1
|
Gao Y, Shonai D, Trn M, Zhao J, Soderblom EJ, Garcia-Moreno SA, Gersbach CA, Wetsel WC, Dawson G, Velmeshev D, Jiang YH, Sloofman LG, Buxbaum JD, Soderling SH. Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions. Nat Commun 2024; 15:6801. [PMID: 39122707 PMCID: PMC11316102 DOI: 10.1038/s41467-024-51037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
One of the main drivers of autism spectrum disorder is risk alleles within hundreds of genes, which may interact within shared but unknown protein complexes. Here we develop a scalable genome-editing-mediated approach to target 14 high-confidence autism risk genes within the mouse brain for proximity-based endogenous proteomics, achieving the identification of high-specificity spatial proteomes. The resulting native proximity proteomes are enriched for human genes dysregulated in the brain of autistic individuals, and reveal proximity interactions between proteins from high-confidence risk genes with those of lower-confidence that may provide new avenues to prioritize genetic risk. Importantly, the datasets are enriched for shared cellular functions and genetic interactions that may underlie the condition. We test this notion by spatial proteomics and CRISPR-based regulation of expression in two autism models, demonstrating functional interactions that modulate mechanisms of their dysregulation. Together, these results reveal native proteome networks in vivo relevant to autism, providing new inroads for understanding and manipulating the cellular drivers underpinning its etiology.
Collapse
Affiliation(s)
- Yudong Gao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Daichi Shonai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Matthew Trn
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jieqing Zhao
- Department of Biology, Duke University, Durham, NC, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles A Gersbach
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Laura G Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
van der Westhuizen ET. Single nucleotide variations encoding missense mutations in G protein-coupled receptors may contribute to autism. Br J Pharmacol 2024; 181:2158-2181. [PMID: 36787962 DOI: 10.1111/bph.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Autism is a neurodevelopmental condition with a range of symptoms that vary in intensity and severity from person to person. Genetic sequencing has identified thousands of genes containing mutations in autistic individuals, which may contribute to the development of autistic symptoms. Several of these genes encode G protein-coupled receptors (GPCRs), which are cell surface expressed proteins that transduce extracellular messages to the intracellular space. Mutations in GPCRs can impact their function, resulting in aberrant signalling within cells and across neurotransmitter systems in the brain. This review summarises the current knowledge on autism-associated single nucleotide variations encoding missense mutations in GPCRs and the impact of these genetic mutations on GPCR function. For some autism-associated mutations, changes in GPCR expression levels, ligand affinity, potency and efficacy have been observed. However, for many the functional consequences remain unknown. Thus, further work to characterise the functional impacts of the genetically identified mutations is required. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
|
3
|
Warren EB, Briano JA, Ellegood J, DeYoung T, Lerch JP, Morrow EM. 17q12 deletion syndrome mouse model shows defects in craniofacial, brain and kidney development, and glucose homeostasis. Dis Model Mech 2022; 15:dmm049752. [PMID: 36373506 PMCID: PMC10655816 DOI: 10.1242/dmm.049752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development. Phenotypes included brain malformations, particularly disruption of the telencephalon and craniofacial defects. On the CD-1 background, the 17q12Del mice survived to adulthood and showed milder craniofacial and brain abnormalities. We report postnatal brain defects using automated magnetic resonance imaging-based morphometry. In addition, we demonstrate renal and blood glucose abnormalities relevant to RCAD. On both genetic backgrounds, we found sex-specific presentations, with male 17q12Del mice exhibiting higher penetrance and more severe phenotypes. Results from these experiments pinpoint specific developmental defects and pathways that guide clinical studies and a mechanistic understanding of the human 17q12Del syndrome. This mouse mutant represents the first and only experimental model to date for the 17q12 CNV disorder. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily B. Warren
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Juan A. Briano
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Eric M. Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Yoo YE, Yoo T, Kang H, Kim E. Brain region and gene dosage-differential transcriptomic changes in Shank2-mutant mice. Front Mol Neurosci 2022; 15:977305. [PMID: 36311025 PMCID: PMC9612946 DOI: 10.3389/fnmol.2022.977305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 12/20/2022] Open
