1
|
Zhang X, Jiang W, Guo K, Guo Z, Duan J, Jing X, Xia Q, Zhao P. A mutation in the Bombyx mori BmSPI51 gene results in alterations protein abundance in cocoon and unveils compensatory mechanism of silk gland proteinase inhibitors. Int J Biol Macromol 2024:137001. [PMID: 39481729 DOI: 10.1016/j.ijbiomac.2024.137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Proteinase inhibitors constitute a significant component of Lepidoptera cocoon. BmSPI51 is the most abundant protease inhibitors in silkworm cocoons. In this study, we aimed to elucidate the biological function of BmSPI51 in both the silkworm silk gland and cocoon formation. To achieve this, we utilized CRISPR/Cas9 gene editing to target the BmSPI51 gene, resulting in premature termination of translation at the 33rd amino acid residue. The mutation of BmSPI51 did not affect the growth and development. Nevertheless, it led to a substantial decrease in the economic traits of silkworm cocoons. Proteomic analysis indicated the abundance of fibroin heavy chain (Fib-H), fibroin light chain (Fib-L), and fibrohexamerin (P25) decreased significantly in the homozygous mutants. Further analysis of cocoon proteins found that the mutants significantly increased the secretion of other protease inhibitors in order to deal with the increased environmental stress resulting from the absence of BmSPI51. Surprisingly, homozygous mutant cocoons exhibited an enhanced inhibitory ability against Saccharomyces cerevisiae compared to the WT cocoons. In conclusion, our study provides a valuable insight into the biological function of protease inhibitors and revealed their roles in cocoon formation and potential applications in biotechnology.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
2
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
3
|
Kaewkod T, Kumseewai P, Suriyaprom S, Intachaisri V, Cheepchirasuk N, Tragoolpua Y. Potential therapeutic agents of Bombyx mori silk cocoon extracts from agricultural product for inhibition of skin pathogenic bacteria and free radicals. PeerJ 2024; 12:e17490. [PMID: 38903886 PMCID: PMC11188935 DOI: 10.7717/peerj.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Background Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.
Collapse
Affiliation(s)
- Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai, Thailand
| | - Puangphaka Kumseewai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Egan G, Hannah AJ, Donnelly S, Connolly P, Seib FP. The Biologically Active Biopolymer Silk: The Antibacterial Effects of Solubilized Bombyx mori Silk Fibroin with Common Wound Pathogens. Adv Biol (Weinh) 2024; 8:e2300115. [PMID: 38411381 DOI: 10.1002/adbi.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 12/22/2023] [Indexed: 02/28/2024]
Abstract
Antibacterial properties are desirable in wound dressings. Silks, among many material formats, have been investigated for use in wound care. However, the antibacterial properties of liquid silk are poorly understood. The aim of this study is to investigate the inherent antibacterial properties of a Bombyx mori silk fibroin solution. Silk fibroin solutions containing ≥ 4% w/v silk fibroin do not support the growth of two common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. When liquid silk is added to a wound pad and placed on inoculated culture plates mimicking wound fluid, silk is bacteriostatic. Viability tests of the bacterial cells in the presence of liquid silk show that cells remain intact within the silk but could not be cultured. Liquid silk appears to provide a hostile environment for S. aureus and P. aeruginosa and inhibits growth without disrupting the cell membrane. This effect can be beneficial for wound healing and supports future healthcare applications for silk. This observation also indicates that liquid silk stored prior to processing is unlikely to experience microbial spoilage.
