1
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Lee M, Lui ACY, Chan JCK, Doong PHL, Kwong AKY, Mak CCY, Li RHW, Kan ASY, Chung BHY. Revealing parental mosaicism: the hidden answer to the recurrence of apparent de novo variants. Hum Genomics 2023; 17:91. [PMID: 37798624 PMCID: PMC10557286 DOI: 10.1186/s40246-023-00535-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Mosaicism refers to the presence of two or more populations of genetically distinct cells within an individual, all of which originate from a single zygote. Previous literature estimated the percentage of parental mosaicism ranged from 0.33 to 25.9%. In this study, parents whose children had previously been diagnosed with developmental disorders with an apparent de novo variant were recruited. Peripheral blood, buccal and semen samples were collected from these parents if available for the detection of potential parental mosaicism using droplet digital PCR, complemented with the method of blocker displacement amplification. Among the 20 families being analyzed, we report four families with parental mosaicism (4/20, 20%). Two families have maternal gonosomal mosaicism (EYA1 and EBF3) and one family has paternal gonadal mosaicism (CHD7) with a pathogenic/ likely pathogenic variant. One family has a paternal gonosomal mosaicism with a variant of uncertain significance (FLNC) with high clinical relevance. The detectable variant allele frequency in our cohort ranged from 8.7-35.9%, limit of detection 0.08-0.16% based on our in-house EBF3 assay. Detecting parental mosaicism not only informs family with a more accurate recurrence risk, but also facilitates medical teams to create appropriate plans for pregnancy and delivery, offering the most suitable care.
Collapse
Affiliation(s)
- Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Adrian C Y Lui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Joshua C K Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Phoenix H L Doong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anita S Y Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Sai Wan Ho, Hong Kong SAR, China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China.
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Ngau Tau Kok, Hong Kong SAR, China.
| |
Collapse
|
3
|
Raina R, Lomanta F, Singh S, Anand A, Kalra R, Enukonda V, Barat O, Pandher D, Sethi SK. Cystic Diseases of the Kidneys: From Bench to Bedside. Indian J Nephrol 2023; 33:83-92. [PMID: 37234435 PMCID: PMC10208543 DOI: 10.4103/ijn.ijn_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 02/25/2023] Open
Abstract
Exploration into the causes of hereditary renal cystic diseases demonstrates a deep-rooted connection with the proteomic components of the cellular organelle cilia. Cilia are essential to the signaling cascades, and their dysfunction has been tied to a range of renal cystic diseases initiating with studies on the oak ridge polycystic kidney (ORPK) mouse model. Here, we delve into renal cystic pathologies that have been tied with ciliary proteosome and highlight the genetics associated with each. The pathologies are grouped based on the mode of inheritance, where inherited causes that result in cystic kidney disease phenotypes include autosomal dominant and autosomal recessive polycystic kidney disease, nephronophthisis (Bardet-Biedl syndrome and Joubert Syndrome), and autosomal dominant tubulointerstitial kidney disease. Alternatively, phakomatoses-, also known as neurocutaneous syndromes, associated cystic kidney diseases include tuberous sclerosis (TS) and Von Hippel-Lindau (VHL) disease. Additionally, we group the pathologies by the mode of inheritance to discuss variations in recommendations for genetic testing for biological relatives of a diagnosed individual.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Pediatric Nephrology, Akron Children’s Hospital, Akron, Ohio, USA
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Francis Lomanta
- Department of Nephrology, Akron Children’s Hospital, Akron, USA
| | - Siddhartha Singh
- Department of Pediatric Nephrology, Akron Children’s Hospital, Akron, Ohio, USA
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Alisha Anand
- Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Riti Kalra
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vignasiddh Enukonda
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Oren Barat
- College of Medicine, Northeast Ohio Medical University, Rootstown, USA
| | - Davinder Pandher
- Department of Nephrology, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, USA
| | - Sidharth K Sethi
- Kidney and Renal Transplant Institute, Medanta, The Medicity Hospital, Gurugram, Haryana, India
| |
Collapse
|
4
|
Dogan E, Eren N, Ozcan SG, Altunoren O, Gungor O, Dheir H, Tanrisev M, Kocyigit H, Yıldız A, Kocyigit İ, Seyahi N, Tatar E. Relationship between disease awareness and severity of kidney disease in autosomal dominant polycystic kidney disease patients. Ther Apher Dial 2023; 27:117-122. [PMID: 35470962 DOI: 10.1111/1744-9987.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Polycystic kidney disease (PKD) is responsible for 5%-10% of end-stage renal disease. We examined the relationship between renal and extrarenal findings, disease severity, and the level of consciousness of PKD patients. METHODS Patients were asked to answer the questionnaire about PKD. Disease severity was determined according to estimated glomerular filtration rate, and disease awareness was assessed by adapting the Disease Perception Scale to PKD. Awareness of patients was evaluated comparatively with chronic kidney disease stage, age, region, and symptoms. RESULTS One out of five patients does not know that this disease is inherited. Mean awareness scores of the patients decreased significantly with increasing age. Awareness scores were significantly higher in patients with flank pain, hematuria, and urinary tract stones. CONCLUSION Although PKD is the most common hereditary kidney disease, the rate of patients' knowledge on this subject is low. Increased awareness might lead to better treatment in those patients.
