%), 13/30 (43%) and 4/29 (14%) patients, respectively. Immunoglobulin substitution was required in three patients. Lymphocyte subsets were normal in all patients except for reduced naïve T-cells in 3/15 patients (20%) and reduced memory switched B-cells in 3/17 patients (18%). Elevated CD3 + TCRαβ + CD4-CD8-T-cells were present in 5/17 individuals (23%) and were correlated with hematological and overall autoimmunity (p < 0.05).In conclusion, immunological manifestations of KS in our cohort include susceptibility to infections, antibody deficiency, and autoimmunity. Autoimmune cytopenia is correlated with thymectomy and elevated CD3 + TCRαβ + CD4-CD8-T-cells, and benefits from treatment with mycophenolate.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Silvia Ricci
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Davide Montin
- Immunology and Rheumatology Unit, Regina Margherita Children Hospital, Turin, Italy
| | - Chiara Azzari
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
| | - Marco Tellini
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Saettini
- Tettamanti Research Center, University of Milano-Bicocca, University of Milano Bicocca, Monza, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Erica Valencic
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Andrea Magnolato
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lucia Baselli
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Leonardi
- Maternal, Infantile and Urological Sciences Department, Sapienza University of Rome, Rome, Italy
| | - Irene D'Alba
- Paediatric Haematology-Oncology, Maternal Infant Hospital "G. Salesi", Ancona, Italy
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende Baronissi, Campania, 84081, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Auxoendocrinology Division, Meyer Children's Hospital, IRCCS, viale G.Pieraccini 24, Florence, 50139, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Maria Caterina Putti
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy.
| |
Collapse
|
9
|
Lee CL, Chuang CK, Chen MR, Lin JL, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Illuminating the Genetic Basis of Congenital Heart Disease in Patients with Kabuki Syndrome. Diagnostics (Basel) 2024; 14:846. [PMID: 38667491 PMCID: PMC11049448 DOI: 10.3390/diagnostics14080846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital heart defects (CHDs) affect a substantial proportion of patients with Kabuki syndrome. However, the prevalence and type of CHD and the genotype-phenotype correlations in Asian populations are not fully elucidated. This study performed a retrospective analysis of 23 Taiwanese patients with molecularly confirmed Kabuki syndrome. Twenty-two patients presented with pathogenic variants in the KMT2D gene. Comprehensive clinical assessments were performed. A literature review was conducted to summarize the spectrum of CHDs in patients with Kabuki syndrome. In total, 16 (73.9%) of 22 patients with pathogenic KMT2D variants had CHDs. The most common types of CHD were atrial septal defects (37.5%), ventricular septal defects (18.8%), coarctation of the aorta (18.8%), bicuspid aortic valve (12.5%), persistent left superior vena cava (12.5%), mitral valve prolapse (12.5%), mitral regurgitation (12.5%), and patent ductus arteriosus (12.5%). Other cardiac abnormalities were less common. Further, there were no clear genotype-phenotype correlations found. A literature review revealed similar patterns of CHDs, with a predominance of left-sided obstructive lesions and septal defects. In conclusion, the most common types of CHDs in Taiwanese patients with Kabuki syndrome who presented with KMT2D mutations are left-sided obstructive lesions and septal defects.
Collapse
Grants
- MMH-E-113-13, MMH-MM-112-14, MMH-E-112-13, and MMH-E-111-13 Mackay Memorial Hospital
- NSTC-112-2314-B-195-014-MY3, NSTC-112-2811-B-195-001, NSTC-112-2314-B-195-003, NSTC-111-2314-B-195-017, NSTC-111-2811-B-195-002, NSTC-111-2811-B-195-001, NSTC-110-2314-B-195-014, NSTC-110-2314-B-195-010-MY3, and NSTC-110-2314-B-195-029 Ministry of Science and Technology, Executive Yuan, Taiwan
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- College of Medicine, Fu-Jen Catholic University, Taipei 24205, Taiwan
| | - Ming-Ren Chen
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
| | - Ju-Li Lin
- Division of Endocrine & Medical Genetics, Department of Pediatrics, Chang Gung Children’s Medical Center, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan;
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-L.L.); (M.-R.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| |
Collapse
|
10
|
Wang Y, Xu Y, Chen Y, Hu Y, Li Q, Liu S, Wang J, Wang X. Sex-specific difference in phenotype of Kabuki syndrome type 2 patients: a matched case-control study. BMC Pediatr 2024; 24:133. [PMID: 38373926 PMCID: PMC10875883 DOI: 10.1186/s12887-024-04562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a monogenic disorder leading to special facial features, mental retardation, and multiple system malformations. Lysine demethylase 6A, (KDM6A, MIM*300128) is the pathogenic gene of Kabuki syndrome type 2 (KS2, MIM#300867), which accounts for only 5%-8% of KS. Previous studies suggested that female patients with KS2 may have a milder phenotype. METHOD We summarized the phenotype and genotype of KS2 patients who were diagnosed in Shanghai Children's Medical Center since July 2017 and conducted a 1:3 matched case-control study according to age and sex to investigate sex-specific differences between patients with and without KS2. RESULTS There were 12 KS2 cases in this study, and 8 of them matched with 24 controls. The intelligence quotient (IQ) score of the case group was significantly lower than that of the control group (P < 0.001). In addition, both the incidence of intellectual disability (ID) (IQ < 70) and moderate-to-severe ID (IQ < 55) were significantly higher in the case group than those in the control group. No sex-specific difference was found in the incidence of ID or moderate-to-severe ID between the female cases and female controls, whereas there was a significant difference between male cases and male controls. Furthermore, the rate of moderate-to-severe ID and congenital heart disease (CHD) was significantly higher in the male group than that in the female group. CONCLUSIONS Our results showed that a sex-specific difference was exhibited in the clinical phenotypes of KS2 patients. The incidence of CHD was higher in male patients, and mental retardation was significantly impaired. However, the female patients' phenotype was mild.
Collapse
Affiliation(s)
- Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Hu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Liu
- Children Health Advocacy Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of NeurologySchool of Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Zheng Z, Ding L, Wang M, Zhang Y, Yang Y, Tang M, Xu J, Wang L, Wu J, Li H. Hearing characteristics and otoradiological abnormalities in three patients with novel pathogenic variants of KMT2D-related Kabuki syndrome. Mol Genet Genomic Med 2024; 12:e2306. [PMID: 37921229 PMCID: PMC10767598 DOI: 10.1002/mgg3.2306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Kabuki syndrome 1 (KS1; OMIM:147920), which is characterized by distinctive dysmorphic facial features (such as arched eyebrows, long palpebral fissures with eversion of the lower lid, and large protuberant ears), intellectual disability, short stature, and dermatoglyphic and skeletal abnormalities, is brought on by pathogenic variants in KMT2D (OMIM:602113). In this work, three individuals with novel pathogenic KMT2D gene variants had their longitudinal audiological manifestations and ear structural characteristics outlined. METHODS The longitudinal audiological data from neonatal hearing screening and a battery of several hearing tests were evaluated. The battery of hearing tests included tympanometry, distortion product otoacoustic emission (DPOAE), click-evoked air-conduction auditory brain-stem response (AC-ABR), click-evoked bone-conduction auditory brain-stem response (BC-ABR), narrow band CE-chirp auditory steady-state response (NB CE-chirp ASSR), and pure-tone audiometry (PTA). Phenotype identification and whole exome sequencing (WES) were performed on recruited individuals. RESULTS All three patients (two females and on male; last evaluations at 14 months, 11 months, and 5.7 years, respectively) failed the newborn hearing screening, and the audiological follow-up data revealed mild to profound fluctuating hearing loss, which was directly influenced by the incidence and severity of otitis media with effusion (OME). When OME occurred, the AC-ABR thresholds increased from 30-75 dBnHL to 45-90 dBnHL. The threshold for the BC-ABR and BC-PTA was between 25 and 50 dBnHL, indicating mild to moderate sensorineural hearing loss (SNHL). The high-resolution computed tomography (HRCT) pictures indicated that all three patients had middle and inner ear abnormalities. Middle ear anomalies showed as diminished mastoid gasification and ossicle dysplasia. Cochlear dysplasia, a dilated vestibule, fusion of the vestibule with the horizontal semicircular canals, and a short and thick horizontal semicircular canal were visible on images of the inner ear. This study recruited three individuals with three novel pathogenic variants (c.5104C>T, c.10205delA, and c.12840delC) of KMT2D who were identified at ages 27 days, 2 months, and 5.5 years. CONCLUSIONS Hearing characteristics of three individuals with three novel pathogenic variants of KMT2D range from mild to profound fluctuating hearing loss with mild to moderate SNHL. HRCT scans showed that all three individuals had anatomical middle and inner ear abnormalities. KS 1 patients must get clinical therapy for OME, frequent auditory monitoring, and prompt intervention.
