1
|
Zaib S, Javed H, Rana N, Zaib Z, Iqbal S, Khan I. Therapeutic Chemoresistance in Ovarian Cancer: Emerging Hallmarks, Signaling Mechanisms and Alternative Pathways. Curr Med Chem 2025; 32:923-938. [PMID: 38275065 DOI: 10.2174/0109298673276871231205043417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, 22010, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
2
|
Moffitt LR, Karimnia N, Wilson AL, Stephens AN, Ho GY, Bilandzic M. Challenges in Implementing Comprehensive Precision Medicine Screening for Ovarian Cancer. Curr Oncol 2024; 31:8023-8038. [PMID: 39727715 PMCID: PMC11674382 DOI: 10.3390/curroncol31120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Precision medicine has revolutionised targeted cancer treatments; however, its implementation in ovarian cancer remains challenging. Diverse tumour biology and extensive heterogeneity in ovarian cancer can limit the translatability of genetic profiling and contribute to a lack of biomarkers of treatment response. This review addresses the barriers in precision medicine for ovarian cancer, including obtaining adequate and representative tissue samples for analysis, developing functional and standardised screening methods, and navigating data infrastructure and management. Ethical concerns related to patient consent, data privacy and health equity are also explored. We highlight the socio-economic complexities for precision medicine and propose strategies to overcome these challenges with an emphasis on accessibility and education amongst patients and health professionals and the development of regulatory frameworks to support clinical integration. Interdisciplinary collaboration is essential to drive progress in precision medicine to improve disease management and ovarian cancer patient outcomes.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Nazanin Karimnia
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton 3168, Australia;
- Department of Oncology, Monash Health, Bentleigh 3165, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
3
|
Seifeldin S, Saeed M, Alshaghdali K, Yousif E, Abu Sabaa A, Rabie H, Siddiqui S, Saeed A. Investigating the effects of the ARG258HIS mutation on RAD51C in inherited Fanconi Anemia and cancer disease. J Biomol Struct Dyn 2024:1-11. [PMID: 39648652 DOI: 10.1080/07391102.2024.2431656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/03/2024] [Indexed: 12/10/2024]
Abstract
Fanconi anemia is a rare chromosomal instability disorder associated with developmental abnormalities, bone marrow failure, and a heightened susceptibility to leukemia and other cancers. It is an autosomal recessive genetic disorder, necessitating both parents to carry the faulty gene. Diagnostic methods include blood tests, chromosome breakage assessments, and genetic testing. While there is no cure, treatments encompass blood transfusions, bone marrow transplants, and gene therapy, with patients requiring regular check-ups, supportive care, and cancer screening to enhance their quality of life. In this study, we identify a specific substitution (R258H) targeting the crucial binding site of the alpha-helix region in RAD51C. This substitution induces structural disorder in distinct regions, as indicated by the near absence of electron density for multiple amino acids. Intriguingly, these disordered regions do not follow a continuous sequence from the mutation site and extend across domain boundaries. We utilized computational prediction algorithms and Molecular Dynamics (MD) simulations to model RAD51C and its mutation (R258H) structurally. These simulations highlighted alterations in conformational dynamics, the Free Energy Landscape (FEL), and intrinsic molecular motions induced by the mutation, suggesting structural destabilization that could disrupt its function. This observed destabilization in RAD51C due to mutations offers valuable insights that may serve as diagnostic markers for individuals carrying these mutations, particularly in Fanconi anemia.
Collapse
Affiliation(s)
- Sara Seifeldin
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Elgeli Yousif
- Department of Diagnostic Radiology, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Amal Abu Sabaa
- Department of Immunology, Genetics & Pathology, Uppsala University, Sweden
| | - Hatem Rabie
- Ministry of Health -Hail Regional Laboratory, Hail, Saudi Arabia
| | - Samra Siddiqui
- Department Health Services Management, College of Public Health and Health Informatics, University of Hail, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
4
|
Watrowski R, Schuster E, Van Gorp T, Hofstetter G, Fischer MB, Mahner S, Polterauer S, Zeillinger R, Obermayr E. Association of the Single Nucleotide Polymorphisms rs11556218, rs4778889, rs4072111, and rs1131445 of the Interleukin-16 Gene with Ovarian Cancer. Int J Mol Sci 2024; 25:10272. [PMID: 39408600 PMCID: PMC11477281 DOI: 10.3390/ijms251910272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) of the IL-16 gene have been reported to influence the risk of several cancers, but their role in ovarian cancer (OC) has not been studied. Using the restriction fragment length polymorphism (PCR-RFLP) method, we examined four IL-16 SNPs: rs11556218 (T > G), rs4778889 (T > C), rs4072111 (C > T), and rs1131445 (T > C) in blood samples from 413 women of Central European descent, including 200 OC patients and 213 healthy controls. Among the patients, 62% were postmenopausal, 84.5% were diagnosed in late stages (FIGO IIb-IV), and 73.5% had high-grade serous OC (HGSOC). Minor allele frequencies in controls were 9.2% for rs11556218 (G allele), 13.7% for rs4778889 (C allele), 10.4% for rs4072111 (T allele), and 32.3% for rs1131445 (C allele). We found significant associations of rs11556218 (G vs. T allele: OR 2.76, 95% CI 1.84-4.14, p < 0.0001) with elevated OC risk in the whole cohort (p < 0.001) and in both premenopausal (p < 0.001) and postmenopausal (p = 0.001) subgroups. These associations remained significant across heterozygote (p < 0.001), dominant (p < 0.001), and overdominant (p < 0.001) models. IL-16 rs4778889 was associated with OC risk predominantly in premenopausal women (p < 0.0001 in almost all models). In the whole cohort, the C allele was associated with OC risk (OR 1.54, CI 95% 1.06-2.23, p = 0.024), and the association of rs4778889 was significant in dominant (p = 0.019), overdominant (p = 0.033), and heterozygote (p = 0.027) models. Furthermore, rs4778889 was linked with HGSOC (p = 0.036) and endometriosis-related OC subtypes (p = 0.002). No significant associations were found for rs4072111 or rs1131445 (p = 0.81 or 0.47, respectively). In conclusion, rs11556218 and rs4778889 SNPs are associated with OC risk, especially in premenopausal women.
Collapse
Affiliation(s)
- Rafał Watrowski
- Department of Obstetrics and Gynecology, Helios Hospital Muellheim, Teaching Hospital of the University of Freiburg, Heliosweg 1, 79379 Muellheim, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| | - Toon Van Gorp
- Division of Gynecologic Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
- Leuven Cancer Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Stefan Polterauer
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (E.S.); (S.P.); (R.Z.)