Collapse
Affiliation(s)
- Ege Dogan
- Department of Internal Medicine, Bozyaka Education and Research Hospital, Izmir Faculty of Medicine, University of Health Science, Izmir, Turkey
| | - Necmi Eren
- Department of Nephrology, Faculty of Medicine, Kocaeli University, Izmit, Turkey
| | - Seyda Gul Ozcan
- Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Orcun Altunoren
- Department of Nephrology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Ozkan Gungor
- Department of Nephrology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Hamad Dheir
- Department of Nephrology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mehmet Tanrisev
- Department of Nephrology, Tepecik Education and Research Hospital, Izmir Faculty of Medicine, University of Health Science, Izmir, Turkey
| | - Hafsa Kocyigit
- Department of Internal Medicine, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Abdülmecit Yıldız
- Department of Nephrology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - İsmail Kocyigit
- Department of Nephrology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurhan Seyahi
- Department of Nephrology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erhan Tatar
- Department of Nephrology, Bozyaka Education and Research Hospital, Izmir Faculty of Medicine, University of Health Science, Izmir, Turkey
| |
Collapse
|
5
|
Fountain HB, de Monaco BA, Jagid J, Benveniste R, Cordeiro JG. Middle Meningeal Artery Embolization for Chronic Subdural Hematoma Related to Autosomal Dominant Polycystic Kidney Disease. Cureus 2023; 15:e34970. [PMID: 36938171 PMCID: PMC10019495 DOI: 10.7759/cureus.34970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a connective tissue disease with vascular abnormalities involving multiple organs. The prevalence of ADPKD associated with a spontaneous subdural hematoma (SDH) is very low, with less than 10 cases reported in the literature to date. Symptomatic chronic SDH is classically treated with a twist drill, burr holes, or craniotomy. Recently, middle meningeal artery (MMA) embolization has emerged as an ancillary modality. We present the first case in the literature of a bilateral SDH in a young ADPKD patient successfully managed with MMA embolization. Moreover, we discuss the role of different treatment modalities on this subset of patients.
Collapse
Affiliation(s)
- Hayes B Fountain
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Bernardo A de Monaco
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
- Neurosurgery, University of Sao Paulo, Sao Paulo, BRA
| | - Jonathan Jagid
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Ronald Benveniste
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Joacir G Cordeiro
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
6
|
Xu C, Yang C, Ye Q, Xu J, Tong L, Zhang Y, Shen H, Lu Z, Wang J, Lai E, Mao J, Jiang P. Mosaic PKHD1 in Polycystic Kidneys Caused Aberrant Protein Expression in the Mitochondria and Lysosomes. Front Med (Lausanne) 2022; 8:743150. [PMID: 34977057 PMCID: PMC8716551 DOI: 10.3389/fmed.2021.743150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe renal cystic disease caused mainly by the polycystic kidney and hepatic disease 1 (PKHD1). However, the genetic cause, pathologic features, and mechanism of action of ARPKD are not well known. Here, we identified a family with ARPKD. Two siblings harbored biallelic variants in PKHD1 (c.7205G>A, c.7973T>A). We determined that the "de novo" variant, c.7205G>A, arose from the mosaicism of the father and had a 7.4% level. Pathologic characterization, using biopsy analysis, was evidenced with predominant cystic dilation in proximal tubules, slight ectasia of collecting ducts, defective ciliogenesis, and impaired cell-cell junctions in renal tubules and collecting ducts. Exosome proteomics in the urine from patients with ARPKD were markedly different from those of controls, with the most significant alterations occurring in mitochondrial and lysosomal proteins. Expression of the proteins of OXPHOS was downregulated sharply, in parallel with upregulated expression of the proteins involved in glycolysis in patients with ARPKD. Several lysosomal proteins associated with renal lesions were more abundant in the exosome of the patient than in controls. Moreover, the lysosomal enzyme sulfamidase, which is produced by the SGSH gene, was abrupt uniquely in the exosome of the patient. Consistently, swollen mitochondria and abundant lysosomes were visualized in the mutant tubular epithelial cells of patients with mutant PKHD1. Collectively, these findings provide new insights on the pathophysiology of the polycystic kidney due to PKHD1 deficiency. PKHD1 mosaicism should be considered in genetic testing of ARPKD patients.