Collapse
Affiliation(s)
- Zhoushu Zheng
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Lu Ding
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Meihong Wang
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Yinghui Zhang
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Yihui Yang
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Ming Tang
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Jun Xu
- Department of OtolaryngologyNingbo Yinzhou No.2 HospitalNingboChina
| | - Liangjiong Wang
- Department of RadiologyNingbo Medical Center Lihuili HospitalNingboChina
| | - Junhua Wu
- Department of OtolaryngologyNingbo Women and Children's HospitalNingboChina
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and ControlNingbo Women and Children's HospitalNingboChina
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic DiseasesNingbo Women and Children's HospitalNingboChina
| |
Collapse
|
12
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
13
|
Golden CS, Williams S, Serrano MA. Molecular insights of KMT2D and clinical aspects of Kabuki syndrome type 1. Birth Defects Res 2023; 115:1809-1824. [PMID: 37158694 PMCID: PMC10845236 DOI: 10.1002/bdr2.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Kabuki syndrome type 1 (KS1), a rare multisystem congenital disorder, presents with characteristic facial features, intellectual disability, persistent fetal fingertip pads, skeletal abnormalities, and postnatal growth delays. KS1 results from pathogenic variants in the KMT2D gene, which encodes a histone methyltransferase protein involved in chromatin remodeling, promoter and enhancer regulation, and scaffold formation during early development. KMT2D also mediates cell signaling pathways, responding to external stimuli and organizing effector protein assembly. Research on KMT2D's molecular mechanisms in KS1 has primarily focused on its histone methyltransferase activity, leaving a gap in understanding the methyltransferase-independent roles in KS1 clinical manifestations. METHODS This scoping review examines KMT2D's role in gene expression regulation across various species, cell types, and contexts. We analyzed human pathogenic KMT2D variants using publicly available databases and compared them to research organism models of KS1. We also conducted a systematic search of healthcare and governmental databases for clinical trials, studies, and therapeutic approaches. RESULTS Our review highlights KMT2D's critical roles beyond methyltransferase activity in diverse cellular contexts and conditions. We identified six distinct groups of KMT2D as a cell signaling mediator, including evidence of methyltransferase-dependent and -independent activity. A comprehensive search of the literature, clinical databases, and public registries emphasizes the need for basic research on KMT2D's functional complexity and longitudinal studies of KS1 patients to establish objective outcome measurements for therapeutic development. CONCLUSION We discuss how KMT2D's role in translating external cellular communication can partly explain the clinical heterogeneity observed in KS1 patients. Additionally, we summarize the current molecular diagnostic approaches and clinical trials targeting KS1. This review is a resource for patient advocacy groups, researchers, and physicians to support KS1 diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Carly S Golden
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Saylor Williams
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Maria A Serrano
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Yi S, Zhang X, Yang Q, Huang J, Zhou X, Qian J, Pan P, Yi S, Zhang S, Zhang Q, Tang X, Huang L, Zhang Q, Qin Z, Luo J. Clinical and molecular analysis of Guangxi patients with Kabuki syndrome and KMT2D mutations. Heliyon 2023; 9:e20223. [PMID: 37810849 PMCID: PMC10550629 DOI: 10.1016/j.heliyon.2023.e20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Kabuki syndrome (KS) is a multiple congenital anomaly syndrome that is characterized by postnatal growth deficiency, hypotonia, short stature, mild-to-moderate intellectual disability, skeletal abnormalities, persistence of fetal fingertip pads, and distinct facial appearance. It is mainly caused by pathogenic/likely pathogenic variants in the KMT2D or KDM6A genes. Here, we described the clinical features of nine sporadic KS patients with considerable phenotypic heterogeneity. In addition to intellectual disability and short stature, our patients presented with a high prevalence of motor retardation and recurrent otitis media. We recommended that KS should be strongly considered in patients with motor delay, short stature, intellectual disability, language disorder and facial deformities. Nine KMT2D variants, four of which were novel, were identified by whole-exome sequencing. The variants included five nonsense variants, two frameshift variants, one missense variant, and one non-canonical splice site variant. In addition, we reviewed the mutation types of the pathogenic KMT2D variants in the ClinVar database. We also indicated that effective mRNA analysis, using biological materials from patients, is helpful in classifying the pathogenicity of atypical splice site variants. Pedigree segregation analysis may also provide valuable information for pathogenicity classification of novel missense variants. These findings extended the mutation spectrum of KMT2D and provided new insights into the understanding of genotype-phenotype correlations, which are helpful for accurate genetic counseling and treatment optimization.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaofei Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjing Huang
- Department of Surgery, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiale Qian
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Pediatrics Department, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingshan Pan
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
15
|
Oexle K, Zech M, Stühn LG, Siegert S, Brunet T, Schmidt WM, Wagner M, Schmidt A, Engels H, Tilch E, Monestier O, Destrėe A, Hanker B, Boesch S, Jech R, Berutti R, Kaiser F, Haslinger B, Haack TB, Garavaglia B, Krawitz P, Winkelmann J, Mirza-Schreiber N. Episignature analysis of moderate effects and mosaics. Eur J Hum Genet 2023; 31:1032-1039. [PMID: 37365401 PMCID: PMC10474287 DOI: 10.1038/s41431-023-01406-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.
Collapse
Affiliation(s)
- Konrad Oexle
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany.
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany.
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany.
| | - Michael Zech
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076, Tübingen, Germany
- Centre for Rare Diseases, University of Tuebingen, 72076, Tuebingen, Germany
| | - Sandy Siegert
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, 1090, Wien, Austria
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Axel Schmidt
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Erik Tilch
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
| | - Olivier Monestier
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, 6041, Gosselies, Belgium
| | - Anne Destrėe
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, 6041, Gosselies, Belgium
| | - Britta Hanker
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, 23538, Lübeck, Germany
| | - Sylvia Boesch
- Department of Neurology, Medizinische Universität, 6020, Insbruck, Austria
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, 12108, Prague, Czech Republic
| | - Riccardo Berutti
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Frank Kaiser
- Institute of Human Genetics, Universitätsklinikum Essen, 45122, Essen, Germany
| | - Bernhard Haslinger
- Department of Neurology, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076, Tübingen, Germany
- Centre for Rare Diseases, University of Tuebingen, 72076, Tuebingen, Germany
| | - Barbara Garavaglia
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, 20133, Milano, Italy
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, Universität Bonn, 53127, Bonn, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
- Chair of Neurogenetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Nazanin Mirza-Schreiber
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
| |
Collapse
|
16
|
Shah SS, Fulton A, Jabroun M, Brightman D, Simpson BN, Bodamer OA. Insights into the genotype-phenotype relationship of ocular manifestations in Kabuki syndrome. Am J Med Genet A 2023; 191:1325-1338. [PMID: 36891680 DOI: 10.1002/ajmg.a.63155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023]
Abstract
We aim to assess if genotype-phenotype correlations are present within ocular manifestations of Kabuki syndrome (KS) among a large multicenter cohort. We conducted a retrospective, medical record review including clinical history and comprehensive ophthalmological examinations of a total of 47 individuals with molecularly confirmed KS and ocular manifestations at Boston Children's Hospital and Cincinnati Children's Hospital Medical Center. We assessed information regarding ocular structural, functional, and adnexal elements as well as pertinent associated phenotypic features associated with KS. For both type 1 KS (KS1) and type 2 KS (KS2), we observed more severe eye pathology in nonsense variants towards the C-terminus of each gene, KMT2D and KDM6A, respectively. Furthermore, frameshift variants appeared to be not associated with structural ocular elements. Between both types of KS, ocular structural elements were more frequently identified in KS1 compared with KS2, which only involved the optic disc in our cohort. These results reinforce the need for a comprehensive ophthalmologic exam upon diagnosis of KS and regular follow-up exams. The specific genotype may allow risk stratification of the severity of the ophthalmologic manifestation. However, additional studies involving larger cohorts are needed to replicate our observations and conduct powered analyses to more formally risk-stratify based on genotype, highlighting the importance of multicenter collaborations in rare disease research.
Collapse
Affiliation(s)
- Suraj S Shah
- Tufts University School of Medicine, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mireille Jabroun
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona, USA
| | - Diana Brightman
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Brittany N Simpson
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Usluer E, Sayın GY, Güneş N, Kasap B, Tüysüz B. Investigation of genetic and phenotypic heterogeneity in 37 Turkish patients with Kabuki and Kabuki-like phenotype. Am J Med Genet A 2022; 188:2976-2987. [PMID: 36097644 DOI: 10.1002/ajmg.a.62944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.