Collapse
Affiliation(s)
- Gemma Egan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Aiden J Hannah
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Sean Donnelly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Patricia Connolly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
- Branch Bioresources, Fraunhofer Institute for Molecular Biology & Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
- Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany
| |
Collapse
|
5
|
Zhang X, Dong Z, Guo K, Jiang W, Wu X, Duan J, Jing X, Xia Q, Zhao P. Identification and functional study of fhx-L1, a major silk component in Bombyx mori. Int J Biol Macromol 2023; 232:123371. [PMID: 36709809 DOI: 10.1016/j.ijbiomac.2023.123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The silkworm cocoon was composed of fibroins, sericins, protease inhibitors, and proteins of unknown function. In this study, we focused on fhx-L1 (fibrohexamerin-like1), which was the homolog of fibroin fhx (fibrohexamerin). We identified 154 fhx family genes in 44 Lepidoptera insects, and seven fhx-Ls were found in Bombyx mori. Fhx-L1 was the most abundant of these proteins in silk and was specifically expressed in the silk gland. Immunofluorescence analysis showed that fhx-L1 was secreted into the whole sericin layers, similar to sericin1 (ser1). Western blotting revealed that the fhx-L1 protein contains N-linked oligosaccharide chains. CRISPR/Cas9-mediated gene editing was used to generate a homozygous mutant of fhx-L1 (fhx-L1KO). The cocoon of fhx-L1KO was larger and fluffier than that of the wild-type (WT), which was attributed to the lower adhesion between silk fibers. We also found that the content of β-sheet in the mutant silk was lower than in the WT silk, which resulted in further deterioration of the mechanical properties of the fhx-L1KO silk. Our study revealed the properties and function of fhx-L1 as a major structural component in silk. Then, our study provided a potential insight for in-depth study of silk protein function.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xianxian Wu
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
6
|
Melrose J. High Performance Marine and Terrestrial Bioadhesives and the Biomedical Applications They Have Inspired. Molecules 2022; 27:molecules27248982. [PMID: 36558114 PMCID: PMC9783952 DOI: 10.3390/molecules27248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study has reviewed the naturally occurring bioadhesives produced in marine and freshwater aqueous environments and in the mucinous exudates of some terrestrial animals which have remarkable properties providing adhesion under difficult environmental conditions. These bioadhesives have inspired the development of medical bioadhesives with impressive properties that provide an effective alternative to suturing surgical wounds improving closure and healing of wounds in technically demanding tissues such as the heart, lung and soft tissues like the brain and intestinal mucosa. The Gecko has developed a dry-adhesive system of exceptional performance and has inspired the development of new generation re-usable tapes applicable to many medical procedures. The silk of spider webs has been equally inspiring to structural engineers and materials scientists and has revealed innovative properties which have led to new generation technologies in photonics, phononics and micro-electronics in the development of wearable biosensors. Man made products designed to emulate the performance of these natural bioadhesive molecules are improving wound closure and healing of problematic lesions such as diabetic foot ulcers which are notoriously painful and have also found application in many other areas in biomedicine. Armed with information on the mechanistic properties of these impressive biomolecules major advances are expected in biomedicine, micro-electronics, photonics, materials science, artificial intelligence and robotics technology.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Qin L, Li J, Guo K, Lu M, Zhang Y, Zhang X, Zeng Y, Wang X, Xia Q, Zhao P, Zhang AB, Dong Z. Insights into the structure and composition of mineralized hard cocoons constructed by the oriental moth, Monema (Cnidocampa) flavescens Walker. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103878. [PMID: 36410578 DOI: 10.1016/j.ibmb.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Animals widely use minerals and organic components to construct biomaterials with excellent properties, such as teeth, bones, molluscan shells and eggshells. The larvae of the oriental moth, Monema (Cnidocampa) flavescens Walker, secrete silk proteins that combine closely with calcareous minerals to construct a hard cocoon, which is completely different from the mineral-free Bombyx mori cocoon. The cocoons of oriental moths are likely to be the hardest among the cocoons constructed by insect species. The cocoons of oriental moths were found to be mainly composed of calcium oxalates and Asx/Ser/Gly-rich cocoon proteins, but the types of calcium oxalates and cocoon proteins remain to be elucidated. In this study, we provide an in-depth explanation of the inorganic and organic components in the oriental moth cocoon. Microscopy and imaging technologies revealed that the cocoon is composed of mineral crystals, silk fibers and other organic matter. X-ray diffraction and infrared spectral analyses showed that the mineral crystals in the oriental moth cocoon were mainly CaC2H2O4·H2O. ICP-OES analysis suggested that the mineral crystals in the cocoons were mainly CaC2H2O4·H2O. LC-MS/MS-based proteomics allowed us to identify 467 proteins from the oriental moth cocoon, including 252 uncharacterized proteins, 87 enzymes, 36 small molecule binding proteins, and 5 silk proteins. Among the uncharacterized proteins, 25 of which were Asn-rich proteins because they contained a high proportion of Asn residues (19.1%-41.4%). Among the top 20 cocoon proteins with the highest abundance, 9 of which were Asn-rich proteins. The qPCR was used to investigate the expression patterns of the major cocoon protein-coding genes. Three fibroins and three Asn-rich proteins were expressed only in the silk gland but not in other tissues. The expression of Asn-rich proteins in the silk gland gradually increased from the anterior silk gland to the posterior silk gland. These findings provide important references for understanding the formation mechanism and mechanical properties of mineralized hard cocoons constructed by oriental moths.