Collapse
Affiliation(s)
- Chengxian Xu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Chenxi Yang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Ye
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingxiao Tong
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuchen Zhang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhihong Lu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| | - Pingping Jiang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, China
| |
Collapse
|
7
|
Lin YH, Wu PC, Tsai CY, Lin YH, Lo MY, Hsu SJ, Lin PH, Erdenechuluun J, Wu HP, Hsu CJ, Wu CC, Chen PL. Hearing Impairment with Monoallelic GJB2 Variants: A GJB2 Cause or Non-GJB2 Cause? J Mol Diagn 2021; 23:1279-1291. [PMID: 34325055 DOI: 10.1016/j.jmoldx.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
Recessive variants in GJB2 are the most common genetic cause of sensorineural hearing impairment. However, in many patients, only one variant in the GJB2 coding region is identified using conventional sequencing strategy (eg, Sanger sequencing), resulting in nonconfirmative diagnosis. Conceivably, there might be other unidentified pathogenic variants in the noncoding region of GJB2 or other deafness-causing genes in these patients. To address this, a next-generation sequencing-based diagnostic panel targeting the entire GJB2 gene and the coding regions of 158 other known deafness-causing genes was designed and applied to 95 patients with nonsyndromic sensorineural hearing impairment (including 81 Han Taiwanese and 14 Mongolian patients) in whom only a single GJB2 variant had been detected using conventional Sanger sequencing. The panel confirmed the genetic diagnosis in 24 patients (25.3%). Twenty-two of them had causative variants in several deafness-causing genes other than GJB2, including MYO15A, MYO7A, TECTA, POU4F3, KCNQ4, SLC26A4, OTOF, MT-RNR1, MITF, WFS1, and USH2A. The other two patients had causative variants in GJB2, including a Taiwanese patient with a mosaic maternal uniparental disomy c.235delC variant (approximately 69% mosaicism) and a Mongolian patient with compound heterozygous c.35dupG and c.35delG variants, which occurred at the same site. This study demonstrates the utility of next-generation sequencing in clarifying the genetic diagnosis of hearing-impaired patients with nonconfirmative GJB2 genotypes on conventional genetic examinations.
Collapse
Affiliation(s)
- Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ping-Che Wu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Yu Lo
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Jui Hsu
- Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia; The EMJJ Otolaryngology Hospital, Ulaanbaatar, Mongolia
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pei-Lung Chen
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan; Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Hu H, Zhang J, Qiu W, Liang C, Li C, Wei T, Feng Z, Guo Q, Yang K, Liu Z. Comprehensive strategy improves the genetic diagnosis of different polycystic kidney diseases. J Cell Mol Med 2021; 25:6318-6332. [PMID: 34032358 PMCID: PMC8256360 DOI: 10.1111/jcmm.16608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is known to occur in three main forms, namely autosomal dominant PKD (ADPKD), autosomal recessive PKD (ARPKD) and syndromic PKD (SPKD), based on the clinical manifestations and genetic causes, which are diagnosable from the embryo stage to the later stages of life. Selection of the genetic test for the individuals with diagnostic imaging reports of cystic kidneys without a family history of the disease continues to be a challenge in clinical practice. With the objective of maintaining a limit on the time and medical cost of the procedure, a practical strategy for genotyping and targeted validation to resolve cystogene variations was developed in our clinical laboratory, which combined the techniques of whole-exome sequencing (WES), Long-range PCR (LR-PCR), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to work in a stepwise approach. In this context, twenty-six families with renal polycystic disorders were enrolled in the present study. Thirty-two variants involving four ciliary genes (PKD1, PKHD1, TMEM67 and TMEM107) were identified and verified in 23 families (88.5%, 23/26), which expanded the variant spectrum by 16 novel variants. Pathogenic variations in five foetuses of six families diagnosed with PKD were identified using prenatal ultrasound imaging. Constitutional biallelic and digenic variations constituted the pathogenic patterns in these foetuses. The preliminary clinical data highlighted that the WES + LR PCR-based workflow followed in the present study is efficient in detecting divergent variations in PKD. The biallelic and digenic mutations were revealed as the main pathogenic patterns in the foetuses with PKD.