Collapse
Affiliation(s)
- Esra Usluer
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Bezmialem University, Medical School, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Buşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
18
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
19
|
Gooch C, Souder JP, Tedder ML, Kerkhof J, Lee JA, Louie RJ, Sadikovic B, Fletcher RS, Robin NH. Near complete deletion of KMT2D in a college student. Am J Med Genet A 2022; 188:1550-1555. [PMID: 35040536 PMCID: PMC8995339 DOI: 10.1002/ajmg.a.62652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
Pathogenic variants in KMT2D are typically associated with Kabuki syndrome (KS), a rare multisystem disorder. KS is characterized by facial dysmorphisms, intellectual disability, skeletal and dermatoglyphic differences, and poor growth. Seventy percent of individuals with clinically diagnosed KS have a confirmed pathogenic variant in KMT2D or less commonly KDM6A. The majority of mutations found in KMT2D are de novo nonsense or frameshift, with deletions and duplications rarely reported in the literature. Here, we present the case of near complete deletion of KMT2D in a college student with normal intelligence discovered via exome sequencing and EpiSign methylation testing. This case provides evidence that large deletions in KMT2D are compatible with normal intelligence and presents EpiSign as a method for discovering molecular causes of KS not identified by traditional molecular testing.
Collapse
Affiliation(s)
- Catherine Gooch
- Departments of Genetics and Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jaclyn Paige Souder
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Jennifer Kerkhof
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer A Lee
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | | | - Nathaniel H Robin
- Departments of Genetics and Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Li S, Liu J, Yuan Y, Lu A, Liu F, Sun L, Shen Q, Wang L. Case report: A study on the de novo KMT2D variant of Kabuki syndrome with Goodpasture's syndrome by whole exome sequencing. Front Pediatr 2022; 10:933693. [PMID: 36090579 PMCID: PMC9459111 DOI: 10.3389/fped.2022.933693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder characterized by dysmorphic facial features, skeletal abnormalities, and intellectual disability. KMT2D and KDM6A were identified as the main causative genes. To our knowledge, there exist no cases of KS, which were reported with pneumorrhagia. In this study, a 10-month-old male was diagnosed to have KS with typical facial features, skeletal anomalies, and serious postnatal growth retardation. Whole exome sequencing of the trio family revealed the presence of a de novo KMT2D missense variant (c.15143G > A, p. R5048H). The child was presented to the pediatric emergency department several times because of cough, hypoxemia, and anemia. After performing chest CT and fiberoptic bronchoscopy, we found that the child had a pulmonary hemorrhage. During research on the cause of pulmonary hemorrhage, the patient's anti-GBM antibodies gradually became positive, and the urine microalbumin level was elevated at the age of 12-month-old. After glucocorticoids and immunosuppressant therapy, the patient became much better. But he had recurrent pulmonary hemorrhage at the age of 16 months. Therefore, the patient underwent digital subtraction angiography (DSA). However, the DSA showed three abnormal bronchial arteries. This single case expands the phenotypes of patients with KS and Goodpasture's syndrome, which were found to have a de novo KMT2D missense variant.
Collapse
Affiliation(s)
- Shuolin Li
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Liu
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Yuan Yuan
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Aizhen Lu
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Liu
- Department of Cardiovascular, Children's Hospital of Fudan University, Shanghai, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Quanli Shen
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Department of Respiration, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
21
|
Merdler-Rabinowicz R, Pode-Shakked B, Vivante A, Lahav E, Kagan M, Chorin O, Somech R, Raas-Rothschild A. Kidney and urinary tract findings among patients with Kabuki (make-up) syndrome. Pediatr Nephrol 2021; 36:4009-4012. [PMID: 34570271 DOI: 10.1007/s00467-021-05216-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Kabuki syndrome (KS) is a genetic disorder caused mainly by de novo pathogenic variants in KMT2D or KDM6A, characterized by recognizable facial features, intellectual disability, and multi-systemic involvement, including short stature, microcephaly, hearing loss, cardiac defects, and additional congenital anomalies. While congenital anomalies of the kidneys and urinary tract (CAKUT) are known manifestations of this disorder, studies focused solely on kidney involvement are scarce, and its prevalence is most likely underestimated. This study aimed to describe the prevalence and nature of CAKUT and other renal manifestations, in a cohort of KS patients followed at a single tertiary center. METHODS All patients who were evaluated at the Sheba Medical Center and received a clinical and/or molecular diagnosis of KS, over a 16-year period (2004-2020), were included. Digital medical records, including ultrasound studies, were reviewed by a team of pediatric nephrologists. RESULTS Thirteen patients were included in the study, at ages ranging from the neonatal period to 20 years. In eight patients, a pathogenic variant in KMT2D was established. CAKUT were detected in 8/13 (61.5%) of patients and varied from hypospadias, hydronephrosis, or double collecting systems to pelvic kidney, kidney asymmetry, horseshoe kidney, or kidney agenesis. One patient experienced kidney failure necessitating transplantation at 20 years of age. CONCLUSIONS Our findings underscore the high prevalence of CAKUT and genitourinary involvement in patients with KS and suggest that assessment by pediatric nephrology specialists is warranted as part of the routine multidisciplinary evaluation of newly diagnosed patients. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Asaf Vivante
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Pediatric Department B, Edmond and Lily Safra Children's Hospital, , Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Einat Lahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Maayan Kagan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Pediatric Department B, Edmond and Lily Safra Children's Hospital, , Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Odelia Chorin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Annick Raas-Rothschild
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| |
Collapse
|
22
|
Parodi C, Di Fede E, Peron A, Viganò I, Grazioli P, Castiglioni S, Finnell RH, Gervasini C, Vignoli A, Massa V. Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies. Front Cell Dev Biol 2021; 9:654467. [PMID: 33959609 PMCID: PMC8093873 DOI: 10.3389/fcell.2021.654467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with fetal valproate spectrum disorders (FVSD), a clinical condition including congenital malformations, developmental delay, intellectual disability as well as autism spectrum disorder, together with a distinctive facial appearance. VPA is a known inhibitor of histone deacetylase which regulates the chromatin state. Interestingly, perturbations of this epigenetic balance are associated with chromatinopathies, a heterogeneous group of Mendelian disorders arising from mutations in components of the epigenetic machinery. Patients affected from these disorders display a plethora of clinical signs, mainly neurological deficits and intellectual disability, together with distinctive craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD and chromatinopathies, they shared several overlapping features that can be observed despite the different etiologies of these disorders, suggesting the possible existence of a common perturbed mechanism(s) during embryonic development.
Collapse
Affiliation(s)
- Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Viganò
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
24
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
25
|
So PL, Luk HM, Yu KPT, Cheng SSW, Hau EWL, Ho SKL, Lam STS, Lo IFM. Clinical and molecular characterization study of Chinese Kabuki syndrome in Hong Kong. Am J Med Genet A 2020; 185:675-686. [PMID: 33314698 DOI: 10.1002/ajmg.a.62003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 11/14/2020] [Indexed: 01/21/2023]
Abstract
Kabuki syndrome (OMIM #147920 and 300867) is a rare genetic disorder characterized by a distinctive facial gestalt, intellectual disability and multiple congenital anomalies. We summarized the clinical features and molecular findings of the Kabuki syndrome (KS) patients diagnosed in Hong Kong between January 1991 and December 2019. There were 21 molecularly confirmed KS. Twenty of them were due to pathogenic KMT2D variants and one patient had KDM6A deletion. Nine KMT2D variants were novel. The clinical phenotype of our Chinese KS patients was largely comparable with that reported in patients of other ethnicities. This study expands the mutation spectrum but also provide important natural history information of Chinese KS in literature.
