1
|
Phanindhar K, Mishra RK. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques 2023; 74:186-198. [PMID: 37191015 DOI: 10.2144/btn-2022-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Targeted protein degradation, with its rapid protein depletion kinetics, allows the measurement of acute changes in the cell. The auxin-inducible degron (AID) system, rapidly degrades AID-tagged proteins only in the presence of auxin. The AID system being inducible makes the study of essential genes and dynamic processes like cell differentiation, cell cycle and genome organization feasible. The AID degradation system has been adapted to yeast, protozoans, C. elegans, Drosophila, zebrafish, mouse and mammalian cell lines. Using the AID system, researchers have unveiled novel functions for essential proteins at developmental stages that were previously difficult to investigate due to early lethality. This comprehensive review discusses the development, advancements, applications and drawbacks of the AID system and compares it with other available protein degradation systems.
Collapse
Affiliation(s)
- Kundurthi Phanindhar
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Tata Institute for Genetics & Society (TIGS), Bangalore, 560065, India
| |
Collapse
|
2
|
Santos BMD, Przyborski JM, Garcia CRS. Changes in K + Concentration as a Signaling Mechanism in the Apicomplexa Parasites Plasmodium and Toxoplasma. Int J Mol Sci 2023; 24:ijms24087276. [PMID: 37108438 PMCID: PMC10138558 DOI: 10.3390/ijms24087276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
During their life cycle, apicomplexan parasites pass through different microenvironments and encounter a range of ion concentrations. The discovery that the GPCR-like SR25 in Plasmodium falciparum is activated by a shift in potassium concentration indicates that the parasite can take advantage of its development by sensing different ionic concentrations in the external milieu. This pathway involves the activation of phospholipase C and an increase in cytosolic calcium. In the present report, we summarize the information available in the literature regarding the role of potassium ions during parasite development. A deeper understanding of the mechanisms that allow the parasite to cope with ionic potassium changes contributes to our knowledge about the cell cycle of Plasmodium spp.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jude M Przyborski
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, 35390 Gießen, Germany
| | - Célia R S Garcia
- Department of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig University, 35390 Gießen, Germany
| |
Collapse
|
3
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
4
|
Orrego PR, Serrano-Rodríguez M, Cortez M, Araya JE. In Silico Characterization of Calcineurin from Pathogenic Obligate Intracellular Trypanosomatids: Potential New Biological Roles. Biomolecules 2021; 11:biom11091322. [PMID: 34572535 PMCID: PMC8470620 DOI: 10.3390/biom11091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| | - Mayela Serrano-Rodríguez
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Mauro Cortez
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jorge E. Araya
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
- Center for Biotechnology and Bioengineering, CeBIB, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| |
Collapse
|
5
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
6
|
Wei W, Shen N, Xiao J, Tao Y, Luo Y, Angel C, Gu X, Xie Y, He R, Jing B, Peng X, Yang G. Expression Analysis and Serodiagnostic Potential of Microneme Proteins 1 and 3 in Eimeria stiedai. Genes (Basel) 2020; 11:E725. [PMID: 32610686 PMCID: PMC7397282 DOI: 10.3390/genes11070725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
Eimeria stiedai is an apicomplexan protozoan parasite that invades the liver and bile duct epithelial cells in rabbits and causes severe hepatic coccidiosis, resulting in significant economic losses in the domestic rabbit industry. Hepatic coccidiosis lacks the typical clinical symptoms and there is a lack of effective premortem tools to timely diagnose this disease. Therefore, in the present study we cloned and expressed the two microneme proteins i.e., microneme protein 1 (EsMIC1) and microneme protein 3 (EsMIC3) from E. stiedai and used them as recombinant antigens to develop a serodiagnostic method for an effective diagnosis of hepatic coccidiosis. The cDNAs encoding EsMIC1 and EsMIC3 were cloned and the mRNA expression levels of these two genes at different developmental stages of E. stiedai were determined by quantitative real-time PCR analysis (qRT-PCR). The immunoreactivity of recombinant EsMIC1 (rEsMIC1) and EsMIC3 (rEsMIC3) proteins were detected by Western blotting, and indirect enzyme-linked immunosorbent assays (ELISAs) based on these two recombinant antigens were established to evaluate their serodiagnostic potential. Our results showed that the proteins encoded by the ORFs of EsMIC1 (711 bp) and EsMIC3 (891 bp) were approximately 25.89 and 32.39 kDa in predicted molecular weight, respectively. Both EsMIC1 and EsMIC3 showed the highest mRNA expression levels in the merozoites stage of E. stiedai. Western blotting analysis revealed that both recombinant proteins were recognized by E. stiedai positive sera, and the indirect ELISAs using rEsMIC1 and rEsMIC3 were developed based on their good immunoreactivity, with 100% (48/48) sensitivity and 97.9% (47/48) specificity for rEsMIC1 with 100% (48/48) sensitivity and 100% (48/48) specificity for rEsMIC3, respectively. Moreover, rEsMIC1- and rEsMIC3-based indirect ELISA were able to detect corresponding antibodies in sera at days 6, 8, and 10 post E. stiedai infection, with the highest positive diagnostic rate (62.5% (30/48) for rEsMIC1 and 66.7% (32/48) for rEsMIC3) observed at day 10 post infection. Therefore, both EsMIC1 and EsMIC3 can be used as potential serodiagnostic candidate antigens for hepatic coccidiosis caused by E. stiedai.
Collapse
Affiliation(s)
- Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuanyuan Tao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuejun Luo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| |
Collapse
|
7
|
Park HS, Lee SC, Cardenas ME, Heitman J. Calcium-Calmodulin-Calcineurin Signaling: A Globally Conserved Virulence Cascade in Eukaryotic Microbial Pathogens. Cell Host Microbe 2020; 26:453-462. [PMID: 31600499 DOI: 10.1016/j.chom.2019.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/29/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
Calcium is an abundant intracellular ion, and calcium homeostasis plays crucial roles in several cellular processes. The calcineurin signaling cascade is one of the major pathways governed by intracellular calcium. Calcineurin, a conserved protein from yeast to humans, is a calcium-calmodulin-dependent serine-threonine-specific phosphatase that orchestrates cellular stress responses. In eukaryotic microbial pathogens, calcineurin controls essential virulence pathways, such as the ability to grow at host temperature, morphogenesis to enable invasive hyphal growth, drug tolerance and resistance, cell wall integrity, and sexual development. Therefore, the calcineurin cascade is an attractive target in drug development against eukaryotic pathogens. In the present review, we summarize and discuss the current knowledge on the roles of calcineurin in eukaryotic microbial pathogens, focusing on fungi and parasitic protists.
Collapse
Affiliation(s)
- Hee-Soo Park
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Dangi P, Jain R, Mamidala R, Sharma V, Agarwal S, Bathula C, Thirumalachary M, Sen S, Singh S. Natural Product Inspired Novel Indole based Chiral Scaffold Kills Human Malaria Parasites via Ionic Imbalance Mediated Cell Death. Sci Rep 2019; 9:17785. [PMID: 31780808 PMCID: PMC6882913 DOI: 10.1038/s41598-019-54339-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Natural products offer an abundant source of diverse novel scaffolds that inspires development of next generation anti-malarials. With this vision, a library of scaffolds inspired by natural biologically active alkaloids was synthesized from chiral bicyclic lactams with steps/scaffold ratio of 1.7:1. On evaluation of library of scaffolds for their growth inhibitory effect against malaria parasite we found one scaffold with IC50 in low micro molar range. It inhibited parasite growth via disruption of Na+ homeostasis. P-type ATPase, PfATP4 is responsible for maintaining parasite Na+ homeostasis and is a good target for anti-malarials. Molecular docking with our scaffold showed that it fits well in the binding pocket of PfATP4. Moreover, inhibition of Na+-dependent ATPase activity by our potent scaffold suggests that it targets parasite by inhibiting PfATP4, leading to ionic imbalance. However how ionic imbalance attributes to parasite's death is unclear. We show that ionic imbalance caused by scaffold 7 induces autophagy that leads to onset of apoptosis in the parasite evident by the loss of mitochondrial membrane potential (ΔΨm) and DNA degradation. Our study provides a novel strategy for drug discovery and an insight into the molecular mechanism of ionic imbalance mediated death in malaria parasite.