Collapse
Affiliation(s)
- Hua‐Ying Hu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Jing Zhang
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Wei Qiu
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Chao Liang
- Department of Pediatric OrthopedicsShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Cun‐Xi Li
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Tian‐Ying Wei
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Zhan‐Ke Feng
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Qing Guo
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Kai Yang
- Prenatal Diagnosis CenterBeijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijingChina
| | - Zu‐Guo Liu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
| |
Collapse
|
9
|
Hopp K, Cornec-Le Gall E, Senum SR, Te Paske IBAW, Raj S, Lavu S, Baheti S, Edwards ME, Madsen CD, Heyer CM, Ong ACM, Bae KT, Fatica R, Steinman TI, Chapman AB, Gitomer B, Perrone RD, Rahbari-Oskoui FF, Torres VE, Harris PC. Detection and characterization of mosaicism in autosomal dominant polycystic kidney disease. Kidney Int 2019; 97:370-382. [PMID: 31874800 DOI: 10.1016/j.kint.2019.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited, progressive nephropathy accounting for 4-10% of end stage renal disease worldwide. PKD1 and PKD2 are the most common disease loci, but even accounting for other genetic causes, about 7% of families remain unresolved. Typically, these unsolved cases have relatively mild kidney disease and often have a negative family history. Mosaicism, due to de novo mutation in the early embryo, has rarely been identified by conventional genetic analysis of ADPKD families. Here we screened for mosaicism by employing two next generation sequencing screens, specific analysis of PKD1 and PKD2 employing long-range polymerase chain reaction, or targeted capture of cystogenes. We characterized mosaicism in 20 ADPKD families; the pathogenic variant was transmitted to the next generation in five families and sporadic in 15. The mosaic pathogenic variant was newly discovered by next generation sequencing in 13 families, and these methods precisely quantified the level of mosaicism in all. All of the mosaic cases had PKD1 mutations, 14 were deletions or insertions, and 16 occurred in females. Analysis of kidney size and function showed the mosaic cases had milder disease than a control PKD1 population, but only a few had clearly asymmetric disease. Thus, in a typical ADPKD population, readily detectable mosaicism by next generation sequencing accounts for about 1% of cases, and about 10% of genetically unresolved cases with an uncertain family history. Hence, identification of mosaicism is important to fully characterize ADPKD populations and provides informed prognostic information.
Collapse
Affiliation(s)
- Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Nephrology, Centre Hospitalier Universitaire de Brest, Université de Brest, Brest, France; National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Iris B A W Te Paske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonam Raj
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sravanthi Lavu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie E Edwards
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield, Sheffield, UK
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Richard Fatica
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Theodore I Steinman
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Arlene B Chapman
- Division of Nephrology, University of Chicago School of Medicine, Chicago, Illinois, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts University Medical Center, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
10
|
Pandita S, Ramachandran V, Balakrishnan P, Rolfs A, Brandau O, Eichler S, Bhalla AK, Khullar D, Amitabh V, Ramanarayanan S, Kher V, Verma J, Kohli S, Saxena R, Verma IC. Identification of PKD1 and PKD2 gene variants in a cohort of 125 Asian Indian patients of ADPKD. J Hum Genet 2019; 64:409-419. [PMID: 30816285 DOI: 10.1038/s10038-019-0582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 11/09/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) accounts for 2.6% of the patients with chronic kidney disease in India. ADPKD is caused by pathogenic variants in either PKD1 or PKD2 gene. There is no comprehensive genetic data from Indian subcontinent. We aimed to identify the pathogenic variants in the heterogeneous Indian population. PKD1 and PKD2 variants were identified by direct gene sequencing and/or multiplex ligation-dependent probe amplification (MLPA) in 125 unrelated patients of ADPKD. The pathogenic potential of the variants was evaluated computationally and were classified according to ACMG guidelines. Overall 300 variants were observed in PKD1 and PKD2 genes, of which 141 (47%) have been reported previously as benign. The remaining 159 variants were categorized into different classes based on their pathogenicity. Pathogenic variants were observed in 105 (84%) of 125 patients, of which 99 (94.3%) were linked to PKD1 gene and 6 (6.1%) to PKD2 gene. Of 159 variants, 97 were novel variants, of which 43 (44.33%) were pathogenic, and 10 (10.31%) were of uncertain significance. Our data demonstrate the diverse genotypic makeup of single gene disorders in India as compared to the West. These data would be valuable in counseling and further identification of probable donors among the relatives of patients with ADPKD.