Collapse
Affiliation(s)
- Po L So
- Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Ho M Luk
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kris P T Yu
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Shirley S W Cheng
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Edgar W L Hau
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Stephanie K L Ho
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Stephen T S Lam
- Clinical Genetics Service, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, Hong Kong Children's Hospital, Hong Kong SAR, China
| |
Collapse
|
26
|
Murakami H, Tsurusaki Y, Enomoto K, Kuroda Y, Yokoi T, Furuya N, Yoshihashi H, Minatogawa M, Abe-Hatano C, Ohashi I, Nishimura N, Kumaki T, Enomoto Y, Naruto T, Iwasaki F, Harada N, Ishikawa A, Kawame H, Sameshima K, Yamaguchi Y, Kobayashi M, Tominaga M, Ishikiriyama S, Tanaka T, Suzumura H, Ninomiya S, Kondo A, Kaname T, Kosaki K, Masuno M, Kuroki Y, Kurosawa K. Update of the genotype and phenotype of KMT2D and KDM6A by genetic screening of 100 patients with clinically suspected Kabuki syndrome. Am J Med Genet A 2020; 182:2333-2344. [PMID: 32803813 DOI: 10.1002/ajmg.a.61793] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Kabuki syndrome is characterized by a variable degree of intellectual disability, characteristic facial features, and complications in various organs. Many variants have been identified in two causative genes, that is, lysine methyltransferase 2D (KMT2D) and lysine demethylase 6A (KDM6A). In this study, we present the results of genetic screening of 100 patients with a suspected diagnosis of Kabuki syndrome in our center from July 2010 to June 2018. We identified 76 variants (43 novel) in KMT2D and 4 variants (3 novel) in KDM6A as pathogenic or likely pathogenic. Rare variants included a deep splicing variant (c.14000-8C>G) confirmed by RNA sequencing and an 18% mosaicism level for a KMT2D mutation. We also characterized a case with a blended phenotype consisting of Kabuki syndrome, osteogenesis imperfecta, and 16p13.11 microdeletion. We summarized the clinical phenotypes of 44 patients including a patient who developed cervical cancer of unknown origin at 16 years of age. This study presents important details of patients with Kabuki syndrome including rare clinical cases and expands our genetic understanding of this syndrome, which will help clinicians and researchers better manage and understand patients with Kabuki syndrome they may encounter.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Keisuke Enomoto
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takayuki Yokoi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noritaka Furuya
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Yoshihashi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mari Minatogawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Chihiro Abe-Hatano
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Ikuko Ohashi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Fuminori Iwasaki
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriaki Harada
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Aki Ishikawa
- Department of Medical Genetics and Genomics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kawame
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kiyoko Sameshima
- Division of Medical Genetics, Gunma Children's Medical Center, Gunma, Japan
| | - Yu Yamaguchi
- Division of Medical Genetics, Gunma Children's Medical Center, Gunma, Japan
| | - Masahisa Kobayashi
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Makiko Tominaga
- Children's Medical Center, Northern Yokohama Hospital, Showa University, Yokohama, Japan
| | - Satoshi Ishikiriyama
- Division of Clinical Genetics and Cytogenetics, Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Shinsuke Ninomiya
- Department of Clinical Genetics, Kurashiki Central Hospital, Kurashiki, Japan
| | - Akane Kondo
- Department of Gynecology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuo Masuno
- Genetic Counseling Program, Graduate School of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Yoshikazu Kuroki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
27
|
Abstract
Kabuki syndrome (KS) is characterized by typical facial features and patients are also affected by multiple congenital anomalies, of which congenital heart anomalies (CHAs) are present in 28.0 to 80.0%. In approximately 75.0% of patients, the genetic causes of KS are caused by mutation in the KMT2D gene. Although KS is a well-characterized syndrome, reaching the diagnosis in neonates is still challenging. Namely, newborns usually display mild facial features; therefore the diagnosis is mainly based on congenital malformations. In our case, a newborn was referred for next generation sequencing (NGS) testing due to the prenatally observed CHA. After birth, a ventricular septal defect (VSD), vesicoureteral reflux, muscular hypotonia, cleft palate, mild microcephaly, and some dysmorphic features, were noted. The NGS analysis was performed on the proband’s genomic DNA using the TruSight One Sequencing Panel, which enriches exons of 4813 genes with clinical relevance to the disease. After variant calling, NGS data analysis was predominantly focused on rare variants in genes involved in VSD, microcephaly, and muscular hypotonia; features observed predominantly in our proband. With the aforementioned protocol, we were able to determine the previously unreported de novo frameshift deletion in the KMT2D gene resulting in translation termination. Although our proband is a typical representative of KS, his diagnosis was reached only after NGS analysis. Our proband thus represents the importance of genotypephenotype driven NGS analysis in diagnosis of patients with congenital anomalies.
Collapse
|
28
|
Shpargel KB, Mangini CL, Xie G, Ge K, Magnuson T. The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development 2020; 147:dev.187997. [PMID: 32541010 DOI: 10.1242/dev.187997] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Cassidy L Mangini
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Guojia Xie
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry Magnuson
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
29
|
Squeo GM, Augello B, Massa V, Milani D, Colombo EA, Mazza T, Castellana S, Piccione M, Maitz S, Petracca A, Prontera P, Accadia M, Della Monica M, Di Giacomo MC, Melis D, Selicorni A, Giglio S, Fischetto R, Di Fede E, Malerba N, Russo M, Castori M, Gervasini C, Merla G. Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder. J Med Genet 2020; 57:760-768. [PMID: 32170002 DOI: 10.1136/jmedgenet-2019-106724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods for testing multiple genes simultaneously is a logical step for the implementation of diagnostics of these disorders. METHODS We screened a heterogeneous cohort of 263 index patients by an NGS-targeted panel, containing 68 genes associated with more than 40 OMIM entries affecting chromatin function. RESULTS This strategy allowed us to identify clinically relevant variants in 87 patients (32%), including 30 for which an alternative clinical diagnosis was proposed after sequencing analysis and clinical re-evaluation. CONCLUSION Our findings indicate that this approach is effective not only in disorders with locus heterogeneity, but also in order to anticipate unexpected misdiagnoses due to clinical overlap among cognate disorders. Finally, this work highlights the utility of a prompt diagnosis in such a clinically and genetically heterogeneous group of disorders that we propose to group under the umbrella term of chromatinopathies.
Collapse
Affiliation(s)
- Gabriella Maria Squeo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Donatella Milani
- UOSD Pediatria ad alta intensità di cura, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Adele Colombo
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Antonio Petracca
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Matteo Della Monica
- Medical Genetics Unit, Cardarelli Hospital, Largo A Cardarelli, Napoli, Italy
| | | | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Sant'Anna General Hospital, Como, Italy
| | - Sabrina Giglio
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', Medical Genetics Unit, University Hospital Meyer, Firenze, Italy
| | - Rita Fischetto
- Metabolic Diseases, Clinical Genetics and Diabetology Unit, Paediatric Hospital Giovanni XXIII, Bari, Italy
| | - Elisabetta Di Fede
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Matteo Russo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
30
|
Schwenty-Lara J, Nehl D, Borchers A. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. Hum Mol Genet 2020; 29:305-319. [PMID: 31813957 PMCID: PMC7003132 DOI: 10.1093/hmg/ddz284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Denise Nehl
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
31
|
Lavery WJ, Barski A, Wiley S, Schorry EK, Lindsley AW. KMT2C/D COMPASS complex-associated diseases [K CDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 2020; 12:10. [PMID: 31924266 PMCID: PMC6954584 DOI: 10.1186/s13148-019-0802-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.
Collapse
Affiliation(s)
- William J Lavery
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
- Division of Human Genetics, CCHMC, Cincinnati, OH, USA
| | - Susan Wiley
- Division of Developmental and Behavioral Pediatrics, CCHMC, Cincinnati, OH, USA
| | | | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
32
|
Wang Y, Li N, Su Z, Xu Y, Liu S, Chen Y, Li X, Shen Y, Hung C, Wang J, Wang X, Bodamer O. The phenotypic spectrum of Kabuki syndrome in patients of Chinese descent: A case series. Am J Med Genet A 2019; 182:640-651. [PMID: 31883305 DOI: 10.1002/ajmg.a.61467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Kabuki syndrome (KS) is a rare disorder of transcriptional regulation with a complex phenotype that includes cranio-facial dysmorphism, intellectual disability, hypotonia, failure to thrive, short stature, and cardiac and renal anomalies. Heterozygous, de novo dominant mutations in either KMT2D or KDM6A underlie KS. Limited information is available about the phenotypic spectrum of KS in China. Fourteen Chinese patients with genetically confirmed KS were evaluated in addition to 11 Chinese patients who were identified from the medical literature. The clinical phenotype spectrum of these patients was compared to that of 449 patients with KS from non-Chinese ethnicities. Additionally, we explored the utility of a facial recognition software in recognizing KS. All 25 patients with KS carried de novo, likely pathogenic or pathogenic variants in either KMT2D or KDM6A. Eighteen patients were male, the age at diagnosis ranged from 2months to 11.6 years. The facial gestalt included arched and broad eyebrows (25/25; 100%), sparse lateral or notched eyebrows (18/18; 100%), short columella with a concave nasal tip (24/25; 96%) and large, prominent ears (24/24; 100%) which were more frequent in Chinese patients (p < .01). In contrast, microcephaly (2/25; 8%), cleft lip/palate (2/25; 8%), and cardiac defects (10/25; 40%) were less frequent in Chinese patients (not significant). The diagnosis of KS was correctly identified in 13 of 14 patients through facial recognition and clinical phenotyping, underscoring the utility of this approach. As expected, there is marked phenotypic overlap between Chinese and non-Chinese patients with KS, although subtle differences were identified.