Abstract
Shank2 is an abundant excitatory postsynaptic scaffolding protein that has been implicated in various neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD), intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. Shank2-mutant mice show ASD-like behavioral deficits and altered synaptic and neuronal functions, but little is known about how different brain regions and gene dosages affect the transcriptomic phenotypes of these mice. Here, we performed RNA-Seq-based transcriptomic analyses of the prefrontal cortex, hippocampus, and striatum in adult Shank2 heterozygous (HT)- and homozygous (HM)-mutant mice lacking exons 6–7. The prefrontal cortical, hippocampal, and striatal regions showed distinct transcriptomic patterns associated with synapse, ribosome, mitochondria, spliceosome, and extracellular matrix (ECM). The three brain regions were also distinct in the expression of ASD-related and ASD-risk genes. These differential patterns were stronger in the prefrontal cortex where the HT transcriptome displayed increased synaptic gene expression and reverse-ASD patterns whereas the HM transcriptome showed decreased synaptic gene expression and ASD-like patterns. These results suggest brain region- and gene dosage-differential transcriptomic changes in Shank2-mutant mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Eunjoon Kim,
| |
Collapse
|
5
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
6
|
McAfee JC, Bell JL, Krupa O, Matoba N, Stein JL, Won H. Focus on your locus with a massively parallel reporter assay. J Neurodev Disord 2022; 14:50. [PMID: 36085003 PMCID: PMC9463819 DOI: 10.1186/s11689-022-09461-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/01/2022] [Indexed: 01/01/2023] Open
Abstract
A growing number of variants associated with risk for neurodevelopmental disorders have been identified by genome-wide association and whole genome sequencing studies. As common risk variants often fall within large haplotype blocks covering long stretches of the noncoding genome, the causal variants within an associated locus are often unknown. Similarly, the effect of rare noncoding risk variants identified by whole genome sequencing on molecular traits is seldom known without functional assays. A massively parallel reporter assay (MPRA) is an assay that can functionally validate thousands of regulatory elements simultaneously using high-throughput sequencing and barcode technology. MPRA has been adapted to various experimental designs that measure gene regulatory effects of genetic variants within cis- and trans-regulatory elements as well as posttranscriptional processes. This review discusses different MPRA designs that have been or could be used in the future to experimentally validate genetic variants associated with neurodevelopmental disorders. Though MPRA has limitations such as it does not model genomic context, this assay can help narrow down the underlying genetic causes of neurodevelopmental disorders by screening thousands of sequences in one experiment. We conclude by describing future directions of this technique such as applications of MPRA for gene-by-environment interactions and pharmacogenetics.
Collapse
Affiliation(s)
- Jessica C McAfee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica L Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Evans DR, Qiao Y, Trost B, Calli K, Martell S, Jones SJM, Scherer SW, Lewis MES. Complex Autism Spectrum Disorder with Epilepsy, Strabismus and Self-Injurious Behaviors in a Patient with a De Novo Heterozygous POLR2A Variant. Genes (Basel) 2022; 13:genes13030470. [PMID: 35328024 PMCID: PMC8955435 DOI: 10.3390/genes13030470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) describes a complex and heterogenous group of neurodevelopmental disorders. Whole genome sequencing continues to shed light on the multifactorial etiology of ASD. Dysregulated transcriptional pathways have been implicated in neurodevelopmental disorders. Emerging evidence suggests that de novo POLR2A variants cause a newly described phenotype called ‘Neurodevelopmental Disorder with Hypotonia and Variable Intellectual and Behavioral Abnormalities’ (NEDHIB). The variable phenotype manifests with a spectrum of features; primarily early onset hypotonia and delay in developmental milestones. In this study, we investigate a patient with complex ASD involving epilepsy and strabismus. Whole genome sequencing of the proband−parent trio uncovered a novel de novo POLR2A variant (c.1367T>C, p. Val456Ala) in the proband. The variant appears deleterious according to in silico tools. We describe the phenotype in our patient, who is now 31 years old, draw connections between the previously reported phenotypes and further delineate this emerging neurodevelopmental phenotype. This study sheds new insights into this neurodevelopmental disorder, and more broadly, the genetic etiology of ASD.