Collapse
Affiliation(s)
- Shewata Pandita
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India. .,Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.
| | - Vijaya Ramachandran
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.,South West Thames Regional Genetics Laboratory, St. George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Prahlad Balakrishnan
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | | | | | | | - Anil Kumar Bhalla
- Institute of Renal Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Dinesh Khullar
- Department of Nephrology & Renal Transplant Medicine, Max Super Speciality Hospital, New Delhi, India
| | - Vindu Amitabh
- Department of Nephrology, Safdarjung Hospital, New Delhi, India
| | - Sivaramakrishnan Ramanarayanan
- Department of Nephrology, PGIMER-Dr Ram Manohar Lohia Hospital, Delhi, India.,Division of Nephrology & Renal Transplant Medicine, Fortis Escorts, New Delhi, India
| | - Vijay Kher
- Division of Nephrology & Renal Transplant Medicine, Fortis Escorts, New Delhi, India
| | - Jyotsna Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudha Kohli
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
11
|
Higgins M, Obaidi I, McMorrow T. Primary cilia and their role in cancer. Oncol Lett 2019; 17:3041-3047. [PMID: 30867732 PMCID: PMC6396132 DOI: 10.3892/ol.2019.9942] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 01/25/2023] Open
Abstract
Primary cilia are microtubule-based organelles that are expressed on almost all mammalian cells. It has become apparent that these structures are important signaling hubs that serve crucial roles in Wnt, hedgehog, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Notch signaling pathways. A number of diseases have been found to involve dysfunctional primary cilia; collectively these diseases are called ciliopathies. In recent years, there has been more focus on the association between primary cilia and cancer, including renal, pancreatic and breast cancer. Numerous studies have demonstrated that various types of cancer cells fail to express cilia. Notably, it has also been indicated that a number of renal carcinogens induce a significant loss of cilia in renal epithelial cells. The present review focuses on the existing literature regarding primary cilia and their involvement with cancer signaling pathways, providing a brief overview of the structural features and functions of primary cilia, then discussing the evidence associating primary cilia with cancer, and presenting the available information on the ERK/MAPK, hedgehog and Wnt signaling pathways, and their involvement in primary cilia in association with cancer.