Collapse
Affiliation(s)
- Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niu Li
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Su
- Department of Endocrinology and Metabolism, Shenzhen Children's Hospital, Shenzhen, China
| | - Yufei Xu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijian Liu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology and Metabolism, Shenzhen Children's Hospital, Shenzhen, China.,Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Christina Hung
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Jian Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
33
|
Luperchio TR, Applegate CD, Bodamer O, Bjornsson HT. Haploinsufficiency of KMT2D is sufficient to cause Kabuki syndrome and is compatible with life. Mol Genet Genomic Med 2019; 8:e1072. [PMID: 31814321 PMCID: PMC7005614 DOI: 10.1002/mgg3.1072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Teresa Romeo Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
34
|
Wang YR, Xu NX, Wang J, Wang XM. Kabuki syndrome: review of the clinical features, diagnosis and epigenetic mechanisms. World J Pediatr 2019; 15:528-535. [PMID: 31587141 DOI: 10.1007/s12519-019-00309-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Kabuki syndrome (KS), is a infrequent inherited malformation syndrome caused by mutations in a H3 lysine 4 methylase (KMT2D) or an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A). The characteristics in patients with KS have not yet been well recognized. DATA SOURCES We used databases including PubMed and Google Scholar to search for publications about the clinical features and the etiology of Kabuki syndrome. The most relevant articles to the scope of this review were chosen for analysis. RESULTS Clinical diagnosis of KS is challenging in initial period, because many clinical characteristics become apparent only in subsequent years. Recently, the genetic and functional interaction between KS-associated genes and their products have been elucidated. New clinical findings were reported including nervous system and intellectual performance, endocrine-related disorders and immune deficiency and autoimmune disease. Cancer risks of Kabuki syndrome was reviewed. Meanwhile, we discussed the Kabuki-like syndrome. Digital clinical genetic service, such as dysmorphology database can improve availability and provide high-quality diagnostic services. Given the significant clinical relevance of KS-associated genes and epigenetic modifications crosstalk, efforts in the research for new mechanisms are thus of maximum interest. CONCLUSIONS Kabuki syndrome has a strong clinical and biological heterogeneity. The main pathogenesis of Kabuki syndrome is the imbalance between switch-on and -off of the chromatin. The direction of drug research may be to regulate the normal opening of chromatin. Small molecule inhibitors of histone deacetylases maybe helpful in treatment of mental retardation and reduce cancer risk in KS.
Collapse
Affiliation(s)
- Yi-Rou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nai-Xin Xu
- Huaxi Medical College School of Sichuan University, Sichuan, China
| | - Jian Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiu-Min Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Department of Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Shangguan H, Su C, Ouyang Q, Cao B, Wang J, Gong C, Chen R. Kabuki syndrome: novel pathogenic variants, new phenotypes and review of literature. Orphanet J Rare Dis 2019; 14:255. [PMID: 31727177 PMCID: PMC6854618 DOI: 10.1186/s13023-019-1219-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Objective This study describes 5 novel variants of 7 KMT2D/KDM6A gene and summarizes the clinical manifestations and the mutational spectrum of 47 Chinese Kabuki syndrome (KS) patients. Methods Blood samples were collected for whole-exome sequencing (WES) for 7 patients and their parents if available. Phenotypic and genotypic spectra of 40 previously published unrelated Chinese KS patients were summarized. Result Genetic sequencing identified six KMT2D variants (c.3926delC, c.5845delC, c.6595delT, c.12630delG, c.16294C > T, and c.16442delG) and one KDM6A variant (c.2668-2671del). Of them, 4 variants (c.3926delC, c.5845delC, c.12630delG, and c.16442delG) in KMT2D gene and the variant (c.2668-2671del) in KDM6A gene were novel. Combining with previously published Chinese KS cases, the patients presented with five cardinal manifestations including facial dysmorphism, intellectual disability, growth retardation, fingertip pads and skeletal abnormalities. In addition, 29.5% (5/17) patients had brain abnormalities, such as hydrocephalus, cerebellar vermis dysplasia, thin pituitary and white matter myelination delay, corpus callosum hypoplasia and Dandy-Walker malformation. Conclusion In this report, five novel variants in KMT2D/KDM6A genes are described. A subset of Chinese KS patients presented with brain abnormalities that were not previously reported. Our study expands the mutational and phenotypic spectra of KS.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian, Fujian Medical University Teaching Hospital, Fuzhou, 350000, China
| | - Chang Su
- Department of Endocrinolgy, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qian Ouyang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian, Fujian Medical University Teaching Hospital, Fuzhou, 350000, China
| | - Bingyan Cao
- Department of Endocrinolgy, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jian Wang
- Department of Molecular Genetic Diagnostics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chunxiu Gong
- Department of Endocrinolgy, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian, Fujian Medical University Teaching Hospital, Fuzhou, 350000, China.
| |
Collapse
|
36
|
Fahrner JA, Lin WY, Riddle RC, Boukas L, DeLeon VB, Chopra S, Lad SE, Luperchio TR, Hansen KD, Bjornsson HT. Precocious chondrocyte differentiation disrupts skeletal growth in Kabuki syndrome mice. JCI Insight 2019; 4:129380. [PMID: 31557133 DOI: 10.1172/jci.insight.129380] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Kabuki syndrome 1 (KS1) is a Mendelian disorder of the epigenetic machinery caused by mutations in the gene encoding KMT2D, which methylates lysine 4 on histone H3 (H3K4). KS1 is characterized by intellectual disability, postnatal growth retardation, and distinct craniofacial dysmorphisms. A mouse model (Kmt2d+/βGeo) exhibits features of the human disorder and has provided insight into other phenotypes; however, the mechanistic basis of skeletal abnormalities and growth retardation remains elusive. Using high-resolution micro-CT, we show that Kmt2d+/βGeo mice have shortened long bones and ventral bowing of skulls. In vivo expansion of growth plates within skulls and long bones suggests disrupted endochondral ossification as a common disease mechanism. Stable chondrocyte cell lines harboring inactivating mutations in Kmt2d exhibit precocious differentiation, further supporting this mechanism. A known inducer of chondrogenesis, SOX9, and its targets show markedly increased expression in Kmt2d-/- chondrocytes. By transcriptome profiling, we identify Shox2 as a putative KMT2D target. We propose that decreased KMT2D-mediated H3K4me3 at Shox2 releases Sox9 inhibition and thereby leads to enhanced chondrogenesis, providing a potentially novel and plausible explanation for precocious chondrocyte differentiation. Our findings provide insight into the pathogenesis of growth retardation in KS1 and suggest therapeutic approaches for this and related disorders.
Collapse
Affiliation(s)
- Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine.,Department of Pediatrics
| | | | | | - Leandros Boukas
- McKusick-Nathans Institute of Genetic Medicine.,Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | | | - Susan E Lad
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | | | - Kasper D Hansen
- McKusick-Nathans Institute of Genetic Medicine.,Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine.,Department of Pediatrics.,Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
37
|
Margot H, Boursier G, Duflos C, Sanchez E, Amiel J, Andrau JC, Arpin S, Brischoux-Boucher E, Boute O, Burglen L, Caille C, Capri Y, Collignon P, Conrad S, Cormier-Daire V, Delplancq G, Dieterich K, Dollfus H, Fradin M, Faivre L, Fernandes H, Francannet C, Gatinois V, Gerard M, Goldenberg A, Ghoumid J, Grotto S, Guerrot AM, Guichet A, Isidor B, Jacquemont ML, Julia S, Khau Van Kien P, Legendre M, Le Quan Sang KH, Leheup B, Lyonnet S, Magry V, Manouvrier S, Martin D, Morel G, Munnich A, Naudion S, Odent S, Perrin L, Petit F, Philip N, Rio M, Robbe J, Rossi M, Sarrazin E, Toutain A, Van Gils J, Vera G, Verloes A, Weber S, Whalen S, Sanlaville D, Lacombe D, Aladjidi N, Geneviève D. Immunopathological manifestations in Kabuki syndrome: a registry study of 177 individuals. Genet Med 2019; 22:181-188. [PMID: 31363182 DOI: 10.1038/s41436-019-0623-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Kabuki syndrome (KS) (OMIM 147920 and 300867) is a rare genetic disorder characterized by specific facial features, intellectual disability, and various malformations. Immunopathological manifestations seem prevalent and increase the morbimortality. To assess the frequency and severity of the manifestations, we measured the prevalence of immunopathological manifestations as well as genotype-phenotype correlations in KS individuals from a registry. METHODS Data were for 177 KS individuals with KDM6A or KMT2D pathogenic variants. Questionnaires to clinicians were used to assess the presence of immunodeficiency and autoimmune diseases both on a clinical and biological basis. RESULTS Overall, 44.1% (78/177) and 58.2% (46/79) of KS individuals exhibited infection susceptibility and hypogammaglobulinemia, respectively; 13.6% (24/177) had autoimmune disease (AID; 25.6% [11/43] in adults), 5.6% (10/177) with ≥2 AID manifestations. The most frequent AID manifestations were immune thrombocytopenic purpura (7.3% [13/177]) and autoimmune hemolytic anemia (4.0% [7/177]). Among nonhematological manifestations, vitiligo was frequent. Immune thrombocytopenic purpura was frequent with missense versus other types of variants (p = 0.027). CONCLUSION The high prevalence of immunopathological manifestations in KS demonstrates the importance of systematic screening and efficient preventive management of these treatable and sometimes life-threatening conditions.