Collapse
Affiliation(s)
- Daniel R. Evans
- Department of Family Practice, University of British Columbia (UBC), Victoria, BC V8R 1J8, Canada;
| | - Ying Qiao
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
| | - Brett Trost
- The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (B.T.); (S.W.S.)
| | - Kristina Calli
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
| | - Sally Martell
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
| | - Steven J. M. Jones
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
- Michael Smith Genome Sciences Centre, Vancouver, BC V6H 3N1, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (B.T.); (S.W.S.)
| | - M. E. Suzanne Lewis
- Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; (Y.Q.); (K.C.); (S.M.); (S.J.M.J.)
- BC Children’s Hospital Research Institute, Vancouver, BC V6H 3N1, Canada
- iTARGET Autism, Vancouver, BC V6H 3N1, Canada
- Correspondence:
| |
Collapse
|
8
|
Gill PS, Clothier JL, Veerapandiyan A, Dweep H, Porter-Gill PA, Schaefer GB. Molecular Dysregulation in Autism Spectrum Disorder. J Pers Med 2021; 11:848. [PMID: 34575625 PMCID: PMC8466026 DOI: 10.3390/jpm11090848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA;
| | - Jeffery L. Clothier
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Aravindhan Veerapandiyan
- Pediatric Neurology, Arkansas Children’s Hospital, 1 Children’s Way, Little Rock, AR 72202, USA;
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA;
| | | | - G. Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Genetics and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Hospital NW, Springdale, AR 72762, USA
| |
Collapse
|
9
|
Okay K, Varış PÜ, Miral S, Ekinci B, Yaraş T, Karakülah G, Oktay Y. Alternative splicing and gene co-expression network-based analysis of dizygotic twins with autism-spectrum disorder and their parents. Genomics 2021; 113:2561-2571. [PMID: 34087420 DOI: 10.1016/j.ygeno.2021.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high heritability, however, understanding the complexity of the underlying genetic basis has proven to be a challenging task. We hypothesized that dissecting the aberrations in alternative splicing (AS) and their effects on expression networks might provide insight. Therefore, we performed AS and co-expression analyses of total RNA isolated from Peripheral Blood Mononuclear Cells (PBMCs) of two pairs of dizygotic (DZ) twins with non-syndromic autism and their parents. We identified 183 differential AS events in 146 genes, seven of them being Simons Foundation Autism Research Initiative (SFARI) Category 1-3 genes, three of which had previously been reported to be alternatively spliced in ASD post-mortem brains. Gene co-expression analysis identified 7 modules with 513 genes, 5 of which were SFARI Category 1 or Category 2 genes. Among differentially AS genes within the modules, ZNF322 and NR4A1 could be potentially interesting targets for further investigations.
Collapse
Affiliation(s)
- Kaan Okay
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir, Turkey
| | - Pelin Ünal Varış
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey; Barış Psychiatric Hospital, Nicosia, Cyprus
| | - Süha Miral
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey
| | - Burcu Ekinci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir, Turkey
| | - Tutku Yaraş
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir, Turkey.
| | - Yavuz Oktay
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey.
| |
Collapse
|
10
|
Jacobs EZ, Brown K, Byler MC, D'haenens E, Dheedene A, Henderson LB, Humberson JB, van Jaarsveld RH, Kanani F, Lebel RR, Millan F, Oegema R, Oostra A, Parker MJ, Rhodes L, Saenz M, Seaver LH, Si Y, Vanlander A, Vergult S, Callewaert B. Expanding the molecular spectrum and the neurological phenotype related to CAMTA1 variants. Clin Genet 2020; 99:259-268. [PMID: 33131045 DOI: 10.1111/cge.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
The CAMTA1-associated phenotype was initially defined in patients with intragenic deletions and duplications who showed nonprogressive congenital ataxia, with or without intellectual disability. Here, we describe 10 individuals with CAMTA1 variants: nine previously unreported (likely) pathogenic variants comprising one missense, four frameshift and four nonsense variants, and one missense variant of unknown significance. Six patients were diagnosed following whole exome sequencing and four individuals with exome-based targeted panel analysis. Most of them present with developmental delay, manifesting in speech and motor delay. Other frequent findings are hypotonia, cognitive impairment, cerebellar dysfunction, oculomotor abnormalities, and behavioral problems. Feeding problems occur more frequently than previously observed. In addition, we present a systematic review of 19 previously published individuals with causal variants, including copy number, truncating, and missense variants. We note a tendency of more severe cognitive impairment and recurrent dysmorphic features in individuals with a copy number variant. Pathogenic variants are predominantly observed in and near the N- and C- terminal functional domains. Clinical heterogeneity is observed, but 3'-terminal variants seem to associate with less pronounced cerebellar dysfunction.