Collapse
Affiliation(s)
- Poonam Dangi
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, 201314, India
| | - Ravi Jain
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, 201314, India
| | | | - Vijeta Sharma
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, 201314, India
| | - Shalini Agarwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Chandramohan Bathula
- Department of Chemistry, Shiv Nadar University, Gautam Buddha Nagar, 201314, India
| | - M Thirumalachary
- Jawaharlal Technological University, Kukatpally, 500072, Hyderabad, India
| | - Subhabrata Sen
- Department of Chemistry, Shiv Nadar University, Gautam Buddha Nagar, 201314, India
| | - Shailja Singh
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, 201314, India.
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Human Cyclophilin B forms part of a multi-protein complex during erythrocyte invasion by Plasmodium falciparum. Nat Commun 2017; 8:1548. [PMID: 29146974 PMCID: PMC5691159 DOI: 10.1038/s41467-017-01638-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Invasion of human erythrocytes by Plasmodium falciparum merozoites involves multiple interactions between host receptors and their merozoite ligands. Here we report human Cyclophilin B as a receptor for PfRhopH3 during merozoite invasion. Localization and binding studies show that Cyclophilin B is present on the erythrocytes and binds strongly to merozoites. We demonstrate that PfRhopH3 binds to the RBCs and their treatment with Cyclosporin A prevents merozoite invasion. We also show a multi-protein complex involving Cyclophilin B and Basigin, as well as PfRhopH3 and PfRh5 that aids the invasion. Furthermore, we report identification of a de novo peptide CDP3 that binds Cyclophilin B and blocks invasion by up to 80%. Collectively, our data provide evidence of compounded interactions between host receptors and merozoite surface proteins and paves the way for developing peptide and small-molecules that inhibit the protein−protein interactions, individually or in toto, leading to abrogation of the invasion process. Invasion of red blood cells by Plasmodium falciparum is a complex process and relies on several receptor-ligand interactions. Here, the authors show that human cyclophilin B binds Plasmodium surface protein PfRhopH3 and that interruption of this interaction reduces invasion by 80%.
Collapse
|
10
|
Molecular mechanisms that mediate invasion and egress of malaria parasites from red blood cells. Curr Opin Hematol 2017; 24:208-214. [PMID: 28306665 DOI: 10.1097/moh.0000000000000334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Malaria parasites invade and multiply in diverse host cells during their complex life cycle. Some blood stage parasites transform into male and female gametocytes that are transmitted by female anopheline mosquitoes. The gametocytes are activated in the mosquito midgut to form male and female gametes, which egress from RBCs to mate and form a zygote. Here, we will review our current understanding of the molecular mechanisms that mediate invasion and egress by malaria parasites at different life cycle stages. RECENT FINDINGS A number of key effector molecules such as parasite protein ligands for receptor-engagement during invasion as well as proteases and perforin-like proteins that mediate egress have been identified. Interestingly, these parasite-encoded effectors are located in internal, vesicular organelles and are secreted in a highly regulated manner during invasion and egress. Here, we will review our current understanding of the functional roles of these effectors as well as the signaling pathways that regulate their timely secretion with accurate spatiotemporal coordinates. SUMMARY Understanding the molecular basis of key processes such as host cell invasion and egress by malaria parasites could provide novel targets for development of inhibitors to block parasite growth and transmission.