| |
Collapse
|
5
|
Chen M, Lei N, Guo R, Han L, Zhao Q, Zhao Y, Qiu L, Wu F, Jiang S, Tong N, Wang K, Li S, Chang L. Genetic landscape of homologous recombination repair and practical outcomes of PARPi therapy in ovarian cancer management. Ther Adv Med Oncol 2024; 16:17588359241271845. [PMID: 39246808 PMCID: PMC11378221 DOI: 10.1177/17588359241271845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Genetic studies of ovarian cancer (OC) have historically focused on BRCA1/2 mutations, lacking other studies of homologous recombination repair (HRR). Poly (ADP-ribose) polymerase inhibitors (PARPi) exploit synthetic lethality to significantly improve OC treatment outcomes, especially in BRCA1/2 deficiency patients. Objectives Our study aims to construct a mutation map of HRR genes in OC and identify factors influencing the efficacy of PARPi. Design A retrospective observational analysis of HRR gene variation data from 695 OC patients from March 2019 to February 2022 was performed. Methods The HRR gene variation data of 695 OC patients who underwent next-generation sequencing (NGS) in the First Affiliated Hospital of Zhengzhou University were retrospectively collected. Clinical data on the use of PARPi in these patients were also gathered to identify factors that may interfere with the efficacy of PARPi. Results Out of 127 pathogenic variants in the BRCA1/2 genes, 104 (81.9%) were BRCA1 mutations, and 23 (18.1%) were BRCA2 mutations. Among the 59 variants of uncertain significance (VUS), 20 (33.9%) were BRCA1, while 39 (66.1%) were BRCA2 mutations. In addition to BRCA1/2, HRR gene results showed that 9 (69%) of 13 were HRR pathway pathogenic variants; and 16 (1.7%) of 116 VUS were Food and Drug Administration (FDA)-approved mutated HRR genes. Notably, the treatment regimen significantly influenced the effectiveness of PARPi, especially when using first-line maintenance therapy, leading to enhanced progression-free survival (PFS) compared to alternative protocols. Conclusion Focusing on HRR gene mutations and supporting clinical research about PARPi in OC patients is crucial for developing precision treatment strategies and enhancing prognosis.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinghe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningyao Tong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kunmei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
6
|
Li X, Li Z, Ma H, Li X, Zhai H, Li X, Cheng X, Zhao X, Zhao Z, Hao Z. Ovarian cancer: Diagnosis and treatment strategies (Review). Oncol Lett 2024; 28:441. [PMID: 39099583 PMCID: PMC11294909 DOI: 10.3892/ol.2024.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhuocheng Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huiling Ma
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xinwei Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxiao Zhai
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xixi Li
- Department of Ultrasound, Zhengzhou First People's Hospital, Zhengzhou, Henan 450004, P.R. China
| | - Xiaofei Cheng
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaohui Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhilong Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Hao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
7
|
Gogola-Mruk J, Pietrus M, Piechowicz M, Milian-Ciesielska K, Głód P, Wolnicka-Glubisz A, Szpor J, Ptak A. Low androgen/progesterone or high oestrogen/androgen receptors ratio in serous ovarian cancer predicts longer survival. Reprod Biol 2024; 24:100917. [PMID: 38970978 DOI: 10.1016/j.repbio.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-501, Poland
| | - Maryla Piechowicz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Katarzyna Milian-Ciesielska
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-531, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kracow 30-348, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-531, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland.
| |
Collapse
|
8
|
Gao A, Wang X, Wang J, Zhong D, Zhang L. Homologous recombination deficiency status predicts response to immunotherapy-based treatment in non-small cell lung cancer patients. Thorac Cancer 2024; 15:1842-1853. [PMID: 39081050 PMCID: PMC11367659 DOI: 10.1111/1759-7714.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) is a biomarker that predicts response to ovarian cancer treatment with poly (ADP-ribose) polymerase (PARP) inhibitors or breast cancer treatment with first-line platinum-based chemotherapy. However, there are few studies on the prognosis of lung cancer patients treated with immune checkpoint inhibitor (ICI) therapy using HRD as a biomarker. METHODS We studied the relationship between HRD status and the effectiveness of first-line ICI-based therapy in EGFR/ALK wild-type metastatic non-small cell lung cancer patients (NSCLC) patients. RESULTS This study included 22 treatment naïve NSCLC patients. The HRD score ranged from -26.37 to 92.34, with an average of 24.57. Based on analysis of the progression-free survival (PFS) data from the included NSCLC patients, threshold traversal was carried out. HRD (+) was defined as an HRD score of 31 or higher. Kaplan-Meier PFS survival analysis showed prolonged median PFS (mPFS) in NSCLC patients with HRD (+) versus HRD (-) (N/A vs. 7.0 ms, log-rank p = 0.029; HR 0.20, 95% CI: 0.04-0.96, likelihood-ratio p = 0.03). In patients with PD-L1 TPS ≥50% and HRD score ≥31 (co-status high), the mPFS was temporarily not reached during the follow-up period. In patients with PD-L1 TPS <1% and HRD score <31, the mPFS was 3 ms. Cox regression analysis showed that the hazard ratio of the co-status was 0.14 (95% CI: 0.04-0.54), which was a good prognostic factor, and the prognostic effect of co-status was better than that of HRD score alone. CONCLUSION The HRD status can be identified as an independent significance in NSCLC patients treated with first-line ICI-based therapy.
Collapse
Affiliation(s)
- Ai Gao
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Xin Wang
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Jing Wang
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Diansheng Zhong
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| | - Linlin Zhang
- Department of Medical OncologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
9
|
Horackova K, Zemankova P, Nehasil P, Vocka M, Hovhannisyan M, Matejkova K, Janatova M, Cerna M, Kleiblova P, Jelinkova S, Stastna B, Just P, Dolezalova T, Nemcova B, Urbanova M, Koudova M, Hazova J, Machackova E, Foretova L, Stranecky V, Zikan M, Kleibl Z, Soukupova J. A comprehensive analysis of germline predisposition to early-onset ovarian cancer. Sci Rep 2024; 14:16183. [PMID: 39003285 PMCID: PMC11246516 DOI: 10.1038/s41598-024-66324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
The subset of ovarian cancer (OC) diagnosed ≤ 30yo represents a distinct subgroup exhibiting disparities from late-onset OC in many aspects, including indefinite germline cancer predisposition. We performed DNA/RNA-WES with HLA-typing, PRS assessment and survival analysis in 123 early-onset OC-patients compared to histology/stage-matched late-onset and unselected OC-patients, and population-matched controls. Only 6/123(4.9%) early-onset OC-patients carried a germline pathogenic variant (GPV) in high-penetrance OC-predisposition genes. Nevertheless, our comprehensive germline analysis of early-onset OC-patients revealed two divergent trajectories of potential germline susceptibility. Firstly, overrepresentation analysis highlighted a connection to breast cancer (BC) that was supported by the CHEK2 GPV enrichment in early-onset OC(p = 1.2 × 10-4), and the presumably BC-specific PRS313, which successfully stratified early-onset OC-patients from controls(p = 0.03). The second avenue pointed towards the impaired immune response, indicated by LY75-CD302 GPV(p = 8.3 × 10-4) and diminished HLA diversity compared with controls(p = 3 × 10-7). Furthermore, we found a significantly higher overall GPV burden in early-onset OC-patients compared to controls(p = 3.8 × 10-4). The genetic predisposition to early-onset OC appears to be a heterogeneous and complex process that goes beyond the traditional Mendelian monogenic understanding of hereditary cancer predisposition, with a significant role of the immune system. We speculate that rather a cumulative overall GPV burden than specific GPV may potentially increase OC risk, concomitantly with reduced HLA diversity.
Collapse
Grants
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-09-00355 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-09-00355 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- RVO-VFN 00064165 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- NU20-03-00016 Ministerstvo Zdravotnictví Ceské Republiky
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- SVV260631 Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- COOPERATIO Univerzita Karlova v Praze
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- The National Center for Medical Genomics (LM2023067) Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
- LX22NPO05102 Ministerstvo Školství, Mládeže a Tělovýchovy
Collapse
Affiliation(s)
- Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Nehasil
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Milena Hovhannisyan
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marta Cerna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Sandra Jelinkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Just
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tatana Dolezalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Nemcova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marketa Urbanova
- Centre for Medical Genetics and Reproductive Medicine, GENNET, Prague, Czech Republic
| | - Monika Koudova
- Centre for Medical Genetics and Reproductive Medicine, GENNET, Prague, Czech Republic
| | - Jana Hazova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Viktor Stranecky
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michal Zikan
- Department of Gynecology and Obstetrics, Bulovka University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
10
|
Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21:389-400. [PMID: 38548868 DOI: 10.1038/s41571-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Globally, ovarian cancer is the eighth most common cancer in women, accounting for an estimated 3.7% of cases and 4.7% of cancer deaths in 2020. Until the early 2000s, age-standardized incidence was highest in northern Europe and North America, but this trend has changed; incidence is now declining in these regions and increasing in parts of eastern Europe and Asia. Ovarian cancer is a very heterogeneous disease and, even among the most common type, namely epithelial ovarian cancer, five major clinically and genetically distinct histotypes exist. Most high-grade serous ovarian carcinomas are now recognized to originate in the fimbrial ends of the fallopian tube. This knowledge has led to more cancers being coded as fallopian tube in origin, which probably explains some of the apparent declines in ovarian cancer incidence, particularly in high-income countries; however, it also suggests that opportunistic salpingectomy offers an important opportunity for prevention. The five histotypes share several reproductive and hormonal risk factors, although differences also exist. In this Review, we summarize the epidemiology of this complex disease, comparing the different histotypes, and consider the potential for prevention. We also discuss how changes in the prevalence of risk and protective factors might have contributed to the observed changes in incidence and what this might mean for incidence in the future.