Collapse
Affiliation(s)
- Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jing Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yanqiong Zeng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Dong Z, Xia Q, Zhao P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol 2022; 224:68-78. [DOI: 10.1016/j.ijbiomac.2022.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
9
|
Cheng G, Wang X, Wu M, Wu S, Cheng L, Zhang X, Dai F. Insignificant Difference in Biocompatibility of Regenerated Silk Fibroin Prepared with Ternary Reagent Compared with Regenerated Silk Fibroin Prepared with Lithium Bromide. Polymers (Basel) 2022; 14:polym14183903. [PMID: 36146047 PMCID: PMC9502819 DOI: 10.3390/polym14183903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bombyx mori silk fibroin (SF) is widely used in the field of biomaterials due to its excellent biocompatibility and mechanical properties. However, SF cannot be used directly in many applications and needs to be dissolved first. Lithium bromide (LiBr) is a traditional solvent which is usually used to dissolve SF. However, LiBr has several limitations, e.g., it is expensive, it is toxic to organisms, and it is environmentally unfriendly. Herein, we investigate the possibility of developing a ternary reagent system that is inexpensive, non-toxic to organisms, and environmentally friendly as an alternative for silk fibroin solubilization. The results confirm that regenerated silk fibroin (RSF) prepared using a ternary reagent has the same morphology and amino acid composition as that prepared using LiBr, but the RSF prepared using a ternary reagent still had a small amount of calcium residue even after long-term dialysis. Further research found that the residual calcium does not cause significant differences in the structure and biological performance of the RSF, such as its cytotoxicity, blood compatibility, and antibacterial properties. Therefore, we believe that ternary reagents are an ideal alternative solvent for dissolving SF.
Collapse
Affiliation(s)
- Guotao Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture & Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mengqiu Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture & Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Siyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture & Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture & Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoning Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture & Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture & Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
10
|
Etebari K, Gharuka M, Asgari S, Furlong MJ. Diverse Host Immune Responses of Different Geographical Populations of the Coconut Rhinoceros Beetle to Oryctes Rhinoceros Nudivirus (OrNV) Infection. Microbiol Spectr 2021; 9:e0068621. [PMID: 34523987 PMCID: PMC8557903 DOI: 10.1128/spectrum.00686-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Incursions of the coconut rhinoceros beetle (CRB), Oryctes rhinoceros, into different islands in the South Pacific have been detected in recent years. It has been suggested that this range expansion is related to an O. rhinoceros haplotype reported to show reduced susceptibility to the well-established classical biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). Our understanding of the genetic characteristics which distinguish the population of O. rhinoceros that has recently established in Solomon Islands from other well-established populations across the region is very limited. Here, we hypothesized that the recently established O. rhinoceros population should have greater innate immune responses when challenged by OrNV than those of well-established and native O. rhinoceros populations. We used the RNA sequencing (RNA-Seq) approach to generate gene expression profiles of midgut tissue from OrNV-infected and noninfected individuals collected in the Solomon Islands (recent incursion), Papua New Guinea and Fiji (previously established), and the Philippines (within the native range). The collections included individuals from each of the three major mitochondrial lineages (CRB-G, CRB-PNG, and