Collapse
|
11
|
Das S, Lemgruber L, Tay CL, Baum J, Meissner M. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development. BMC Biol 2017; 15:70. [PMID: 28810863 PMCID: PMC5557482 DOI: 10.1186/s12915-017-0406-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023] Open
Abstract
Background The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Results Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. Conclusions This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0406-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujaan Das
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| | - Leandro Lemgruber
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Chwen L Tay
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Markus Meissner
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK. .,Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
12
|
Yang C, Arrizabalaga G. The serine/threonine phosphatases of apicomplexan parasites. Mol Microbiol 2017; 106:1-21. [PMID: 28556455 DOI: 10.1111/mmi.13715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
The balance between phosphorylation and de-phosphorylation, which is delicately regulated by protein kinases and phosphatases, is critical for nearly all biological processes. The Apicomplexa are a large phylum which contains various parasitic protists, including human pathogens, such as Plasmodium, Toxoplasma, Cryptosporidium and Babesia species. The diverse life cycles of these parasites are highly complex and, not surprisingly, many of their key steps are exquisitely regulated by phosphorylation. Interestingly, many of the kinases and phosphatases, as well as the substrates involved in these events are unique to the parasites and therefore phosphorylation constitutes a viable target for antiparasitic intervention. Most progress on this realm has come from studies in Toxoplasma and Plasmodium of their respective kinomes and phosphoproteomes. Nonetheless, given their likely importance, phosphatases have recently become the focus of research within the apicomplexan parasites. In this review, we concentrate on serine/threonine phosphatases in apicomplexan parasites, with the focus on comprehensively identifying and naming protein phosphatases in available apicomplexan genomes, and summarizing the progress of their functional analyses in recent years.
Collapse
Affiliation(s)
- Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
The antimalarial action of FK506 and rapamycin: evidence for a direct effect on FK506-binding protein PfFKBP35. Parasitology 2017; 144:869-876. [PMID: 28274284 DOI: 10.1017/s0031182017000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FK506 and rapamycin (Rap) are immunosuppressive drugs that act principally on T-lymphocytes. The receptors for both drugs are FK506-binding proteins (FKBPs), but the molecular mechanisms of immunosuppression differ. An FK506-FKBP complex inhibits the protein phosphatase calcineurin, blocking a key step in T-cell activation, while the Rap -FKBP complex binds to the protein kinase target of rapamycin (TOR), which is involved in a subsequent signalling pathway. Both drugs, and certain non-immunosuppressive compounds related to FK506, have potent antimalarial activity. There is however conflicting evidence on the involvement of Plasmodium calcineurin in the action of FK506, and the parasite lacks an apparent TOR homologue. We therefore set out to establish whether inhibition of the Plasmodium falciparum FKBP PfFKBP35 itself might be responsible for the antimalarial effects of FK506 and Rap. Similarities in the antiparasitic actions of FK506 and Rap would constitute indirect evidence for this hypothesis. FK506 and Rap acted indistinguishably on: (i) specificity for different intra-erythrocytic stages in culture, (ii) kinetics of killing or irreversible growth arrest of parasites and (iii) interactions with other antimalarial agents. Furthermore, PfFKBP35's inhibitory effect on calcineurin was independent of FK506 under a range of conditions, suggesting that calcineurin is unlikely to be involved in the antimalarial action of FK506.