Collapse
Affiliation(s)
- Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Public Health, The University of Queensland, Herston, Queensland, Australia.
| | - Susan J Jordan
- School of Public Health, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
11
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
12
|
Watrowski R, Schuster E, Hofstetter G, Fischer MB, Mahner S, Van Gorp T, Polterauer S, Zeillinger R, Obermayr E. Association of Four Interleukin-8 Polymorphisms (-251 A>T, +781 C>T, +1633 C>T, +2767 A>T) with Ovarian Cancer Risk: Focus on Menopausal Status and Endometriosis-Related Subtypes. Biomedicines 2024; 12:321. [PMID: 38397923 PMCID: PMC10886609 DOI: 10.3390/biomedicines12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Interleukin-8 (IL-8) is involved in the regulation of inflammatory processes and carcinogenesis. Single-nucleotide polymorphisms (SNPs) within the IL-8 gene have been shown to alter the risks of lung, gastric, or hepatocellular carcinomas. To date, only one study examined the role of IL-8 SNPs in ovarian cancer (OC), suggesting an association between two IL-8 SNPs and OC risk. In this study, we investigated four common IL-8 SNPs, rs4073 (-251 A>T), rs2227306 (+781 C>T), rs2227543 (+1633 C>T), and rs1126647 (+2767 A>T), using the restriction fragment length polymorphism (PCR-RFLP) technique. Our study included a cohort of 413 women of Central European descent, consisting of 200 OC patients and 213 healthy controls. The most common (73.5%) histological type was high-grade serous OC (HGSOC), whereas 28/200 (14%) patients had endometriosis-related (clear cell or endometrioid) OC subtypes (EROC). In postmenopausal women, three of the four investigated SNPs, rs4073 (-251 A>T), rs2227306 (+781 C>T), and rs2227543 (+1633 C>T), were associated with OC risk. Furthermore, we are the first to report a significant relationship between the T allele or TT genotype of SNP rs1126647 (+2767 A>T) and the EROC subtype (p = 0.02 in the co-dominant model). The TT homozygotes were found more than twice as often in EROC compared to other OC subtypes (39% vs. 19%, p = 0.015). None of the examined SNPs appeared to influence OC risk in premenopausal women, nor were they associated with the aggressive HGSOC subtype or the stage of disease at the initial diagnosis.
Collapse
Affiliation(s)
- Rafał Watrowski
- Department of Obstetrics and Gynecology, Helios Hospital Muellheim, Teaching Hospital of the University of Freiburg, Heliosweg 1, 79379 Muellheim, Germany;
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria;
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria;
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Sven Mahner
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Toon Van Gorp
- Division of Gynaecologic Oncology, University Hospital Leuven, 3000 Leuven, Belgium;
- Leuven Cancer Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Stefan Polterauer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (E.S.); (R.Z.)
| |
Collapse
|
13
|
Abstract
OPINION STATEMENT Ovarian carcinosarcoma (OCS), also known as a malignant mixed Müllerian tumour (MMMT), is a rare and aggressive form of cancer that accounts for less than 5% of ovarian cancers. It is characterized by high morbidity and mortality rates, with a median overall survival (OS) of less than 2 years. Several factors, including advancing age, nulliparity, reduced lactation rates, decreased use of oral contraceptive pills, genetic mutations in BRCA (breast cancer) genes, and the use of assisted reproductive technology, may increase the risk of OCS. Poor prognostic factors include an advanced stage at diagnosis, older age, lymph node metastasis, suboptimal surgical cytoreduction, the presence of heterologous features on histopathology, and increased expression of vascular endothelial growth factor (VEGF), tumour protein p53, and p53 alongside Wilms tumour 1 (WT1). The main treatment approach for OCS is cytoreductive surgery followed by platinum-based chemotherapy, although immunotherapy is showing promise. Homologous recombination deficiency (HRD) testing may enhance outcomes by enabling personalized immunotherapy and targeted therapies for specific patient groups, thereby reducing unnecessary side effects and healthcare costs. However, there is currently a lack of standardised treatment regimens for OCS patients, with most studies consisting of case reports and a shortage of suitable comparator groups. This article aims to provide clinicians with information on the epidemiology, risk factors, prognostic factors, and latest therapeutic advancements in OCS.
Collapse
Affiliation(s)
- Ayden Ismail
- GKT School of Medicine, King's College London, London, SE1 9RT, UK
| | - Sunyoung Choi
- GKT School of Medicine, King's College London, London, SE1 9RT, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham, ME7 5NY, UK.
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9RT, UK.
- Kent Medway Medical School, University of Kent, Kent, Canterbury, CT2 7LX, UK.
- AELIA Organization, 9Th Km Thessaloniki-Thermi, 57001, Thessaloniki, Greece.
| |
Collapse
|
14
|
Fatapour Y, Brody JP. Genetic Risk Scores and Missing Heritability in Ovarian Cancer. Genes (Basel) 2023; 14:genes14030762. [PMID: 36981032 PMCID: PMC10048518 DOI: 10.3390/genes14030762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Ovarian cancers are curable by surgical resection when discovered early. Unfortunately, most ovarian cancers are diagnosed in the later stages. One strategy to identify early ovarian tumors is to screen women who have the highest risk. This opinion article summarizes the accuracy of different methods used to assess the risk of developing ovarian cancer, including family history, BRCA genetic tests, and polygenic risk scores. The accuracy of these is compared to the maximum theoretical accuracy, revealing a substantial gap. We suggest that this gap, or missing heritability, could be caused by epistatic interactions between genes. An alternative approach to computing genetic risk scores, using chromosomal-scale length variation should incorporate epistatic interactions. Future research in this area should focus on this and other alternative methods of characterizing genomes.
Collapse
Affiliation(s)
- Yasaman Fatapour
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
16
|
Lu M, Zhang Y, Yang F, Mai J, Gao Q, Xu X, Kang H, Hou L, Shang Y, Qain Q, Liu J, Jiang M, Zhang H, Bu C, Wang J, Zhang Z, Zhang Z, Zeng J, Li J, Xiao J. TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies. Nucleic Acids Res 2022; 51:D1179-D1187. [PMID: 36243959 PMCID: PMC9825460 DOI: 10.1093/nar/gkac821] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Transcriptome-wide association studies (TWASs), as a practical and prevalent approach for detecting the associations between genetically regulated genes and traits, are now leading to a better understanding of the complex mechanisms of genetic variants in regulating various diseases and traits. Despite the ever-increasing TWAS outputs, there is still a lack of databases curating massive public TWAS information and knowledge. To fill this gap, here we present TWAS Atlas (https://ngdc.cncb.ac.cn/twas/), an integrated knowledgebase of TWAS findings manually curated from extensive literature. In the current implementation, TWAS Atlas collects 401,266 high-quality human gene-trait associations from 200 publications, covering 22,247 genes and 257 traits across 135 tissue types. In particular, an interactive knowledge graph of the collected gene-trait associations is constructed together with single nucleotide polymorphism (SNP)-gene associations to build up comprehensive regulatory networks at multi-omics levels. In addition, TWAS Atlas, as a user-friendly web interface, efficiently enables users to browse, search and download all association information, relevant research metadata and annotation information of interest. Taken together, TWAS Atlas is of great value for promoting the utility and availability of TWAS results in explaining the complex genetic basis as well as providing new insights for human health and disease research.