Collapse
Affiliation(s)
- Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kathleen Brown
- University of Colorado, Section of Genetics, Department of Pediatrics, The Children's Hospital Colorado, Aurora, Colorado, USA
| | - Melissa C Byler
- Division of Development, Behavior and Genetics, SUNY Upstate Medical University, New York, New York, USA
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Jennifer B Humberson
- Division of Genetics, Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia, USA
| | | | - Farah Kanani
- Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Robert Roger Lebel
- Division of Development, Behavior and Genetics, SUNY Upstate Medical University, New York, New York, USA
| | | | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ann Oostra
- Department for Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department of Neuropediatrics, Ghent University Hospital, Ghent, Belgium
| | - Michael J Parker
- Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield, UK
| | | | - Margarita Saenz
- University of Colorado, Section of Genetics, Department of Pediatrics, The Children's Hospital Colorado, Aurora, Colorado, USA
| | - Laurie H Seaver
- Medical Genetics and Genomics, Spectrum Health Helen Devos Children's Hospital, Grand Rapids, Michigan, USA.,Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Yue Si
- GeneDx, Inc. Laboratory, Gaithersburg, Maryland, USA
| | - Arnaud Vanlander
- Department for Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department of Neuropediatrics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Ní Ghrálaigh F, Gallagher L, Lopez LM. Autism spectrum disorder genomics: The progress and potential of genomic technologies. Genomics 2020; 112:5136-5142. [DOI: 10.1016/j.ygeno.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
|
12
|
Malhis N, Jacobson M, Jones SJM, Gsponer J. LIST-S2: taxonomy based sorting of deleterious missense mutations across species. Nucleic Acids Res 2020; 48:W154-W161. [PMID: 32352516 PMCID: PMC7319545 DOI: 10.1093/nar/gkaa288] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022] Open
Abstract
The separation of deleterious from benign mutations remains a key challenge in the interpretation of genomic data. Computational methods used to sort mutations based on their potential deleteriousness rely largely on conservation measures derived from sequence alignments. Here, we introduce LIST-S2, a successor to our previously developed approach LIST, which aims to exploit local sequence identity and taxonomy distances in quantifying the conservation of human protein sequences. Unlike its predecessor, LIST-S2 is not limited to human sequences but can assess conservation and make predictions for sequences from any organism. Moreover, we provide a web-tool and downloadable software to compute and visualize the deleteriousness of mutations in user-provided sequences. This web-tool contains an HTML interface and a RESTful API to submit and manage sequences as well as a browsable set of precomputed predictions for a large number of UniProtKB protein sequences of common taxa. LIST-S2 is available at: https://list-s2.msl.ubc.ca/.
Collapse
Affiliation(s)
- Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew Jacobson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Integration of genetic counsellors in genomic testing triage: Outcomes of a genomic consultation service in British Columbia, Canada. Eur J Med Genet 2020; 64:104024. [PMID: 32798762 DOI: 10.1016/j.ejmg.2020.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Clinical diagnostic genome-wide (exome or genome) sequencing (GWS) in British Columbia requires funding approval by a provincial agency on a case-by-case basis. The CAUSES Clinic was a pediatric translational trio-based GWS study at BC Children's and Women's Hospitals. Referrals to the CAUSES Clinic were made through a Genomic Consultation Service (GCS), a multidisciplinary team led by genetic counsellors that provided advice regarding genomic testing for physicians considering GWS for their patients. Here we review the outcomes of the GCS, focusing on patients not recommended for the CAUSES Study. METHODS Demographic, clinical, and testing data were abstracted from patient charts. Logistic regression analysis was used to explore associations between demographic and clinical variables and two outcomes: the type of recommendation and referring physicians' decisions to follow the recommendation. RESULTS Of 972 GCS referrals, 248 patients were not referred to the CAUSES Study. GWS (vs. a targeted test; e.g. multi-gene panel) was more likely to be recommended to physicians of patients with ID than physicians of patients without ID (OR = 2.98; 95% CI = 1.46 to 6.27; n = 149). In total, 40% of physicians who were recommended to pursue clinical genomic testing submitted an application for funding approval; 71% of applications were approved for funding. Among approved tests, 50% resulted in a diagnosis, including 33% of targeted tests and 82% of GWS tests (χ2 (1) = 5.0, p = 0.026). CONCLUSION The GCS provided an effective model in which physicians can interface with genetic specialists, including genetic counsellors, to facilitate appropriate genomic test selection.