Collapse
|
14
|
Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol 2016; 32:284-295. [DOI: 10.1016/j.pt.2015.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
|
15
|
Wu Y, Cruz LN, Szestak T, Laing G, Molyneux GR, Garcia CRS, Craig AG. An external sensing system in Plasmodium falciparum-infected erythrocytes. Malar J 2016; 15:103. [PMID: 26893139 PMCID: PMC4759932 DOI: 10.1186/s12936-016-1144-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Background A number of experiments have previously indicated that Plasmodium falciparum-infected erythrocytes (pRBC) were able to sense host environment. The basis of this ability to detect external cues is not known but in screening signalling molecules from pRBC using commercial antibodies, a 34 kDa phosphorylated molecule that possesses such ability was identified. Methods The pRBC were exposed to different culture conditions and proteins were extracted for 1D or 2D gel electrophoresis followed by Western blot. The localization of 34 kDa protein was examined by biochemical fractionation followed by Western blot. High-resolution mass spectrometric analysis of immune precipitants was used to identify this protein and real-time quantitative reverse transcriptase polymerase chain reaction was used for detecting mRNA expression level. Results The 34 kDa protein was called PfAB4 has immediate responses (dephosphorylation and rapid turnover) to host environmental stimuli such as serum depletion, osmolality change and cytokine addition. PfAB4 is expressed constitutively throughout the erythrocytic lifecycle with dominant expression in trophozoites 30 h post-infection. Tumour necrosis factor (TNF) treatment induced a transient detectable dephosphorylation of PfAB4 in the ItG strain (2 min after addition) and the level of expression and phosphorylation returned to normal within 1–2 h. PfAB4 localized dominantly in pRBC cytoplasm, with a transient shift to the nucleus under TNF stimulation as shown by biochemical fractionation. High-resolution mass spectrometric analysis of immune precipitants of AB4 antibodies revealed a 34 kDa PfAB4 component as a mixture of proliferating cellular nuclear antigen-1 (PCNA1) and exported protein-2 (EXP2), along with a small number of other inconsistently identified peptides. Different parasite strains have different PfAB4 expression levels, but no significant association between mRNA and PfAB4 levels was seen, indicating that the differences may be at the post-transcriptional, presumably phosphorylation, level. A triple serine phosphorylated PCNA1 peptide was identified from the PfAB4 high expression strain only, providing further evidence that the identity of PfAB4 is PCNA1 in P.falciparum. Conclusion A protein element in the human malaria parasite that responds to external cues, including the pro-inflammatory cytokine TNF have been discovered. Treatment results in a transient change in phosphorylation status of the response element, which also migrates from the parasite cytoplasm to the nucleus. The response element has been identified as PfPCNA1. This sensing response could be regulated by a parasite checkpoint system and be analogous to bacterial two-component signal transduction systems. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Wu
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Laura N Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - Tadge Szestak
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Gavin Laing
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Gemma R Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Celia R S Garcia
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
16
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Philip N, Waters AP. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector. Cell Host Microbe 2015; 18:122-31. [PMID: 26118994 PMCID: PMC4509507 DOI: 10.1016/j.chom.2015.05.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. Calcineurin regulates colonization of host cells across the Plasmodium life cycle Calcineurin regulates male gametogenesis AID technology is broadly applicable to study protein function in Plasmodium Multiplexing of AID technology results in substantially reduced animal use
Collapse
Affiliation(s)
- Nisha Philip
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Andrew P Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
18
|
Paul AS, Saha S, Engelberg K, Jiang RHY, Coleman BI, Kosber AL, Chen CT, Ganter M, Espy N, Gilberger TW, Gubbels MJ, Duraisingh MT. Parasite Calcineurin Regulates Host Cell Recognition and Attachment by Apicomplexans. Cell Host Microbe 2015; 18:49-60. [PMID: 26118996 DOI: 10.1016/j.chom.2015.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/30/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022]
Abstract
Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sudeshna Saha
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Rays H Y Jiang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Markus Ganter
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tim W Gilberger
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Nicolao MC, Cumino AC. Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages. Acta Trop 2015; 146:141-51. [PMID: 25818323 DOI: 10.1016/j.actatropica.2015.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 01/26/2023]
Abstract
Calcineurin (CaN) is a Ca(2+)-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca(2+)/Ni(2+) and reduced by cyclosporine A and Ca(2+) chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca(2+) intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600 Mar del Plata, Argentina.
| |
Collapse
|
20
|
Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, Fowkes FJI, Barlow PN, Rayner JC, Wright GJ, Cowman AF, Crabb BS. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015; 11:e1004670. [PMID: 25723550 PMCID: PMC4344246 DOI: 10.1371/journal.ppat.1004670] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine. The development of an effective malaria vaccine is a world health priority and would be a critical step toward the control and eventual elimination of this disease. In addition, new pharmacological solutions are necessary as Plasmodium falciparum, the deadliest of the malaria-causing parasites, has developed resistance to every drug currently approved for treatment. Understanding the interactions required for the parasite to invade its erythrocyte host, as well as being valuable to our basic knowledge of parasite biology, is important for the development of drug-based therapies and vaccines. In this study we have, for the first time, filmed P. falciparum parasites invading erythrocytes while systematically blocking several specific interactions between the parasite and the erythrocyte. We have shown there is a sequential progression of specific interactions that occur in at least four distinct steps leading up to invasion. Previous vaccine attempts have targeted one or two of these steps, however, if a single vaccine were designed to block interactions at all four steps, the combined effect might so reduce invasion that parasite growth and disease progression would be arrested. A better understanding of each interaction during invasion, their role and order, can also inform the development of new anti-malarial drugs.