Collapse
Affiliation(s)
| | | | | | | | - Qianwen Gao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Xu
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China
| | - Hongyu Kang
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China
| | - Li Hou
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China
| | - Yunfei Shang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiheng Qain
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China
| | - Meiye Jiang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congfan Bu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jinyue Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhewen Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zaichao Zhang
- Department of Biology, The University of Western Ontario, London, OntarioN6A 5B7, Canada
| | - Jingyao Zeng
- Correspondence may also be addressed to Jingyao Zeng.
| | - Jiao Li
- Correspondence may also be addressed to Jiao Li.
| | - Jingfa Xiao
- To whom correspondence should be addressed. Tel: +86 10 8409 7443; Fax: +86 10 8409 7720;
| |
Collapse
|
17
|
Revythis A, Limbu A, Mikropoulos C, Ghose A, Sanchez E, Sheriff M, Boussios S. Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8577. [PMID: 35886427 PMCID: PMC9317199 DOI: 10.3390/ijerph19148577] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is one of the most common gynecologic cancers and has the highest mortality rate of any other cancer of the female reproductive system. Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian malignancies. The standard therapeutic strategy includes cytoreductive surgery accompanied by pre- or postoperative platinum-based chemotherapy. Nevertheless, up to 80% of the patients relapse within the following 12-18 months from the completion of the treatment and then receive first-line chemotherapy depending on platinum sensitivity. Mutations in BRCA1/2 genes are the most significant molecular aberrations in EOC and serve as prognostic and predictive biomarkers. Poly ADP-ribose polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through synthetic lethality. They have also been shown to trap PARP1 and PARP2 on DNA, leading to PARP-DNA complexes. Olaparib, rucaparib, and niraparib have all obtained Food and Drug Administration (FDA) and/or the European Medicine Agency (EMA) approval for the treatment of EOC in different settings. Immune checkpoint inhibitors (ICI) have improved the survival of several cancers and are under evaluation in EOC. However, despite the success of immunotherapy in other malignancies, the use of antibodies inhibiting the immune checkpoint programmed cell death (PD-1) or its ligand (PD-L1) obtained modest results in EOC so far, with median response rates of up to 10%. As such, ICI have not yet been approved for the treatment of EOC. We herein provided a comprehensive insight into the most recent progress in synthetic lethality PARP inhibitors, along with the mechanisms of resistance. We also summarised data regarding the role of immune checkpoint inhibitors, the use of vaccination therapy, and adoptive immunotherapy in treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Anu Limbu
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Christos Mikropoulos
- St. Lukes Cancer Centre, Royal Surrey County Hospital, Egerton Rd., Guildford GU2 7XX, Surrey, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London KT1 2EE, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London KT1 2EE, UK
- Centre for Education, Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK; (A.R.); (A.L.); (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
18
|
Shah S, Cheung A, Kutka M, Sheriff M, Boussios S. Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138113. [PMID: 35805770 PMCID: PMC9265838 DOI: 10.3390/ijerph19138113] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/19/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the cancers most influenced by hereditary factors. A fourth to a fifth of unselected EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA mismatch repair (MMR) pathways. PVs in BRCA1 and BRCA2 genes are responsible for a substantial fraction of hereditary EOC. In addition, PV genes involved in the MMR pathway account for 10–15% of hereditary EOC. The identification of women with homologous recombination (HR)-deficient EOCs has significant clinical implications, concerning chemotherapy regimen planning and development as well as the use of targeted therapies such as poly(ADP-ribose) polymerase (PARP) inhibitors. With several genes involved, the complexity of genetic testing increases. In this context, next-generation sequencing (NGS) allows testing for multiple genes simultaneously with a rapid turnaround time. In this review, we discuss the EOC risk assessment in the era of NGS.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK;
| | - Alison Cheung
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK; (A.C.); (M.K.)
| | - Mikolaj Kutka
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK; (A.C.); (M.K.)
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK;
| | - Stergios Boussios
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, London SE1 9RT, UK;
- King’s College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
19
|
An Integrative Analysis Revealing ZFHX4-AS1 as a Novel Prognostic Biomarker Correlated with Immune Infiltrates in Ovarian Cancer. J Immunol Res 2022; 2022:9912732. [PMID: 35795530 PMCID: PMC9251081 DOI: 10.1155/2022/9912732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OC) is the main cause of deaths worldwide in female reproductive system malignancies. Growing studies have indicated that eRNAs could regulate cellular activities in various tumors. Yet the potential roles of eRNAs in OC progression have not been elucidated. Thus, comprehensive assays were needed to screen the critical eRNAs and to explore their possible function in OC. We used Kaplan–Meier methods to identify survival-associated eRNAs in OC based on TCGA datasets. The levels of ZFHX4-AS1 were examined using TCGA datasets. Further exploration was carried out based on the following assays: clinical and survival assays, GO terms, and KEGG assays. TIMER was applied to delve into the relationships between ZFHX4-AS1 and tumor immune infiltration. In this research, we observed 71 survival-related eRNAs in OC patients. ZFHX4-AS1 was highly expressed in OC specimens and predicted a poor prognosis of OC patients. In addition, high ZFHX4-AS1 expression was positively related to the advanced stages of OC specimens. Multivariate assays revealed that ZFHX4-AS1 was an independent prognostic factor for overall survival of OC patients. KEGG analysis indicated that ZFHX4-AS1 may play a regulatory effect on TGF-beta signaling, PI3K-Akt signaling, and proteoglycans in cancer. The pan-cancer validation indicated that ZFHX4-AS1 was related to survival in eight tumors, namely, UCEC, STAD, SARC, OV, ACC, KICH, KIRC, and BLCA. The expression of ZFHX4-AS1 was correlated with the levels of B cells, T cell CD8+, neutrophil, macrophage, and myeloid dendritic cells. Simultaneously, ZFHX4-AS1 may be a prognostic biomarker and a distinctly immunotherapy-related eRNA in OC.
Collapse
|
20
|
Rabe KG, Stevens MA, Hernández AT, Chandra S, Hubbard JM, Kemppainen JL, Majumder S, Petersen GM. Pancreatic cancer risk to siblings of probands in bilineal cancer settings. Genet Med 2022; 24:1008-1016. [PMID: 35227607 PMCID: PMC9326771 DOI: 10.1016/j.gim.2022.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Pancreatic cancer (PC) risk is increased in families, but PC risk and risk perception have been understudied when both parents have cancer. METHODS An unbiased method defining cancer triads (proband with PC and both parents with cancer) in a prospective registry estimated risk of PC to probands' siblings in triad group 1 (no parent with PC), group 2 (1 parent with PC), and group 3 (both parents with PC). We estimated standardized incidence ratios (SIRs) using a Surveillance, Epidemiology, and End Results (SEER) reference. We also estimated the risk when triad probands carried germline pathogenic/likely pathogenic variants in any of the 6 PC-associated genes (ATM, BRCA1, BRCA2, CDKN2A, MLH1, and TP53). PC risk perception/concern was surveyed in siblings and controls. RESULTS Risk of PC was higher (SIR = 3.5; 95% CI = 2.2-5.2) in 933 at-risk siblings from 297 triads. Risk increased by triad group: 2.8 (95% CI = 1.5-4.5); 4.5 (95% CI = 1.6-9.7); and 21.2 (95% CI = 4.3-62.0). SIR in variant-negative triads was 3.0 (95% CI = 1.6-5.0), whereas SIR in variant-positive triads was 10.0 (95% CI = 3.2-23.4). Siblings' perceived risk/concern of developing PC increased by triad group. CONCLUSION Sibling risks were 2.8- to 21.2-fold higher than that of the general population. Positive variant status increased the risk in triads. Increasing number of PC cases in a triad was associated with increased concern and perceived PC risk.