Collapse
Affiliation(s)
- Michael Higgins
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ismael Obaidi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tara McMorrow
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Cornec-Le Gall E, Torres VE, Harris PC. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J Am Soc Nephrol 2017; 29:13-23. [PMID: 29038287 DOI: 10.1681/asn.2017050483] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Data indicate significant phenotypic and genotypic overlap, plus a common pathogenesis, between two groups of inherited disorders, autosomal dominant polycystic kidney diseases (ADPKD), a significant cause of ESRD, and autosomal dominant polycystic liver diseases (ADPLD), which result in significant PLD with minimal PKD. Eight genes have been associated with ADPKD (PKD1 and PKD2), ADPLD (PRKCSH, SEC63, LRP5, ALG8, and SEC61B), or both (GANAB). Although genetics is only infrequently used for diagnosing these diseases and prognosing the associated outcomes, its value is beginning to be appreciated, and the genomics revolution promises more reliable and less expensive molecular diagnostic tools for these diseases. We therefore propose categorization of patients with a phenotypic and genotypic descriptor that will clarify etiology, provide prognostic information, and better describe atypical cases. In genetically defined cases, the designation would include the disease and gene names, with allelic (truncating/nontruncating) information included for PKD1 Recent data have shown that biallelic disease including at least one weak ADPKD allele is a significant cause of symptomatic, very early onset ADPKD. Including a genic (and allelic) descriptor with the disease name will provide outcome clues, guide treatment, and aid prevalence estimates.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and.,Department of Nephrology, University Hospital, European University of Brittany, and National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
14
|
Pinto AM, Ariani F, Bianciardi L, Daga S, Renieri A. Exploiting the potential of next-generation sequencing in genomic medicine. Expert Rev Mol Diagn 2017; 16:1037-47. [PMID: 27574853 DOI: 10.1080/14737159.2016.1224181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The review highlights the impact of next-generation sequencing (NGS) on genomic medicine and the consequences of the progression from a single-gene panel technology to a whole exome sequencing approach. AREAS COVERED We brought together literature-based evidences, personal unpublished data and clinical experience to provide a critical overview of the impact of NGS on our daily clinical practice. Expert commentary: NGS has changed the role of clinical geneticist and has broadened the view accomplishing a transition from a monogenic Mendelian perspective to an oligogenic approach to disorders. Thus, it is a compelling new expertise which combines clinical evaluation with big omics data interpretation and moves forward to phenotype re-evaluation in light of data analysis. We introduced the term, 'exotyping', to highlight this holistic approach. Further, the review discusses the impact that the combination of genetic reprogramming and transcriptome analysis will have on the discovery of evidence-based therapies.
Collapse
Affiliation(s)
- Anna Maria Pinto
- a Medical Genetics , University of Siena , Siena , Italy.,b Genetica Medica , Azienda Ospedaliera Universitaria Senese , Siena , Italy
| | - Francesca Ariani
- a Medical Genetics , University of Siena , Siena , Italy.,b Genetica Medica , Azienda Ospedaliera Universitaria Senese , Siena , Italy
| | | | - Sergio Daga
- a Medical Genetics , University of Siena , Siena , Italy
| | - Alessandra Renieri
- a Medical Genetics , University of Siena , Siena , Italy.,b Genetica Medica , Azienda Ospedaliera Universitaria Senese , Siena , Italy
| |
Collapse
|
15
|
Bernkopf M, Hunt D, Koelling N, Morgan T, Collins AL, Fairhurst J, Robertson SP, Douglas AGL, Goriely A. Quantification of transmission risk in a male patient with a FLNB mosaic mutation causing Larsen syndrome: Implications for genetic counseling in postzygotic mosaicism cases. Hum Mutat 2017; 38:1360-1364. [PMID: 28639312 PMCID: PMC5638069 DOI: 10.1002/humu.23281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 02/04/2023]
Abstract
We report the case of a male patient with Larsen syndrome found to be mosaic for a novel point mutation in FLNB in whom it was possible to provide evidence-based personalized counseling on transmission risk to future offspring. Using dideoxy sequencing, a low-level FLNB c.698A>G, encoding p.(Tyr233Cys) mutation was detected in buccal mucosa and fibroblast DNA. Mutation quantification was performed by deep next-generation sequencing (NGS) of DNA extracted from three somatic tissues (blood, fibroblasts, saliva) and a sperm sample. The mutation was detectable in all tissues tested, at levels ranging from 7% to 10% (mutation present in ∼20% of diploid somatic cells and 7% of haploid sperm), demonstrating the involvement of both somatic and gonadal lineages in this patient. This report illustrates the clinical utility of performing targeted NGS analysis on sperm from males with a mosaic condition in order to provide personalized transmission risk and offer evidence-based counseling on reproductive safety.