Collapse
|
14
|
Park DI. Genomics, transcriptomics, proteomics and big data analysis in the discovery of new diagnostic markers and targets for therapy development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:61-90. [PMID: 32711818 DOI: 10.1016/bs.pmbts.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly complex endophenotypes and underlying molecular mechanisms have prevented effective diagnosis and treatment of autism spectrum disorder. Despite extensive studies to identify relevant biosignatures, no biomarker and therapeutic targets are available in the current clinical practice. While our current knowledge is still largely incomplete, -omics technology and machine learning-based big data analysis have provided novel insights on the etiology of autism spectrum disorders, elucidating systemic impairments that can be translated into biomarker and therapy target candidates. However, more integrated and sophisticated approaches are vital to realize molecular stratification and individualized treatment strategy. Ultimately, systemic approaches based on -omics and big data analysis will significantly contribute to more effective biomarker and therapy development for autism spectrum disorder.
Collapse
Affiliation(s)
- Dong Ik Park
- Danish Research Institute of Translational Neuroscience (DANDRITE)-Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
15
|
Liu H, Barnes J, Pedrosa E, Herman NS, Salas F, Wang P, Zheng D, Lachman HM. Transcriptome analysis of neural progenitor cells derived from Lowe syndrome induced pluripotent stem cells: identification of candidate genes for the neurodevelopmental and eye manifestations. J Neurodev Disord 2020; 12:14. [PMID: 32393163 PMCID: PMC7212686 DOI: 10.1186/s11689-020-09317-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3' end of the gene, and their neurotypical brothers to serve as controls. METHODS In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs). RESULTS In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon development, pallium development, NPC proliferation, and cortex development, which are consistent with a condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g., AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate gene for glaucoma and other eye pathologies. CONCLUSION Overall, the RNA-seq findings present several candidate genes that could help explain the underlying basis for the neurodevelopmental and eye problems seen in boys with LS.
Collapse
Affiliation(s)
- Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jesse Barnes
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nathaniel S. Herman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
16
|
Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat Commun 2020; 11:2073. [PMID: 32350270 PMCID: PMC7190743 DOI: 10.1038/s41467-020-15943-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/03/2020] [Indexed: 01/16/2023] Open
Abstract
Functional variomics provides the foundation for personalized medicine by linking genetic variation to disease expression, outcome and treatment, yet its utility is dependent on appropriate assays to evaluate mutation impact on protein function. To fully assess the effects of 106 missense and nonsense variants of PTEN associated with autism spectrum disorder, somatic cancer and PTEN hamartoma syndrome (PHTS), we take a deep phenotypic profiling approach using 18 assays in 5 model systems spanning diverse cellular environments ranging from molecular function to neuronal morphogenesis and behavior. Variants inducing instability occur across the protein, resulting in partial-to-complete loss-of-function (LoF), which is well correlated across models. However, assays are selectively sensitive to variants located in substrate binding and catalytic domains, which exhibit complete LoF or dominant negativity independent of effects on stability. Our results indicate that full characterization of variant impact requires assays sensitive to instability and a range of protein functions. Mutations in PTEN have been associated with various human disease, including autism spectrum disorder (ASD) and cancer. Here, the authors assess the function of 106 PTEN variants in yeast, invertebrate models and cell culture and report that PTEN variants generally decrease protein stability.
Collapse
|