CRB-S) known to the region, allowing us to explore the specific responses of each haplotype to infection. Although insects from the Philippines and Solomon Islands that were tested belong to the same mitochondrial lineage (CRB-G), their overall responses to infection were different. The number of differentially expressed genes between OrNV-infected and noninfected wild-caught individuals from the four different locations varied from 148 to 252. Persistent OrNV infection caused a high level of induced antimicrobial activity and immune responses in O. rhinoceros, but the direction and magnitude of the responses were population specific. The insects tested from the Solomon Islands displayed extremely high expression of genes which are known to be involved in immune responses (e.g. coleoptericin, cecropin, and serpin). These variations in the host immune system among insects from different geographical regions might be driven by variations in the virulence of OrNV isolates, and this requires further investigation. Overall, our current findings support the importance of immunity in insect pest incursion and an expansion of the pest's geographic range. IMPORTANCE Oryctes rhinoceros nudivirus (OrNV) is a double-stranded DNA (dsDNA) virus which has been used as a biocontrol agent to suppress coconut rhinoceros beetle (CRB) in the Pacific Islands. Recently a new wave of CRB incursions in Oceania is thought to be related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles (CRB-G). Our comparative analysis of OrNV-infected and noninfected CRBs revealed that specific sets of genes were induced by viral infection in the beetles. This induction was much stronger in beetles collected from the Solomon Islands, a newly invaded country, than in individuals collected from within the beetle's native range (the Philippines) or from longer-established populations in its exotic range (Fiji and Papua New Guinea [PNG]). Beetles from the Philippines and the Solomon Islands that were tested in this study all belonged to the CRB-G haplotype, but the country-specific responses of the beetles to OrNV infection were different.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Gharuka
- Research Division, Ministry of Agriculture and Livestock, Honiara, Solomon Islands
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J. Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Hazarika D, Kalita NK, Kumar A, Katiyar V. Functionalized poly(lactic acid) based nano-fabric for anti-viral applications. RSC Adv 2021; 11:32884-32897. [PMID: 35493591 PMCID: PMC9042262 DOI: 10.1039/d1ra05352c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
This study endeavoured to explore and fabricate antiviral and antibacterial facemasks using zinc (oligo-lactate) (ZL), developed through a microwave synthesis technique. The prepared nano-fabric layer has excellent antiviral and antibacterial properties against Newcastle Disease Virus (NDV) and E. coli and S. aureus, respectively. Thermogravimetric analysis (TGA) of ZL shows a two-step thermal degradation, which confirms the formation of low molecular weight end group lactyl units with zinc ions. Another investigation using varying ZL concentration and silk nanocrystal (SNC) with poly(lactic acid) (PLA) and electrospinning them into nanofibres led to the fabrication of a facile and sustainable nanofabric that can be utilized as a protective layer for facemasks. Morphological analysis revealed the successful preparation of the nanofabric with proper distribution and uniformity in fibre diameter. Hydrophobicity of the prepared nanofabric confirmed excellent protection from water droplets that may transpire during coughing or sneezing by an infected individual. Breathability and reusability tests confirmed that the prepared facemask could be reused by ethanol washing without compromising its surface properties till 4 cycles. The PLA/ZL nanofabric layer demonstrated 97% antiviral efficacy against NDV in 10 minutes. In conclusion, the electrospun nanofabric layer can be used as a facemask having high hydrophobicity, good breathability, antibacterial, and antiviral properties to control the spread of contagious diseases.