Collapse
Affiliation(s)
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- * E-mail: (PRG); (BSC)
| | - Tana Taechalertpaisarn
- Burnet Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Katherine L. Harvey
- Burnet Institute, Melbourne, Australia
- Department of Microbiology & Immunology, University of Melbourne, Australia
| | - Freya J. I. Fowkes
- Burnet Institute, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Paul N. Barlow
- Schools of Chemistry and Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alan F. Cowman
- Department of Medical Biology, University of Melbourne, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Microbiology & Immunology, University of Melbourne, Australia
- * E-mail: (PRG); (BSC)
| |
Collapse
|
21
|
Pandey R, Mohmmed A, Pierrot C, Khalife J, Malhotra P, Gupta D. Genome wide in silico analysis of Plasmodium falciparum phosphatome. BMC Genomics 2014; 15:1024. [PMID: 25425018 PMCID: PMC4256932 DOI: 10.1186/1471-2164-15-1024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/12/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Eukaryotic cellular machineries are intricately regulated by several molecular mechanisms involving transcriptional control, post-translational control and post-translational modifications of proteins (PTMs). Reversible protein phosphorylation/dephosphorylation process, which involves kinases as well as phosphatases, represents an important regulatory mechanism for diverse pathways and systems in all organisms including human malaria parasite, Plasmodium falciparum. Earlier analysis on P. falciparum protein-phosphatome revealed presence of 34 phosphatases in Plasmodium genome. Recently, we re-analysed P. falciparum phosphatome aimed at identifying parasite specific phosphatases. RESULTS Plasmodium database (PlasmoDB 9.2) search, combined with PFAM and CDD searches, revealed 67 candidate phosphatases in P. falciparum. While this number is far less than the number of phosphatases present in Homo sapiens, it is almost the same as in other Plasmodium species. These Plasmodium phosphatase proteins were classified into 13 super families based on NCBI CDD search. Analysis of proteins expression profiles of the 67 phosphatases revealed that 44 phosphatases are expressed in both schizont as well as gametocytes stages. Fourteen phosphatases are common in schizont, ring and trophozoite stages, four phosphatases are restricted to gametocytes, whereas another three restricted to schizont stage. The phylogenetic trees for each of the known phosphatase super families reveal a considerable phylogenetic closeness amongst apicomplexan organisms and a considerable phylogenetic distance with other eukaryotic model organisms included in the study. The GO assignments and predicted interaction partners of the parasite phosphatases indicate its important role in diverse cellular processes. CONCLUSION In the study presented here, we reviewed the P. falciparum phosphatome to show presence of 67 candidate phosphatases in P. falciparum genomes/proteomes. Intriguingly, amongst these phosphatases, we could identify six Plasmodium specific phosphatases and 33 putative phosphatases that do not have human orthologs, thereby suggesting that these phosphatases have the potential to be explored as novel antimalarial drug targets.
Collapse
Affiliation(s)
| | | | | | - Jamal Khalife
- Structural and Computational Biology group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
22
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a Multifunctional Regulator: Unraveling Novel Functions in Fungal Stress Responses, Hyphal Growth, Drug Resistance, and Pathogenesis. FUNGAL BIOL REV 2014; 28:56-69. [PMID: 25383089 DOI: 10.1016/j.fbr.2014.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Frédéric Lamoth
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
23
|
PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 2014; 15:2431-53. [PMID: 24521882 PMCID: PMC3958860 DOI: 10.3390/ijms15022431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity.
Collapse
|