Collapse
Affiliation(s)
- Henri Margot
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France
| | - Guilaine Boursier
- Département de génétique médicale, Maladies rares et médecine personnalisée, CHU de Montpellier, Montpellier, France.,INSERM U1183, Université de Montpellier, Montpellier, France
| | - Claire Duflos
- Département d'Information Médicale, CHU Montpellier, Montpellier, France
| | - Elodie Sanchez
- Département de génétique médicale, Maladies rares et médecine personnalisée, CHU de Montpellier, Montpellier, France.,INSERM U1183, Université de Montpellier, Montpellier, France
| | - Jeanne Amiel
- Fédération de Génétique et Institut Imagine, Hôpital Necker-Enfants Malades, AP-HP et INSERM UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier (IGMM), Univ Montpellier, Montpellier, France
| | - Stéphanie Arpin
- Service de génétique, CHU de Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Odile Boute
- Centre de référence maladies rares pour les anomalies du développement Nord-Ouest, Clinique de Génétique médicale, CHU de Lille et EA7364, Université de Lille, Lille, France
| | - Lydie Burglen
- Centre de référence des malformations et maladies congénitales du cervelet, département de génétique et embryologie médicale, APHP, GHUEP, Hôpital Trousseau, Paris, France
| | | | - Yline Capri
- Service de génétique médicale, AP-HP Robert-Debré, Paris, France
| | | | - Solène Conrad
- Service de génétique médicale, CHU de Nantes, Nantes, France
| | - Valérie Cormier-Daire
- Fédération de Génétique et Institut Imagine, Hôpital Necker-Enfants Malades, AP-HP et INSERM UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Geoffroy Delplancq
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - Klaus Dieterich
- Service de génétique médicale, CHU de Grenoble, Grenoble, France
| | - Hélène Dollfus
- Service de génétique médicale, CHU de Strasbourg, Strasbourg, France
| | - Mélanie Fradin
- Service de génétique clinique, CHU de Rennes, Univ. Rennes, Institute of Genetics and Development of Rennes (IGDR) UMR6290 CNRS, Rennes, France
| | - Laurence Faivre
- Service de génétique médicale et centre de référence Anomalies du Développement et Syndromes Malformatifs, CHU de Dijon, Dijon, France
| | - Helder Fernandes
- Service d'onco hématologie pédiatrique, CHU de Bordeaux, Bordeaux, France.,Centre de référence des cytopénies auto-immunes de l'enfant, CHU de Bordeaux, Bordeaux, France.,INSERM CICP, Université de Bordeaux, Bordeaux, France
| | | | - Vincent Gatinois
- Département de génétique médicale, Maladies rares et médecine personnalisée, CHU de Montpellier, Montpellier, France.,INSERM U1183, Université de Montpellier, Montpellier, France
| | - Marion Gerard
- Service de génétique médicale, CHU de Caen, Caen, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Jamal Ghoumid
- Centre de référence maladies rares pour les anomalies du développement Nord-Ouest, Clinique de Génétique médicale, CHU de Lille et EA7364, Université de Lille, Lille, France
| | - Sarah Grotto
- Service de génétique médicale, AP-HP Robert-Debré, Paris, France
| | - Anne-Marie Guerrot
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Agnès Guichet
- Service de génétique médicale, CHU d'Angers, Angers, France
| | - Bertrand Isidor
- Service de génétique médicale, CHU de Nantes, Nantes, France
| | - Marie-Line Jacquemont
- Service de génétique médicale, CHU de la Reunion, Saint-Pierre, France.,Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, Saint-Pierre, France
| | - Sophie Julia
- Service de génétique médicale, CHU de Toulouse, Toulouse, France
| | | | - Marine Legendre
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, Saint-Pierre, France
| | - K H Le Quan Sang
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Bruno Leheup
- Service de génétique médicale, CHU de Nancy, Nancy, France
| | - Stanislas Lyonnet
- Fédération de Génétique et Institut Imagine, Hôpital Necker-Enfants Malades, AP-HP et INSERM UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Virginie Magry
- Service de génétique médicale, CHU de Clemont-Ferrand, Clermont-Ferrand, France
| | - Sylvie Manouvrier
- Centre de référence maladies rares pour les anomalies du développement Nord-Ouest, Clinique de Génétique médicale, CHU de Lille et EA7364, Université de Lille, Lille, France
| | | | | | - Arnold Munnich
- Fédération de Génétique et Institut Imagine, Hôpital Necker-Enfants Malades, AP-HP et INSERM UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Sophie Naudion
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, Saint-Pierre, France
| | - Sylvie Odent
- Service de génétique clinique, CHU de Rennes, Univ. Rennes, Institute of Genetics and Development of Rennes (IGDR) UMR6290 CNRS, Rennes, France
| | - Laurence Perrin
- Service de génétique médicale, AP-HP Robert-Debré, Paris, France
| | - Florence Petit
- Centre de référence maladies rares pour les anomalies du développement Nord-Ouest, Clinique de Génétique médicale, CHU de Lille et EA7364, Université de Lille, Lille, France
| | - Nicole Philip
- Service de génétique médicale, CHU de Marseille, Marseille, France
| | - Marlène Rio
- Fédération de Génétique et Institut Imagine, Hôpital Necker-Enfants Malades, AP-HP et INSERM UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Julie Robbe
- Service de génétique médicale, CHU de Marseille, Marseille, France
| | | | - Elisabeth Sarrazin
- Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, Saint-Pierre, France
| | - Annick Toutain
- Service de génétique, CHU de Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Julien Van Gils
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, Saint-Pierre, France.,INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Gabriella Vera
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Alain Verloes
- Service de génétique médicale, AP-HP Robert-Debré, Paris, France
| | - Sacha Weber
- Service de génétique médicale, CHU de Caen, Caen, France
| | - Sandra Whalen
- Service de génétique médicale, AP-HP Pitié Salpétrière, Paris, France
| | | | - Didier Lacombe
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, Saint-Pierre, France.,INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Nathalie Aladjidi
- Service d'onco hématologie pédiatrique, CHU de Bordeaux, Bordeaux, France.,Centre de référence des cytopénies auto-immunes de l'enfant, CHU de Bordeaux, Bordeaux, France.,INSERM CICP, Université de Bordeaux, Bordeaux, France
| | - David Geneviève
- Département de génétique médicale, Maladies rares et médecine personnalisée, CHU de Montpellier, Montpellier, France. .,INSERM U1183, Université de Montpellier, Montpellier, France.
| |
Collapse
|
38
|
Yamamoto PK, Souza TA, Antiorio ATFB, Zanatto DA, Garcia‐Gomes MDSA, Alexandre‐Ribeiro SR, Oliveira NDS, Menck CFM, Bernardi MM, Massironi SMG, Mori CMC. Genetic and behavioral characterization of a
Kmt2d
mouse mutant, a new model for Kabuki Syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12568. [DOI: 10.1111/gbb.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro K. Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Tiago A. Souza
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Ana T. F. B. Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Dennis A. Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | | | | | - Nicassia de Souza Oliveira
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Maria M. Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University São Paulo Brazil
| | - Silvia M. G. Massironi
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
- Department of Immunology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Claudia M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| |
Collapse
|
39
|
Schott DA, Stumpel CTRM, Klaassens M. Hypermobility in individuals with Kabuki syndrome: The effect of growth hormone treatment. Am J Med Genet A 2018; 179:219-223. [PMID: 30556359 PMCID: PMC6590336 DOI: 10.1002/ajmg.a.60696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 01/31/2023]
Abstract
Kabuki syndrome (KS) is a multiple congenital malformation syndrome which has been described across all ethnic groups. Most KS patients possess two genetic subtypes: KMT2D-associated, autosomal-dominant KS type 1 (KS1; OMIM 147920); and KDM6A-associated, X-linked-dominant KS type 2. Generalized joint hypermobility is one feature of KS, but its exact incidence and pattern is not well described in the literature. As part of our prospective study on the metabolic and growth effect of GH treatment, we assessed children from our Dutch Kabuki cohort who were eligible for growth hormone therapy. We assessed severity and pattern of joint hypermobility, both before and after 24 months of growth hormone replacement therapy. The prevalence of hypermobility was 31% in boys and 14% in girls using the Beighton score and 69% in boys and 57% in girls using the Bulbena score. This varies from the general population where girls are more affected. After 2 years of growth hormone treatment, there was a statistically significant decrease in the presence of joint hypermobility to 6% using the Bulbena score and none with respect to the Beighton score. We hypothesized that this result suggests a direct effect of growth hormone on connective tissue in patients with KS.