Collapse
Affiliation(s)
- Doli Hazarika
- Chemical Engineering Department, Indian Institute of Technology Guwahati Assam-781039 India
| | - Naba Kumar Kalita
- Chemical Engineering Department, Indian Institute of Technology Guwahati Assam-781039 India
| | - Amit Kumar
- Chemical Engineering Department, Indian Institute of Technology Guwahati Assam-781039 India
| | - Vimal Katiyar
- Chemical Engineering Department, Indian Institute of Technology Guwahati Assam-781039 India
| |
Collapse
|
12
|
Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front Pharmacol 2021; 12:723233. [PMID: 34552489 PMCID: PMC8450524 DOI: 10.3389/fphar.2021.723233] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Due to the increasing prevalence of life-threatening bacterial, fungal and viral infections and the ability of these human pathogens to develop resistance to current treatment strategies, there is a great need to find and develop new compunds to combat them. These molecules must have low toxicity, specific activity and high bioavailability. The most suitable compounds for this task are usually derived from natural sources (animal, plant or even microbial). In this review article, the latest and most promising natural compounds used to combat bacteria, filamentous fungi and viruses are presented and evaluated. These include plant extracts, essential oils, small antimicrobial peptides of animal origin, bacteriocins and various groups of plant compounds (triterpenoids; alkaloids; phenols; flavonoids) with antimicrobial and antiviral activity. Data are presented on the inhibitory activity of each natural antimicrobial substance and on the putative mechanism of action against bacterial and fungal strains. The results show that among the bioactive compounds studied, triterpenoids have significant inhibitory activity against coronaviruses, but flavonoids have also been shown to inhibit SARS-COV-2. The last chapter is devoted to nanocarriers used to improve stability, bioavailability, cellular uptake/internalization, pharmacokinetic profile and reduce toxicity of natural compunds. There are a number of nanocarriers such as liposomes, drug delivery microemulsion systems, nanocapsules, solid lipid nanoparticles, polymeric micelles, dendrimers, etc. However, some of the recent studies have focused on the incorporation of natural substances with antimicrobial/antiviral activity into polymeric nanoparticles, niosomes and silver nanoparticles (which have been shown to have intrinsic antimicrobial activity). The natural antimicrobials isolated from animals and microorganisms have been shown to have good inhibitory effect on a range of pathogens, however the plants remain the most prolific source. Even if the majority of the studies for the biological activity evaluation are in silico or in vitro, their internalization in the optimum nanocarriers represents the future of “green therapeutics” as shown by some of the recent work in the field.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Bucharest, Romania.,Titu Maiorescu University, PhD Medical School, Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | | | | | - Ariana Cristina Brezeanu
- Carol Davila University of Medicine and Pharmacy-Department of Plastic Surgery, Bucharest, Romania
| | | | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania.,Titu Maiorescu University, Faculty of Medicine, Bucharest, Romania
| |
Collapse
|
13
|
Xia J, Ge C, Yao H. Antimicrobial Peptides from Black Soldier Fly ( Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals (Basel) 2021; 11:1937. [PMID: 34209689 PMCID: PMC8300228 DOI: 10.3390/ani11071937] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Functional antimicrobial peptides (AMPs) are an important class of effector molecules of innate host immune defense against pathogen invasion. Inability of microorganisms to develop resistance against the majority of AMPs has made them alternatives to antibiotics, contributing to the development of a new generation of antimicrobials. Due to extensive biodiversity, insects are one of the most abundant sources of novel AMPs. Notably, black soldier fly insect (BSF; Hermetia illucens (Diptera: Stratiomyidae)) feeds on decaying substrates and displays a supernormal capacity to survive under adverse conditions in the presence of abundant microorganisms, therefore, BSF is one of the most promising sources for identification of AMPs. However, discovery, functional investigation, and drug development to replace antibiotics with AMPs from Hermetia illucens remain in a preliminary stage. In this review, we provide general information on currently verified AMPs of Hermetia illucens, describe their potential medical value, discuss the mechanism of their synthesis and interactions, and consider the development of bacterial resistance to AMPs in comparison with antibiotics, aiming to provide a candidate for substitution of antibiotics in livestock farming or, to some extent, for blocking the horizontal transfer of resistance genes in the environment, which is beneficial to human and animal welfare.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Milligram scale expression, refolding, and purification of Bombyx mori cocoonase using a recombinant E. coli system. Protein Expr Purif 2021; 186:105919. [PMID: 34044132 DOI: 10.1016/j.pep.2021.105919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
Silk is one of the most versatile biomaterials with signature properties of outstanding mechanical strength and flexibility. A potential avenue for developing more environmentally friendly silk production is to make use of the silk moth (Bombyx mori) cocoonase, this will at the same time increase the possibility for using the byproduct, sericin, as a raw material for other applications. Cocoonase is a serine protease utilized by the silk moth to soften the cocoon to enable its escape after completed metamorphosis. Cocoonase selectively degrades the glue protein of the cocoon, sericin, without affecting the silk-fiber made of the protein fibroin. Cocoonase can be recombinantly produced in E. coli, however, it is exclusively found as insoluble inclusion bodies. To solve this problem and to be able to utilize the benefits associated with an E. coli based expression system, we have developed a protocol that enables the production of soluble and functional protease in the milligram/liter scale. The core of the protocol is refolding of the protein in a buffer with a redox potential that is optimized for formation of native and intramolecular di-sulfide bridges. The redox potential was balanced with defined concentrations of reduced and oxidized glutathione. This E.coli based production protocol will, in addition to structure determination, also enable modification of cocoonase both in terms of catalytic function and stability. These factors will be valuable components in the development of alternate silk production methodology.