Collapse
Affiliation(s)
- Marie Bernkopf
- Clinical Genetics GroupMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - David Hunt
- Wessex Clinical Genetics ServiceUniversity Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Nils Koelling
- Clinical Genetics GroupMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Tim Morgan
- Department of Women's and Children's HealthDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Amanda L. Collins
- Wessex Clinical Genetics ServiceUniversity Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Joanna Fairhurst
- Paediatric RadiologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Stephen P. Robertson
- Department of Women's and Children's HealthDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Andrew G. L. Douglas
- Wessex Clinical Genetics ServiceUniversity Hospital Southampton NHS Foundation TrustSouthamptonUnited Kingdom
- Academic Unit of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Anne Goriely
- Clinical Genetics GroupMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Clinical SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
16
|
A Child with Epidermolytic Ichthyosis from a Parent with Epidermolytic Nevus: Risk Evaluation of Transmission from Mosaic to Germline. J Invest Dermatol 2017; 137:2024-2026. [PMID: 28532675 DOI: 10.1016/j.jid.2017.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 11/22/2022]
|
17
|
Sweeney WE, Avner ED. Emerging Therapies for Childhood Polycystic Kidney Disease. Front Pediatr 2017; 5:77. [PMID: 28473970 PMCID: PMC5395658 DOI: 10.3389/fped.2017.00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic kidney diseases comprise a varied collection of hereditary disorders, where renal cysts comprise a major element of their pleiotropic phenotype. In pediatric patients, the term polycystic kidney disease (PKD) commonly refers to two specific hereditary diseases, autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Remarkable progress has been made in understanding the complex molecular and cellular mechanisms of renal cyst formation in ARPKD and ADPKD. One of the most important discoveries is that both the genes and proteins products of ARPKD and ADPKD interact in a complex network of genetic and functional interactions. These interactions and the shared phenotypic abnormalities of ARPKD and ADPKD, the "cystic phenotypes" suggest that many of the therapies developed and tested for ADPKD may be effective in ARPKD as well. Successful therapeutic interventions for childhood PKD will, therefore, be guided by knowledge of these molecular interactions, as well as a number of clinical parameters, such as the stage of the disease and the rate of disease progression.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | - Ellis D Avner
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
PKD2 mutation in an Iranian autosomal dominant polycystic kidney disease family with misleading linkage analysis data. Kidney Res Clin Pract 2016; 35:96-101. [PMID: 27366664 PMCID: PMC4919558 DOI: 10.1016/j.krcp.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 02/13/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disorder caused by mutation in 2 genes PKD1 and PKD2. Thus far, no mutation is identified in approximately 10% of ADPKD families, which can suggest further locus heterogeneity. Owing to the complexity of direct mutation detection, linkage analysis can initially identify the responsible gene in appropriate affected families. Here, we evaluated an Iranian ADPKD family apparently unlinked to both PKD1 and PKD2 genes. This is one of the pioneer studies in genetic analysis of ADPKD in Iranian population. METHODS Linkage reanalysis was performed by regenotyping of flanking microsatellite markers in 8 individuals of the ADPKD family. Direct mutation analysis was performed by Sanger sequencing. RESULTS Mutation analysis revealed a pathogenic mutation (c.1094+1G>A) in the PKD2 gene in the proband. Analyzing 2 healthy and 4 clinically affected members confirmed the correct segregation of the mutation within the family and also ruled out the disease in 1 suspected individual. Misinterpretation of the linkage data was due to the occurrence of 1 crossing over between the PKD2 intragenic and the nearest downstream marker (D4S2929). Homozygosity of upstream markers caused the recombination indistinguishable. CONCLUSION Although analysis of additive informative polymorphic markers can overcome the misleading haplotype data, it is limited because of the lack of other highly polymorphic microsatellite markers closer to the gene. Direct mutation screening can identify the causative mutation in the apparently unlinked pedigree; moreover, it is the only approach to achieve the confirmed diagnosis in individuals with equivocal imaging results.
Collapse
|
19
|
Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME, Madsen CD, Mauritz SR, Banks CJ, Baheti S, Reddy B, Herrero JI, Bañales JM, Hogan MC, Tasic V, Watnick TJ, Chapman AB, Vigneau C, Lavainne F, Audrézet MP, Ferec C, Le Meur Y, Torres VE, Harris PC, Harris PC. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet 2016; 98:1193-1207. [PMID: 27259053 DOI: 10.1016/j.ajhg.2016.05.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
20
|
Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur J Hum Genet 2016; 24:1584-1590. [PMID: 27165007 DOI: 10.1038/ejhg.2016.48] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/24/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder and is due to disease-causing variants in PKD1 or PKD2. Strong genotype-phenotype correlation exists although diagnostic sequencing is not part of routine clinical practice. This is because PKD1 bears 97.7% sequence similarity with six pseudogenes, requiring laborious and error-prone long-range PCR and Sanger sequencing to overcome. We hypothesised that whole-genome sequencing (WGS) would be able to overcome the problem of this sequence homology, because of 150 bp, paired-end reads and avoidance of capture bias that arises from targeted sequencing. We prospectively recruited a cohort of 28 unique pedigrees with ADPKD phenotype. Standard DNA extraction, library preparation and WGS were performed using Illumina HiSeq X and variants were classified following standard guidelines. Molecular diagnosis was made in 24 patients (86%), with 100% variant confirmation by current gold standard of long-range PCR and Sanger sequencing. We demonstrated unique alignment of sequencing reads over the pseudogene-homologous region. In addition to identifying function-affecting single-nucleotide variants and indels, we identified single- and multi-exon deletions affecting PKD1 and PKD2, which would have been challenging to identify using exome sequencing. We report the first use of WGS to diagnose ADPKD. This method overcomes pseudogene homology, provides uniform coverage, detects all variant types in a single test and is less labour-intensive than current techniques. This technique is translatable to a diagnostic setting, allows clinicians to make better-informed management decisions and has implications for other disease groups that are challenged by regions of confounding sequence homology.