Collapse
Affiliation(s)
- Dina A Schott
- Department of Pediatrics, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Merel Klaassens
- Department of Pediatrics, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
40
|
Adam MP, Banka S, Bjornsson HT, Bodamer O, Chudley AE, Harris J, Kawame H, Lanpher BC, Lindsley AW, Merla G, Miyake N, Okamoto N, Stumpel CT, Niikawa N. Kabuki syndrome: international consensus diagnostic criteria. J Med Genet 2018; 56:89-95. [PMID: 30514738 DOI: 10.1136/jmedgenet-2018-105625] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kabuki syndrome (KS) is a clinically recognisable syndrome in which 70% of patients have a pathogenic variant in KMT2D or KDM6A. Understanding the function of these genes opens the door to targeted therapies. The purpose of this report is to propose diagnostic criteria for KS, particularly when molecular genetic testing is equivocal. METHODS An international group of experts created consensus diagnostic criteria for KS. Systematic PubMed searches returned 70 peer-reviewed publications in which at least one individual with molecularly confirmed KS was reported. The clinical features of individuals with known mutations were reviewed. RESULTS The authors propose that a definitive diagnosis can be made in an individual of any age with a history of infantile hypotonia, developmental delay and/or intellectual disability, and one or both of the following major criteria: (1) a pathogenic or likely pathogenic variant in KMT2D or KDM6A; and (2) typical dysmorphic features (defined below) at some point of life. Typical dysmorphic features include long palpebral fissures with eversion of the lateral third of the lower eyelid and two or more of the following: (1) arched and broad eyebrows with the lateral third displaying notching or sparseness; (2) short columella with depressed nasal tip; (3) large, prominent or cupped ears; and (4) persistent fingertip pads. Further criteria for a probable and possible diagnosis, including a table of suggestive clinical features, are presented. CONCLUSION As targeted therapies for KS are being developed, it is important to be able to make the correct diagnosis, either with or without molecular genetic confirmation.
Collapse
Affiliation(s)
- Margaret P Adam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Albert E Chudley
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jaqueline Harris
- Departments of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hiroshi Kawame
- Department of Education and Training, Tohoku University School of Medicine, Sendai, Japan
| | - Brendan C Lanpher
- Center for Individualized Medicine, Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew W Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Constanze T Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Norio Niikawa
- President, the Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | |
Collapse
|
41
|
A comparative analysis of KMT2D missense variants in Kabuki syndrome, cancers and the general population. J Hum Genet 2018; 64:161-170. [PMID: 30459467 DOI: 10.1038/s10038-018-0536-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
Determining the clinical significance of germline and somatic KMT2D missense variants (MVs) in Kabuki syndrome (KS) and cancers can be challenging. We analysed 1920 distinct KMT2D MVs that included 1535 germline MVs in controls (Control-MVs), 584 somatic MVs in cancers (Cancer-MVs) and 201 MV in individuals with KS (KS-MVs). The proportion of MVs likely to affect splicing was significantly higher for Cancer-MVs and KS-MVs than in Control-MVs (p = 0.000018). Our analysis identified significant clustering of Cancer-MVs and KS-MVs in the PHD#3 and #4, RING#4 and SET domains. Areas of enrichment restricted to just Cancer-MVs (FYR-C and between amino acids 3043-3248) or KS-MVs (coiled-coil#5, FYR-N and between amino acids 4995-5090) were also found. Cancer-MVs and KS-MVs tended to affect more conserved residues (lower BLOSUM scores, p < 0.001 and p = 0.007). KS-MVs are more likely to increase the energy for protein folding (higher ELASPIC ∆∆G scores, p = 0.03). Cancer-MVs are more likely to disrupt protein interactions (higher StructMAn scores, p = 0.019). We reclassify several presumed pathogenic MVs as benign or as variants of uncertain significance. We raise the possibility of as yet unrecognised 'non-KS' phenotype(s) associated with some germline pathogenic KMT2D MVs. Overall, this work provides insights into the disease mechanism of KMT2D variants and can be extended to other genes, mutations in which also cause developmental syndromes and cancer.
Collapse
|
42
|
Cocciadiferro D, Augello B, De Nittis P, Zhang J, Mandriani B, Malerba N, Squeo GM, Romano A, Piccinni B, Verri T, Micale L, Pasqualucci L, Merla G. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum Mol Genet 2018; 27:3651-3668. [PMID: 30107592 PMCID: PMC6488975 DOI: 10.1093/hmg/ddy241] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Kabuki syndrome is a rare autosomal dominant condition characterized by facial features, various organs malformations, postnatal growth deficiency and intellectual disability. The discovery of frequent germline mutations in the histone methyltransferase KMT2D and the demethylase KDM6A revealed a causative role for histone modifiers in this disease. However, the role of missense mutations has remained unexplored. Here, we expanded the mutation spectrum of KMT2D and KDM6A in KS by identifying 37 new KMT2D sequence variants. Moreover, we functionally dissected 14 KMT2D missense variants, by investigating their impact on the protein enzymatic activity and the binding to members of the WRAD complex. We demonstrate impaired H3K4 methyltransferase activity in 9 of the 14 mutant alleles and show that this reduced activity is due in part to disruption of protein complex formation. These findings have relevant implications for diagnostic and counseling purposes in this disease.
Collapse
Affiliation(s)
- Dario Cocciadiferro
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- PhD Program in Experimental and Regenerative Medicine, Faculty of Medicine, University of Foggia, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | | | - Jiyuan Zhang
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Barbara Mandriani
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- PhD Program in Experimental and Regenerative Medicine, Faculty of Medicine, University of Foggia, Italy
| | - Gabriella M Squeo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Piccinni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Lucia Micale
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Laura Pasqualucci
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
43
|
Systemic lupus erythematosus: A new autoimmune disorder in Kabuki syndrome. Eur J Med Genet 2018; 62:103538. [PMID: 30213761 DOI: 10.1016/j.ejmg.2018.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/25/2018] [Accepted: 09/09/2018] [Indexed: 11/23/2022]
Abstract
We report a case of a 17-year-old Caucasian girl with syndromic features of clinically unrecognized Kabuki syndrome (KS), who developed systemic lupus erythematosus (SLE). Diagnosis of KS was established after whole exome sequencing (WES) and detection of de novo frameshift 1bp deletion in histone-lysine N-methyltransferase 2D gene (KMT2D). The pathogenic variant in exon 34 (c.8626delC: 55 reads C, 56 reads delC), has not been described previously and is predicted to truncate the protein (p.Gln2876Serfs*34) resulting in KMT2D loss of function. Notwithstanding that patients with KS have a substantial susceptibility to various autoimmune diseases, to the best of our knowledge this is the first report of an SLE and KS association. The exact relationship between the two conditions in our patient is difficult to determine with certainty, as a number of clinical features, including positive antiphospholipid antibodies, persistent hypogammaglobulinemia and the episode of convulsions may occur in both conditions, suggesting potential overlap of KS and SLE. The combination of a high susceptibility towards infections and an autoimmune disorder present a great challenge when trying to achieve the optimum therapy which will enable the patient to stay on the thin line of remission. This case report emphasizes the value of WES as a powerful tool for the diagnosis of rare disorders and/or unusual disease presentations of possible genetic cause.
Collapse
|
44
|
Brooks JK. A review of syndromes associated with blue sclera, with inclusion of malformations of the head and neck. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:252-263. [DOI: 10.1016/j.oooo.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022]
|
45
|
Cudzilo D, Czochrowska E. Orthodontic Treatment of a Kabuki Syndrome Patient. Cleft Palate Craniofac J 2018; 55:1175-1180. [PMID: 29589982 DOI: 10.1177/1055665618765775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Kabuki syndrome (KS) is a rare disorder characterized by somatic and psychological disturbances including special face morphology, skeletal anomalies, and other systemic disorders. Because of the diverse clinical manifestation, the management of a patient with KS may involve several medical and dental specialists, including orthodontics. The aim of the article is to present successful orthodontic treatment performed in a 14-year-old boy diagnosed with the KS. Dental relations and smile aesthetics were normalized after orthodontic treatment; however, problems with patient compliance and cooperation and an increased risk of root resorption may influence treatment outcomes. Interdisciplinary cooperation between medical and dental specialists is essential in patients with KS.