Collapse
Affiliation(s)
- Kari G Rabe
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Maria A Stevens
- Division of Health Care Policy and Research, Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Amanda Toledo Hernández
- School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Shruti Chandra
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gloria M Petersen
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN.
| |
Collapse
|
21
|
Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M, Falzone L. Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol 2022; 60:58. [PMID: 35383859 PMCID: PMC8997337 DOI: 10.3892/ijo.2022.5349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Breast and ovarian cancer represent two of the most common tumor types in females worldwide. Over the years, several non‑modifiable and modifiable risk factors have been associated with the onset and progression of these tumors, including age, reproductive factors, ethnicity, socioeconomic status and lifestyle factors, as well as family history and genetic factors. Of note, BRCA1 and BRCA2 are two tumor suppressor genes with a key role in DNA repair processes, whose mutations may induce genomic instability and increase the risk of cancer development. Specifically, females with a family history of breast or ovarian cancer harboring BRCA1/2 germline mutations have a 60‑70% increased risk of developing breast cancer and a 15‑40% increased risk for ovarian cancer. Different databases have collected the most frequent germline mutations affecting BRCA1/2. Through the analysis of such databases, it is possible to identify frequent hotspot mutations that may be analyzed with next‑generation sequencing (NGS) and novel innovative strategies. In this context, NGS remains the gold standard method for the assessment of BRCA1/2 mutations, while novel techniques, including droplet digital PCR (ddPCR), may improve the sensitivity to identify such mutations in the hereditary forms of breast and ovarian cancer. On these bases, the present study aimed to provide an update of the current knowledge on the frequency of BRCA1/2 mutations and cancer susceptibility, focusing on the diagnostic potential of the most recent methods, such as ddPCR.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aurora Scalisi
- Italian League Against Cancer, Section of Catania, I‑95122 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical‑Surgical Specialties, Policlinico‑Vittorio Emanuele Hospital, University of Catania, I‑95123 Catania, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione 'G. Pascale', I‑80131 Naples, Italy
| |
Collapse
|
22
|
Chirom K, Malik MZ, Mangangcha IR, Somvanshi P, Singh RKB. Network medicine in ovarian cancer: topological properties to drug discovery. Brief Bioinform 2022; 23:6555408. [PMID: 35352113 DOI: 10.1093/bib/bbac085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/21/2022] Open
Abstract
Network medicine provides network theoretical tools, methods and properties to study underlying laws governing human interactome to identify disease states and disease complexity leading to drug discovery. Within this framework, we investigated the topological properties of ovarian cancer network (OCN) and the roles of hubs to understand OCN organization to address disease states and complexity. The OCN constructed from the experimentally verified genes exhibits fractal nature in the topological properties with deeply rooted functional communities indicating self-organizing behavior. The network properties at all levels of organization obey one parameter scaling law which lacks centrality lethality rule. We showed that $\langle k\rangle $ can be taken as a scaling parameter, where, power law exponent can be estimated from the ratio of network diameters. The betweenness centrality $C_B$ shows two distinct behaviors one shown by high degree hubs and the other by segregated low degree nodes. The $C_B$ power law exponent is found to connect the exponents of distributions of high and low degree nodes. OCN showed the absence of rich-club formation which leads to the missing of a number of attractors in the network causing formation of weakly tied diverse functional modules to keep optimal network efficiency. In OCN, provincial and connector hubs, which includes identified key regulators, take major responsibility to keep the OCN integrity and organization. Further, most of the key regulators are found to be over expressed and positively correlated with immune infiltrates. Finally, few potential drugs are identified related to the key regulators.
Collapse
Affiliation(s)
- Keilash Chirom
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India.,Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Md Zubbair Malik
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Pallavi Somvanshi
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - R K Brojen Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
23
|
Li Q, Deng Y, Wei W, Yang F, Lin A, Yao D, Zhu X, Li J. Development and External Validation of a Novel Model for Predicting Postsurgical Recurrence and Overall Survival After Cytoreductive R0 Resection of Epithelial Ovarian Cancer. Front Oncol 2022; 12:859409. [PMID: 35402239 PMCID: PMC8984120 DOI: 10.3389/fonc.2022.859409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTreatment of epithelial ovarian cancer is evolving towards personalization and precision, which require patient-specific estimates of overall survival (OS) and progression-free survival (PFS).Patients and MethodsMedical records of 1173 patients who underwent debulking surgery in our center were comprehensively reviewed and randomly allocated into a derivation cohort of 879 patients and an internal validation cohort of 294 patients. Five hundred and seventy-seven patients from the other three cancer centers served as the external validation cohort. A novel nomogram model for PFS and OS was constructed based on independent predictors identified by multivariable Cox regression analysis. The predictive accuracy and discriminative ability of the model were measured using Harrell’s concordance index (C-index) and calibration curve.ResultsThe C-index values were 0.82 (95% CI: 0.76–0.88) and 0.84 (95% CI: 0.78–0.90) for the PFS and OS models, respectively, substantially higher than those obtained with the FIGO staging system and most nomograms reported for use in epithelial ovarian cancer. The nomogram score could clearly classify the patients into subgroups with different risks of recurrence or postoperative mortality. The online versions of our nomograms are available at https://eocnomogram.shinyapps.io/eocpfs/ and https://eocnomogram.shinyapps.io/eocos/.ConclusionA externally validated nomogram predicting OS and PFS in patients after R0 reduction surgery was established using a propensity score matching model. This nomogram may be useful in estimating individual recurrence risk and guiding personalized surveillance programs for patients after surgery, and it could potentially aid clinical decision-making or stratification for clinical trials.
Collapse
Affiliation(s)
- Qiaqia Li
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yinghong Deng
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei Wei
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Fan Yang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - An Lin
- Department of Gynecology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Desheng Yao
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
- *Correspondence: Jundong Li, ; Xiaofeng Zhu,
| | - Jundong Li
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
- *Correspondence: Jundong Li, ; Xiaofeng Zhu,
| |
Collapse
|
24
|
Ni J, Guo W, Zhao Q, Cheng X, Xu X, Zhou R, Gu H, Chen C, Chen X. Homologous Recombination Deficiency Associated With Response to Poly (ADP-ribose) Polymerase Inhibitors in Ovarian Cancer Patients: The First Real-World Evidence From China. Front Oncol 2022; 11:746571. [PMID: 35070965 PMCID: PMC8779205 DOI: 10.3389/fonc.2021.746571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination deficiency (HRD) is an approved predictive biomarker for Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer. However, the proportion of positive HRD in the real world and the relationship between HRD status and PARPi in Chinese ovarian cancer patients remain unknown. A total of 67 ovarian cancer patients who underwent PARPi, either olaparib or niraparib, were enrolled and passed inclusion criteria from August 2018 to January 2021 in the Affiliated Cancer Hospital of Nanjing Medical University. HRD status correlation with Progression-free survival (PFS) was analyzed and summarized with a log-rank test. Univariate and multiple cox-regression analyses were conducted to investigate all correlated clinical factors. Approximately 68.7% (46/67) patients were HRD positive and the rest 31.3% (21/67) were HRD negative. The PFS among HRD-positive patients was significantly longer than those HRD-negative patients (medium PFS 9.4 m vs 4.1 m, hazard ratio [HR]: 0.52, 95% CI: [0.38–0.71], p <0.001). Univariate cox-regression found that HRD status, Eastern Cooperative Oncology Group (ECOG) status, BRCA status, previous treatment lines, secondary cytoreductive surgery and R0 resection were significantly associated with PFS after PARPi treatment. After multiple regression correction, HRD status and ECOG were the independent factors to predict PFS (HR: 0.67, 95% CI: [0.49–0.92], p = 0.01; HR: 2.20, 95% CI: [1.14–4.23], p = 0.02, respectively). In platinum sensitivity evaluable subgroup (N = 49), HRD status and platinum sensitivity status remain significant to predict PFS after multiple regression correction (HR: 0.71, 95% CI: [0.51–0.98], p = 0.04; HR: 0.49, 95% CI: [0.24–1.0], p = 0.05, respectively). This is the first real-world study of HRD status in ovarian cancer patients in China, and we demonstrate that HRD is an independent predictive biomarker for PARP inhibitors treatment in Chinese ovarian cancer patients.