Collapse
|
15
|
Zhang X, Ni Y, Guo K, Dong Z, Chen Y, Zhu H, Xia Q, Zhao P. The mutation of SPI51, a protease inhibitor of silkworm, resulted in the change of antifungal activity during domestication. Int J Biol Macromol 2021; 178:63-70. [PMID: 33609582 DOI: 10.1016/j.ijbiomac.2021.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Domestication of silkworm has led to alterations in various gene expression patterns. For instance, many protease inhibitors were significantly downregulated in the domestic silkworm cocoon compared to its wild progenitor. Considering that SPI51 is the most abundant protease inhibitor in silkworm cocoons, herein, we compared the gene structures and sequences of SPI51 from B. mori (BmoSPI51) and B. mandarina (BmaSPI51). Comparing to the "RGGFR" active site in BmaSPI51, that of BmoPI51 is "KGSFP" and the C-terminal "YNTCECSCP" tail sequence is lost in the latter. To investigate the effect elicited by the active site and tail sequences on the function of SPI51, we expressed two mutated forms of BmoSPI51, namely, BmoSPI51 + tail and BmoSPI51M. BmoSPI51, BmoSPI51 + tail and BmoSPI51M were compared and found to have similar levels of inhibitory activity against trypsin. However, the BmoSPI51 + tail and BmoSPI51M proteins exhibited significantly stronger capacities to inhibit fungi growth, compared to BmoSPI51. We concluded that the specific amino acid sequence of the active site, as well as its the disulfide bond formed by C-terminal sequence in the BmaSPI51, represent the key factors responsible for its higher antifungal activity. This study provided new insights into the antifungal mechanisms elicited by protease inhibitors in the cocoons of silkworms.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Yuhui Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongtao Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
| |
Collapse
|
16
|
Wang XY, Zhao CX, Wang X, Zhao ZQ, Su ZH, Xu PZ, Li MW, Wu YC. The validation of the role of several genes related to Bombyx mori nucleopolyhedrovirus infection in vivo. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21762. [PMID: 33415772 DOI: 10.1002/arch.21762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of primary silkworm pathogens and causes a serious damage of cocoon losses every year. Recent years, many works have been done to clarify the silkworm anti-BmNPV mechanism, and a significant progress has been made in screening and studying of genes and proteins related to BmNPV infection, but several of them lacked the proofs in vivo. In this study, to further validate the function of seven newly reported genes in vivo, including BmAtlatin-n, Bmferritin-heavy chain (BmFerHCH), Bmthymosin (BmTHY), Bmseroin1, Bmseroin2, Bmnuclear hormone receptors 96 (BmNHR96), and BmE3 ubiquitin-protein ligase SINA-like 10 (BmSINAL10), the response of them in the midgut, fat body, and hemolymph of differentially resistant strains (resistant strain YeA and susceptible strain YeB) at 48 h following BmNPV infection were analyzed. The results showed that the relative stable or upregulated expression level of BmAtlatin-n, BmTHY, Bmseroin1, and Bmseroin2 in YeA resistant strain following BmNPV infection further indicated their antiviral role in vivo, compared with susceptible YeB strain. Moreover, the significant downregulation of BmFerHCH, BmNHR96, and BmSINAL10 in both strains following BmNPV infection revealed their role in benefiting virus infection, as well as the upregulation of BmFerHCH in YeB midgut and BmSINAL10 in YeB hemolymph. These data could be used to complementary the proofs of the function of these genes in response to BmNPV infection.