Collapse
Affiliation(s)
- Dorota Cudzilo
- 1 Department of Maxillofacial Orthopaedics and Orthodontics, Institute of Mother and Child, Warsaw, Poland
| | - Ewa Czochrowska
- 2 Department of Orthodontics, Medical University in Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Under the mask of Kabuki syndrome: Elucidation of genetic-and phenotypic heterogeneity in patients with Kabuki-like phenotype. Eur J Med Genet 2018; 61:315-321. [PMID: 29307790 DOI: 10.1016/j.ejmg.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 11/21/2022]
Abstract
Kabuki syndrome is mainly caused by dominant de-novo pathogenic variants in the KMT2D and KDM6A genes. The clinical features of this syndrome are highly variable, making the diagnosis of Kabuki-like phenotypes difficult, even for experienced clinical geneticists. Herein we present molecular genetic findings of causal genetic variation using array comparative genome hybridization and a Mendeliome analysis, utilizing targeted exome analysis focusing on regions harboring rare disease-causing variants in Kabuki-like patients which remained KMT2D/KDM6A-negative. The aCGH analysis revealed a pathogenic CNV in the 14q11.2 region, while targeted exome sequencing revealed pathogenic variants in genes associated with intellectual disability (HUWE1, GRIN1), including a gene coding for mandibulofacial dysostosis with microcephaly (EFTUD2). Lower values of the MLL2-Kabuki phenotypic score are indicative of Kabuki-like phenotype (rather than true Kabuki syndrome), where aCGH and Mendeliome analyses have high diagnostic yield. Based on our findings we conclude that for new patients with Kabuki-like phenotypes it is possible to choose a specific molecular testing approach that has the highest detection rate for a given MLL2-Kabuki score, thus fostering more precise patient diagnosis and improved management in these genetically- and phenotypically heterogeneous clinical entities.
Collapse
|
47
|
Małecka A, Trøen G, Tierens A, Østlie I, Małecki J, Randen U, Wang J, Berentsen S, Tjønnfjord GE, Delabie JMA. Frequent somatic mutations of
KMT
2D
(
MLL
2
) and
CARD
11
genes in primary cold agglutinin disease. Br J Haematol 2017; 183:838-842. [DOI: 10.1111/bjh.15063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Agnieszka Małecka
- Department of Pathology Oslo University HospitalOslo Norway
- Faculty of Medicine University of Oslo Oslo Norway
| | - Gunhild Trøen
- Department of Pathology Oslo University HospitalOslo Norway
| | - Anne Tierens
- Laboratory Medicine Program University Health Network and University of Toronto Toronto ON Canada
| | - Ingunn Østlie
- Department of Pathology Oslo University HospitalOslo Norway
| | | | - Ulla Randen
- Department of Pathology Oslo University HospitalOslo Norway
| | - Junbai Wang
- Department of Pathology Oslo University HospitalOslo Norway
| | - Sigbjørn Berentsen
- Department of Research and Innovation Haugesund Hospital Helse Fonna HaugesundNorway
| | - Geir E. Tjønnfjord
- Department of Haematology Oslo University Hospital and Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jan M. A. Delabie
- Laboratory Medicine Program University Health Network and University of Toronto Toronto ON Canada
- Center for Cancer Biomedicine University of Oslo Oslo Norway
| |
Collapse
|
48
|
Sakata S, Okada S, Aoyama K, Hara K, Tani C, Kagawa R, Utsunomiya-Nakamura A, Miyagawa S, Ogata T, Mizuno H, Kobayashi M. Individual Clinically Diagnosed with CHARGE Syndrome but with a Mutation in KMT2D, a Gene Associated with Kabuki Syndrome: A Case Report. Front Genet 2017; 8:210. [PMID: 29321794 PMCID: PMC5732153 DOI: 10.3389/fgene.2017.00210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
We report a Japanese female patient presenting with classic features of CHARGE syndrome, including choanal atresia, growth and development retardation, ear malformations, genital anomalies, multiple endocrine deficiency, and unilateral facial nerve palsy. She was clinically diagnosed with typical CHARGE syndrome, but genetic analysis using the TruSight One Sequence Panel revealed a germline heterozygous mutation in KMT2D with no pathogenic CHD7 alterations associated with CHARGE syndrome. Kabuki syndrome is a rare multisystem disorder characterized by five cardinal manifestations including typical facial features, skeletal anomalies, dermatoglyphic abnormalities, mild to moderate intellectual disability, and postnatal growth deficiency. Germline mutations in KMT2D underlie the molecular pathogenesis of 52–76% of patients with Kabuki syndrome. This is an instructive case that clearly represents a phenotypic overlap between Kabuki syndrome and CHARGE syndrome. It suggests the importance of considering the possibility of a diagnosis of Kabuki syndrome even if patients present with typical symptoms and meet diagnostic criteria of CHARGE syndrome. The case also emphasizes the impact of non-biased exhaustive genetic analysis by next-generation sequencing in the genetic diagnosis of rare congenital disorders with atypical manifestations.
Collapse
Affiliation(s)
- Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kohei Aoyama
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keiichi Hara
- Department of Pediatrics, National Hospital Organization Kure Medical Center, Kure, Japan
| | - Chihiro Tani
- Department of Diagnostic Radiology, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Akari Utsunomiya-Nakamura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shinichiro Miyagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Miyagawa Kid's Clinic, Hiroshima, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruo Mizuno
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Pediatrics, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
49
|
Digilio MC, Gnazzo M, Lepri F, Dentici ML, Pisaneschi E, Baban A, Passarelli C, Capolino R, Angioni A, Novelli A, Marino B, Dallapiccola B. Congenital heart defects in molecularly proven Kabuki syndrome patients. Am J Med Genet A 2017; 173:2912-2922. [DOI: 10.1002/ajmg.a.38417] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Maria Cristina Digilio
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Maria Gnazzo
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Francesca Lepri
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Elisa Pisaneschi
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Anwar Baban
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Chiara Passarelli
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Rossella Capolino
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Adriano Angioni
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Antonio Novelli
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| | - Bruno Marino
- Department of Pediatrics; Pediatric Cardiology; Sapienza University; Rome Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit; Medical Genetics Laboratory; Pediatric Cardiology; Bambino Gesù Pediatric Hospital; IRCCS; Rome Italy
| |
Collapse
|
50
|
Kurahashi N, Miyake N, Mizuno S, Koshimizu E, Kurahashi H, Yamada K, Natsume J, Aoki Y, Nakamura M, Taniai H, Maki Y, Abe-Hatano C, Matsumoto N, Maruyama K. Characteristics of epilepsy in patients with Kabuki syndrome with KMT2D mutations. Brain Dev 2017; 39:672-677. [PMID: 28404210 DOI: 10.1016/j.braindev.2017.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND The characteristics of epilepsy in patients with Kabuki syndrome with KMT2D mutations (KABUK1) have not yet been well documented. This is the first review to explore this. MATERIALS & METHODS We enrolled 14 patients with KABUK1, whose median age was 13.6years (range=4.1-21.3years). Their medical records from October 1981 to May 2016 were retrospectively analyzed. RESULTS Epilepsy was present in 5 (36%) patients. Four of these patients presented with nonsense mutations and one with missense mutations. None presented with brain abnormalities. Four patients presented with annual or monthly focal seizures, of which three evolved to bilateral convulsive seizures. Median onset age of focal epilepsy was 11.8years (range=9.5-12.8years). One presented with monthly myoclonic seizures from age 11.2, whose mother with no other KABUK1 features, had focal epilepsy. The cumulative incidence of epilepsy related to KABUK1 up until age 13 was 45%. Interictal electroencephalogram revealed focal paroxysmal epileptiform discharges (in frontal, central, and parietal regions) in three patients, diffuse high-voltage spike-and-waves in one patient, and normal sleep record in one patient. Myoclonic seizures were rapidly controlled by levetiracetam. In contrast, focal seizures were not controlled in the early period of antiepileptic therapy. CONCLUSION This long-term follow-up of patients with KABUK1 revealed a higher prevalence of epilepsy than previously reported. The age of epilepsy onset and rate of focal seizures evolving to bilateral convulsive seizures in KABUK1 were also higher than previously reported in patients with clinically diagnosed Kabuki syndrome. Although seizure outcome is reported to be favorable in Kabuki syndrome, focal seizures in patients with KABUK1 were not immediately responsive to medication.
Collapse
Affiliation(s)
- Naoko Kurahashi
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan.
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Aichi Prefectural Colony Central Hospital, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Hirokazu Kurahashi
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan; Department of Pediatrics, Aichi Medical University, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Yusuke Aoki
- Department of Neurology, Aichi Children's Health and Medical Center, Japan
| | - Miho Nakamura
- Department of Functioning Science, Institute for Developmental Research, Aichi Human Service Center, Japan
| | - Hiroko Taniai
- Department of Pediatrics, Aichi Prefectural Colony Central Hospital, Japan; Department of Pediatrics, Nagoya Central Care Center for Disabled Children, Japan
| | - Yuki Maki
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| | - Chihiro Abe-Hatano
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Koichi Maruyama
- Department of Pediatric Neurology, Aichi Prefectural Colony Central Hospital, Japan
| |
Collapse
|