Collapse
Affiliation(s)
- Jing Ni
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xianzhong Cheng
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xia Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Zhou
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hongyuan Gu
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chen Chen
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoxiang Chen
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
25
|
Czekalski MA, Huziak RC, Durst AL, Taylor S, Mai PL. Mainstreaming Genetic Testing for Epithelial Ovarian Cancer by Oncology Providers: A Survey of Current Practice. JCO Precis Oncol 2022; 6:e2100409. [PMID: 35025618 DOI: 10.1200/po.21.00409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE With limitations in early detection and poor treatment response, ovarian cancer is associated with significant morbidity and mortality. Up to 25% of epithelial ovarian cancer (EOC) is related to a hereditary predisposition. Current National Comprehensive Cancer Network guidelines recommend that all individuals diagnosed with EOC be offered germline genetic testing. Although this would ideally be performed by genetics professionals, a shortage of genetic counselors can affect timely access to these services. This study sought to investigate the current genetic testing practices of oncology providers to determine the feasibility of oncologist-led genetic testing for patients with EOC. METHODS A survey was distributed to members of the Society of Gynecologic Oncologists with questions regarding timing, frequency, and type of cancer genetic testing, referrals to genetics professionals, confidence with aspects of genetic testing, and any barriers to these processes. RESULTS We received 170 evaluable responses. Eighty-five percent of providers always ordered genetic testing for patients with EOC. Most providers ordered germline multigene panel testing (95.8%), generally at diagnosis (64.5%). Provider confidence with the genetic testing process was generally high and significantly differed by providers' testing practices, namely, respondents who reported always ordering genetic testing tended to be more confident in ordering testing (P = .008), interpreting results (P = .005), and counseling a patient (P = .002). Patient disinterest and concerns for insurance coverage were commonly cited as barriers to testing and referrals. CONCLUSION The findings from this study suggest that oncologist-led genetic testing for patients with EOC, with referrals to genetics professionals when appropriate, has the potential to be a viable alternative service delivery model to increase access to genetic testing for patients diagnosed with EOC.
Collapse
Affiliation(s)
- Megan A Czekalski
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA. Megan A. Czekalski is currently at Department of Pediatric Genetics, University of Maryland Baltimore, Baltimore, MD
| | | | - Andrea L Durst
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA. Megan A. Czekalski is currently at Department of Pediatric Genetics, University of Maryland Baltimore, Baltimore, MD
| | - Sarah Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Phuong L Mai
- Center for Clinical Genetics and Genomics, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
26
|
Pellegrini E, Multari G, Gallo FR, Vecchiotti D, Zazzeroni F, Condello M, Meschini S. A natural product, voacamine, sensitizes paclitaxel-resistant human ovarian cancer cells. Toxicol Appl Pharmacol 2022; 434:115816. [PMID: 34856211 DOI: 10.1016/j.taap.2021.115816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
Most women with ovarian cancer are treated with chemotherapy before or after surgery. Unfortunately, chemotherapy treatment can cause negative side effects and the onset of multidrug resistance (MDR). The aim of this study is to evaluate the chemosensitizing effect of a natural compound, voacamine (VOA), in ovarian (A2780 DX) and colon (LoVo DX) cancer drug-resistant cell lines which overexpress P-glycoprotein (P-gp), in combination with paclitaxel (PTX), or doxorubicin (DOX) or 5-fluorouracil (5-FU). VOA, a bisindole alkaloid extracted from Peschiera fuchsiaefolia, has already been shown to be effective in enhancing the effect of doxorubicin, because it interferes with the P-gp function. Ovarian cancer cytotoxicity test shows that single treatments with VOA, DOX and PTX do not modify cell viability, while pretreatment with VOA, and then PTX or DOX for 72 h, induces a decrease. In colon cancer, since 5-FU is not a-substrate for P-gp, VOA has no sensitizing effect while in VOA + DOX there is a decrease in viability. Annexin V/PI test, cell cycle analysis, activation of cleaved PARP1 confirm that VOA plus PTX induce apoptotic cell death. Confocal microscopy observations show the different localization of NF-kB after treatment with VOA + PTX, confirming the inhibition of nuclear translocation induced by VOA pretreatment. Our data show the specific effect of VOA which only works on drugs known to be substrates of P-gp.
Collapse
Affiliation(s)
- Evelin Pellegrini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Giuseppina Multari
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Francesca Romana Gallo
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy..
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy..
| |
Collapse
|
27
|
Chandrasekaran A, Elias KM. Synthetic Lethality in Ovarian Cancer. Mol Cancer Ther 2021; 20:2117-2128. [PMID: 34518297 PMCID: PMC8571039 DOI: 10.1158/1535-7163.mct-21-0500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023]
Abstract
Ovarian cancers include several distinct malignancies which differ with respect to clinicopathologic features and prognosis. High-grade serous cancer is the most common histologic subtype and accounts for most ovarian cancer-related deaths. High-grade serous ovarian cancer (HGSOC) is treated with surgery and platinum-based chemotherapy, but most patients relapse and succumb to chemoresistant disease. The genetic concept of synthetic lethality, in which the synergy of mutations in multiple genes results in cell death, provides a framework to design novel therapeutic approaches to overcome chemoresistance in ovarian cancer. Recent progress in understanding the genomic architecture and hereditary drivers of ovarian cancer has shown potential for synthetic lethality strategies designed around homologous DNA repair. Clinical trials have validated high response rates for PARP inhibitors in patients with BRCA1 or BRCA2 mutations. Here we discuss the biological rationale behind targeting BRCA-PARP synthetic lethality based on genetic context in ovarian cancer and how this approach is being assessed in the clinic. Applying the concept of synthetic lethality to target non-BRCA-mutant cancers is an ongoing challenge, and we discuss novel approaches to target ovarian cancer using synthetic lethality in combination with and beyond PARP inhibitors. This review will also describe obstacles for synthetic lethality in ovarian cancer and new opportunities to develop potent targeted drugs for patients with ovarian cancer.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kevin M. Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Author: Kevin M. Elias, Division of Gynecologic Oncology, Brigham and Women's Hospital, 75 Francis St. Boston, MA 02115. Phone: 617–732–8840; E-mail:
| |
Collapse
|
28
|
Human papillomavirus and ovarian cancer (review of literature and meta-analysis). INFECTION GENETICS AND EVOLUTION 2021; 95:105086. [PMID: 34536579 DOI: 10.1016/j.meegid.2021.105086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
Many factors are involved in carcinogenesis of the ovary, such human genetic and physiological characteristics as lifestyle, existing diseases of the reproductive system, and, as suggested, the human papillomavirus (HPV). It is well known that the human papillomavirus virus of high carcinogenic risk (HCR) plays a crucial role in the onset and development of cervical cancer, as well as cases of HPV positive breast cancer and endometrial cancer. The data on the presence of HPV in ovarian cancer are ambiguous: the researchers claim that there is no complete effect of the virus on the development of this type of cancer, and the detection of HPV in 60-80% of tumors. In this regard, there is a need to systematize the currently available research results on this controversial issue and conduct a meta-analysis of the association of HPV infection with the risk of ovarian cancer.