Collapse
|
21
|
Liu B, Chen SC, Yang YM, Yan K, Qian YQ, Zhang JY, Hu YT, Dong MY, Jin F, Huang HF, Xu CM. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease. Sci Rep 2015; 5:17468. [PMID: 26632257 PMCID: PMC4668380 DOI: 10.1038/srep17468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595 + 14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47 ± 3.522 years vs. 59 ± 11.687 years, P = 0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients.
Collapse
Affiliation(s)
- Bei Liu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Song-Chang Chen
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yan-Mei Yang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Kai Yan
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Ye-Qing Qian
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Jun-Yu Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yu-Ting Hu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Min-Yue Dong
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Fan Jin
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - He-Feng Huang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Chen-Ming Xu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
22
|
Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 2015; 35:1393-406. [PMID: 25263802 DOI: 10.1002/humu.22708] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is characterized by the progressive development and expansion of bilateral fluid-filled cysts derived from the renal tubule epithelial cells. Although typically leading to end-stage renal disease in late middle age, ADPKD represents a continuum, from neonates with hugely enlarged cystic kidneys to cases with adequate kidney function into old age. Since the identification of the first causative gene (i.e., PKD1, encoding polycystin 1) 20 years ago, genetic studies have uncovered a large part of the key factors that underlie the phenotype variability. Here, we provide a comprehensive review of these significant advances as well as those related to disease pathogenesis models, including mutation analysis of PKD1 and PKD2 (encoding polycystin 2), current mutation detection rate, allelic heterogeneity, genotype and phenotype relationships (in terms of three different inheritance patterns: classical autosomal dominant inheritance, complex inheritance, and somatic and germline mosaicism), modifier genes, the role of second somatic mutation hit in renal cystogenesis, and findings from mouse models of polycystic kidney disease. Based upon a combined consideration of the current knowledge, we attempted to propose a unifying framework for explaining the phenotype variability in ADPKD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Régional Universitaire, Hôpital de la Cavale Blanche, Brest, France
| | | | | | | | | |
Collapse
|
23
|
Genetic mosaics and the germ line lineage. Genes (Basel) 2015; 6:216-37. [PMID: 25898403 PMCID: PMC4488662 DOI: 10.3390/genes6020216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic mosaics provide information about cellular lineages that is otherwise difficult to obtain, especially in humans. De novo mutations act as cell markers, allowing the tracing of developmental trajectories of all descendants of the cell in which the new mutation arises. De novo mutations may arise at any time during development but are relatively rare. They have usually been observed through medical ascertainment, when the mutation causes unusual clinical signs or symptoms. Mutational events can include aneuploidies, large chromosomal rearrangements, copy number variants, or point mutations. In this review we focus primarily on the analysis of point mutations and their utility in addressing questions of germ line versus somatic lineages. Genetic mosaics demonstrate that the germ line and soma diverge early in development, since there are many examples of combined somatic and germ line mosaicism for de novo mutations. The occurrence of simultaneous mosaicism in both the germ line and soma also shows that the germ line is not strictly clonal but arises from at least two, and possibly multiple, cells in the embryo with different ancestries. Whole genome or exome DNA sequencing technologies promise to expand the range of studies of genetic mosaics, as de novo mutations can now be identified through sequencing alone in the absence of a medical ascertainment. These technologies have been used to study mutation patterns in nuclear families and in monozygotic twins, and in animal model developmental studies, but not yet for extensive cell lineage studies in humans.
Collapse
|