Collapse
|
29
|
Yang Y, Chen J, Qin H, Jin Y, Zhang L, Yang S, Wang H, Fu L, Hong E, Yu Y, Lu J, Chang Y, Ni X, Xu M, Shi T, Guo Y. A Novel Germline Compound Heterozygous Mutation of BRCA2 Gene Associated With Familial Peripheral Neuroblastic Tumors in Two Siblings. Front Genet 2021; 12:652718. [PMID: 34367235 PMCID: PMC8343186 DOI: 10.3389/fgene.2021.652718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the genetic variants that are responsible for peripheral neuroblastic tumors (PNTs) oncogenesis in one family case. Materials and Methods One family was recruited, including the healthy parents, sister affected by neuroblastoma (NB), and brother who suffered from ganglioneuroma (GN). Whole-genome sequencing (WGS) of germline DNA from all the family members and RNA-seq of tumor RNA from the siblings were performed. Mutants were validated by Sanger sequencing and co-IP was performed to assess the impact of the mutant on chemosensitivity in the SH-SY5Y cell line. Results A novel compound heterozygous mutation of BRCA2 was locked as the cause of carcinogenesis. One allele was BRCA2-S871X (stop-gain) from the siblings’ mother, the other was BRCA2-N372H (missense) from their father. This novel compound heterozygous mutations of the BRCA2 gene associated with PNTs by disordering DNA damage and response (DDR) signal pathway. Moreover, chemosensitivity was reduced in the NB cell line due to the BRCA2-N372H mutant. Conclusion In summary, these results revealed a novel germline compound heterozygous mutation of the BRCA2 gene associated with familial PNTs.
Collapse
Affiliation(s)
- Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| | - Jiwei Chen
- Center for Bioinformatics and Computational Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Hong Qin
- Department of Surgical Oncology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Shen Yang
- Department of Surgical Oncology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huanmin Wang
- Department of Surgical Oncology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Libing Fu
- Department of Pathology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| | - Yan Chang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatric, National Center for Children's Health, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Kladnik J, Coverdale JPC, Kljun J, Burmeister H, Lippman P, Ellis FG, Jones AM, Ott I, Romero-Canelón I, Turel I. Organoruthenium Complexes with Benzo-Fused Pyrithiones Overcome Platinum Resistance in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:2493. [PMID: 34065335 PMCID: PMC8160969 DOI: 10.3390/cancers13102493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Drug resistance to existing anticancer agents is a growing clinical concern, with many first line treatments showing poor efficacy in treatment plans of some cancers. Resistance to platinum agents, such as cisplatin, is particularly prevalent in the treatment of ovarian cancer, one of the most common cancers amongst women in the developing world. Therefore, there is an urgent need to develop next generation of anticancer agents which can overcome resistance to existing therapies. We report a new series of organoruthenium(II) complexes bearing structurally modified pyrithione ligands with extended aromatic scaffold, which overcome platinum and adriamycin resistance in human ovarian cancer cells. The mechanism of action of such complexes appears to be unique from that of cisplatin, involving G1 cell cycle arrest without generation of cellular ROS, as is typically associated with similar ruthenium complexes. The complexes inhibit the enzyme thioredoxin reductase (TrxR) in a model system and reduce cell motility towards wound healing. Importantly, this work highlights further development in our understanding of the multi-targeting mechanism of action exhibited by transition metal complexes.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Petra Lippman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Francesca G. Ellis
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Alan M. Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| |
Collapse
|
31
|
Ding Y, Zhuang S, Li Y, Yu X, Lu M, Ding N. Hypoxia-induced HIF1α dependent COX2 promotes ovarian cancer progress. J Bioenerg Biomembr 2021; 53:441-448. [PMID: 33973103 DOI: 10.1007/s10863-021-09900-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023]
Abstract
Hypoxia can promote the progression and metastasis of ovarian cancer, while the underlying mechanisms are still unclear. Hypoxia culture or CoCl2 induced-oxygen deprivation condition could promote SKOV3 cells to express cyclooxygenase-2 (COX2). Luciferase assay indicates that hypoxia-inducible factor 1α (HIF1α) could bind directly with the promoter region of COX2 to promote the transcription. COX2 over-expressed SKOV3 cells show up-regulated stemness-related markers expression, proinflammatory gene expression, and increased tumor sphere formation. The inflammatory molecules (interleukin-6, C-X-C motif chemokine ligand 12, interleukin-1B, interleukin-10, and C-C motif chemokine ligand 2) and COX2 expression show positive correlations in the Cancer Genome Atlas data. COX2 over-expression could promote SKOV3 cell proliferation in the subcutaneous tumor model and metastasis in the transfer model. In conclusion, hypoxia-induced HIF-1α mediated COX2 expression could promote the proliferation, inflammation, and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Yumei Ding
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Shichao Zhuang
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yujiao Li
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Xiaohui Yu
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ming Lu
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ning Ding
- Department of Gynaecology, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255036, Shandong, China.
| |
Collapse
|
32
|
Tendulkar S, Dodamani S. Chemoresistance in Ovarian Cancer: Prospects for New Drugs. Anticancer Agents Med Chem 2021; 21:668-678. [PMID: 32900355 DOI: 10.2174/1871520620666200908104835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/09/2022]
Abstract
This review focuses on the conventional treatment, signaling pathways and various reasons for drug resistance with an understanding of novel methods that can lead to effective therapies. Ovarian cancer is amongst the most common gynecological and lethal cancers in women affecting different age groups (20-60). The survival rate is limited to 5 years due to diagnosis in subsequent stages with a reoccurrence of tumor and resistance to chemotherapeutic therapy. The recent clinical trials use the combinatorial treatment of carboplatin and paclitaxel on ovarian cancer after the cytoreduction of the tumor. Predominantly, patients are responsive initially to therapy and later develop metastases due to drug resistance. Chemotherapy also leads to drug resistance causing enormous variations at the cellular level. Multifaceted mechanisms like drug resistance are associated with a number of genes and signaling pathways that process the proliferation of cells. Reasons for resistance include epithelial-mesenchyme, DNA repair activation, autophagy, drug efflux, pathway activation, and so on. Determining the routes on the molecular mechanism that target chemoresistance pathways are necessary for controlling the treatment and understanding efficient drug targets can open light on improving therapeutic outcomes. The most common drug used for ovarian cancer is Cisplatin that activates various chemoresistance pathways, ultimately causing drug resistance. There have been substantial improvements in understanding the mechanisms of cisplatin resistance or chemo sensitizing cisplatin for effective treatment. Therefore, using therapies that involve a combination of phytochemical or novel drug delivery system would be a novel treatment for cancer. Phytochemicals are plant-derived compounds that exhibit anti-cancer, anti-oxidative, anti-inflammatory properties and reduce side effects exerted by chemotherapeutics.
Collapse
Affiliation(s)
- Shivani Tendulkar
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi- 590010, Karnataka, India
| | - Suneel Dodamani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi- 590010, Karnataka, India
| |
Collapse
|
33
|
Fostira F, Papadimitriou M, Papadimitriou C. Current practices on genetic testing in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1703. [PMID: 33490215 PMCID: PMC7812194 DOI: 10.21037/atm-20-1422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer (EOC) is probably the tumor type with the highest percentage of hereditary cases observed, irrespectively of selection criteria. A fourth to a fifth of unselected epithelial EOC patients carry pathogenic variants (PVs) in a number of genes, the majority of which encode for proteins involved in DNA repair pathways. BRCA1 and BRCA2 predisposing PVs were the first to be associated to ovarian cancer, with the advent in DNA sequencing technologies leading to the discovery and association of additional genes which compromise the homologous recombination (HR) pathway. In addition, PVs genes involved in mismatch repair (MMR) pathway, account for 10–15% of hereditary EOC. The identification of women with HR deficient ovarian cancers has significant clinical implications concerning chemotherapy regimen planning and development and use of targeted therapies as well. More specifically, in patients with BRCA1/2 PVs or HR deficiency maintenance treatment with poly(ADP-ribose) polymerase (PARP) inhibitors, either in the first line setting or in recurrent disease, improves the progression-free survival. But also patients with HR proficient tumors show a benefit. Therefore, genetic testing in ovarian cancer has a prognostic and predictive value. In this review, we discuss which ovarian cancer patients should be referred for genetic counseling and how to perform genetic testing. We also discuss the timing of genetic testing and its clinical relevance to BRCA status.
Collapse
Affiliation(s)
- Florentia Fostira
- InRaSTES, Molecular Diagnostics Laboratory, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
34
|
Lee E, Lokman NA, Oehler MK, Ricciardelli C, Grutzner F. A Comprehensive Molecular and Clinical Analysis of the piRNA Pathway Genes in Ovarian Cancer. Cancers (Basel) 2020; 13:cancers13010004. [PMID: 33374923 PMCID: PMC7792616 DOI: 10.3390/cancers13010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Although ovarian cancer (OC) is one of the most lethal gynecological cancers, its development and progression remain poorly understood. The piRNA pathway is important for transposon defense and genome stability. piRNA maturation and function involve a number of genes known as the piRNA pathway genes. These genes have recently been implicated in cancer development and progression but information about their role in OC is limited. Our work aimed to provide a better understanding of the roles of piRNA pathway genes in OC. Through analyzing changes in the abundance of 10 piRNA pathway genes, we discovered gene expression differences in benign vs. cancer, chemosensitive vs. chemoresistant and post hormone treatment in OC samples and cells. Furthermore, we observed the differential effects of these genes on patient survival and OC cell invasion. Overall, this work supports a role of the piRNA pathway genes in OC progression and encourages further study of their clinical relevance. Abstract Ovarian cancer (OC) is one of the most lethal gynecological malignancies, yet molecular mechanisms underlying its origin and progression remain poorly understood. With increasing reports of piRNA pathway deregulation in various cancers, we aimed to better understand its role in OC through a comprehensive analysis of key genes: PIWIL1-4, DDX4, HENMT1, MAEL, PLD6, TDRD1,9 and mutants of PIWIL1 (P1∆17) and PIWIL2 (PL2L60). High-throughput qRT-PCR (n = 45) and CSIOVDB (n = 3431) showed differential gene expression when comparing benign ovarian tumors, low grade OC and high grade serous OC (HGSOC). Significant correlation of disparate piRNA pathway gene expression levels with better progression free, post-progression free and overall survival suggests a complex role of this pathway in OC. We discovered PIWIL3 expression in chemosensitive but not chemoresistant primary HGSOC cells, providing a potential target against chemoresistant disease. As a first, we revealed that follicle stimulating hormone increased PIWIL2 expression in OV-90 cells. PIWIL1, P1∆17, PIWIL2, PL2L60 and MAEL overexpression in vitro and in vivo decreased motility and invasion of OVCAR-3 and OV-90 cells. Interestingly, P1∆17 and PL2L60, induced increased motility and invasion compared to PIWIL1 and PIWIL2. Our results in HGSOC highlight the intricate role piRNA pathway genes play in the development of malignant neoplasms.
Collapse
Affiliation(s)
- Eunice Lee
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Noor A. Lokman
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| | - Frank Grutzner
- Department of Molecular and Biomedical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia;
- Correspondence: (C.R.); (F.G.); Tel.: +61-8-8313-8255 (C.R.); +61-8-8313-4812 (F.G.)
| |
Collapse
|
35
|
van Wijk LM, Vermeulen S, Meijers M, van Diest MF, ter Haar NT, de Jonge MM, Solleveld-Westerink N, van Wezel T, van Gent DC, Kroep JR, Bosse T, Gaarenstroom KN, Vrieling H, Vreeswijk MPG. The RECAP Test Rapidly and Reliably Identifies Homologous Recombination-Deficient Ovarian Carcinomas. Cancers (Basel) 2020; 12:E2805. [PMID: 33003546 PMCID: PMC7650677 DOI: 10.3390/cancers12102805] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that the efficacy of PARP inhibitors in epithelial ovarian carcinoma (EOC) is related to tumor-specific defects in homologous recombination (HR) and extends beyond BRCA1/2 deficient EOC. A robust method with which to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. In this study, we investigated the proficiency of a functional HR assay based on the detection of RAD51 foci, the REcombination CAPacity (RECAP) test, in identifying HRD tumors in a cohort of prospectively collected epithelial ovarian carcinomas (EOCs). Of the 39 high-grade serous ovarian carcinomas (HGSOC), the RECAP test detected 26% (10/39) to be HRD, whereas ovarian carcinomas of other histologic subtypes (n = 10) were all HR-proficient (HRP). Of the HRD tumors that could be sequenced, 8/9 showed pathogenic BRCA1/2 variants or BRCA1 promoter hypermethylation, indicating that the RECAP test reliably identifies HRD, including but not limited to tumors related to BRCA1/2 deficiency. Furthermore, we found a trend towards better overall survival (OS) of HGSOC patients with RECAP-identified HRD tumors compared to patients with HRP tumors. This study shows that the RECAP test is an attractive alternative to DNA-based HRD tests, and further development of a clinical grade RECAP test is clearly warranted.
Collapse
Affiliation(s)
- Lise M. van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Matty Meijers
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Manuela F. van Diest
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Natalja T. ter Haar
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Marthe M. de Jonge
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Nienke Solleveld-Westerink
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
| | - Judith R. Kroep
- Department of Medical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.T.t.H.); (M.M.d.J.); (N.S.-W.); (T.v.W.); (T.B.)
| | - Katja N. Gaarenstroom
- Department of Gynecology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (L.M.v.W.); (S.V.); (M.M.); (M.F.v.D.); (H.V.)
| |
Collapse
|
36
|
Le Page C, Amuzu S, Rahimi K, Gotlieb W, Ragoussis J, Tonin PN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Semin Cancer Biol 2020; 77:110-126. [PMID: 32827632 DOI: 10.1016/j.semcancer.2020.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BRCA1 and BRCA2 are multi-functional proteins and key factors for maintaining genomic stability through their roles in DNA double strand break repair by homologous recombination, rescuing stalled or damaged DNA replication forks, and regulation of cell cycle DNA damage checkpoints. Impairment of any of these critical roles results in genomic instability, a phenotypic hallmark of many cancers including breast and epithelial ovarian carcinomas (EOC). Damaging, usually loss of function germline and somatic variants in BRCA1 and BRCA2, are important drivers of the development, progression, and management of high-grade serous tubo-ovarian carcinoma (HGSOC). However, mutations in these genes render patients particularly sensitive to platinum-based chemotherapy, and to the more innovative targeted therapies with poly-(ADP-ribose) polymerase inhibitors (PARPis) that are targeted to BRCA1/BRCA2 mutation carriers. Here, we reviewed the literature on the responsiveness of BRCA1/2-associated HGSOC to platinum-based chemotherapy and PARPis, and propose mechanisms underlying the frequent development of resistance to these therapeutic agents.
Collapse
Affiliation(s)
- Cécile Le Page
- McGill Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| | - Setor Amuzu
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurosh Rahimi
- Department of Pathology du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Walter Gotlieb
- Laboratory of Gynecologic Oncology, Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Medicine and Human Genetics, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
37
|
Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ, Evans DG. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin Genet 2019; 97:54-63. [PMID: 31099061 PMCID: PMC7017781 DOI: 10.1111/cge.13566] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the fourth most common cause of cancer-related death in women in the developed world, and one of the most heritable cancers. One of the most significant risk factors for epithelial ovarian cancer (EOC) is a family history of breast and/or ovarian cancer. Combined risk factors can be used in models to stratify risk of EOC, and aid in decisions regarding risk-reduction strategies. Germline pathogenic variants in EOC susceptibility genes including those involved in homologous recombination and mismatch repair pathways are present in approximately 22% to 25% of EOC. These genes are associated with an estimated lifetime risk of EOC of 13% to 60% for BRCA1 variants and 10% to 25% for BRCA2 variants, with lower risks associated with remaining genes. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) thought to explain an additional 6.4% of the familial risk of ovarian cancer, with 34 susceptibility loci identified to date. However, an unknown proportion of the genetic component of EOC risk remains unexplained. This review comprises an overview of individual genes and SNPs suspected to contribute to risk of EOC, and discusses use of a polygenic risk score to predict individual cancer risk more accurately.
Collapse
Affiliation(s)
- Nicola Flaum
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dafydd G Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Prevention Breast Cancer Centre and Nightingale Breast Screening Centre, University Hospital of South Manchester, Manchester, UK.,Department of Cancer Genetics, The Christie NHS Foundation Trust, Manchester, UK.,Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|