Collapse
Affiliation(s)
- Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Chun-Xiao Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xin Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhi-Hao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Immune mechanism in silkworm Bombyx mori L. METHODS IN MICROBIOLOGY 2021. [DOI: 10.1016/bs.mim.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Antibacterial Mechanism of Silkworm Seroins. Polymers (Basel) 2020; 12:polym12122985. [PMID: 33327635 PMCID: PMC7765120 DOI: 10.3390/polym12122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
Collapse
|
19
|
Parlin AF, Stratton SM, Culley TM, Guerra PA. A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic. PLoS One 2020; 15:e0239531. [PMID: 32946526 PMCID: PMC7500605 DOI: 10.1371/journal.pone.0239531] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
The worldwide shortage of single-use N95 respirators and surgical masks due to the COVID-19 pandemic has forced many health care personnel to use their existing equipment for as long as possible. In many cases, workers cover respirators with available masks in an attempt to extend their effectiveness against the virus. Due to low mask supplies, many people instead are using face coverings improvised from common fabrics. Our goal was to determine what fabrics would be most effective in both practices. Under laboratory conditions, we examined the hydrophobicity of fabrics (cotton, polyester, silk), as measured by their resistance to the penetration of small and aerosolized water droplets, an important transmission avenue for the virus causing COVID-19. We also examined the breathability of these fabrics and their ability to maintain hydrophobicity despite undergoing repeated cleaning. Laboratory-based tests were conducted when fabrics were fashioned as an overlaying barrier for respirators and when constructed as face coverings. When used as material in these two situations, silk was more effective at impeding the penetration and absorption of droplets due to its greater hydrophobicity relative to other tested fabrics. We found that silk face coverings repelled droplets in spray tests as well as disposable single-use surgical masks, and silk face coverings have the added advantage over masks such that they can be sterilized for immediate reuse. We show that silk is a hydrophobic barrier to droplets, can be more breathable than other fabrics that trap humidity, and are re-useable via cleaning. We suggest that silk can serve as an effective material for making hydrophobic barriers that protect respirators, and silk can now be tested under clinical conditions to verify its efficacy for this function. Although respirators are still the most appropriate form of protection, silk face coverings possess properties that make them capable of repelling droplets.
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Theresa M. Culley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Pollini M, Paladini F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3361. [PMID: 32751205 PMCID: PMC7436046 DOI: 10.3390/ma13153361] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Nature is an incredible source of inspiration for scientific research due to the multiple examples of sophisticated structures and architectures which have evolved for billions of years in different environments. Numerous biomaterials have evolved toward high level functions and performances, which can be exploited for designing novel biomedical devices. Naturally derived biopolymers, in particular, offer a wide range of chances to design appropriate substrates for tissue regeneration and wound healing applications. Wound management still represents a challenging field which requires continuous efforts in scientific research for definition of novel approaches to facilitate and promote wound healing and tissue regeneration, particularly where the conventional therapies fail. Moreover, big concerns associated to the risk of wound infections and antibiotic resistance have stimulated the scientific research toward the definition of products with simultaneous regenerative and antimicrobial properties. Among the bioinspired materials for wound healing, this review focuses attention on a protein derived from the silkworm cocoon, namely silk fibroin, which is characterized by incredible biological features and wound healing capability. As demonstrated by the increasing number of publications, today fibroin has received great attention for providing valuable options for fabrication of biomedical devices and products for tissue engineering. In combination with antimicrobial agents, particularly with silver nanoparticles, fibroin also allows the development of products with improved wound healing and antibacterial properties. This review aims at providing the reader with a comprehensive analysis of the most recent findings on silk fibroin, presenting studies and results demonstrating its effective role in wound healing and its great potential for wound healing applications.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
21
|
Zhang X, Guo K, Dong Z, Chen Z, Zhu H, Zhang Y, Xia Q, Zhao P. Kunitz-type protease inhibitor BmSPI51 plays an antifungal role in the silkworm cocoon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103258. [PMID: 31678582 DOI: 10.1016/j.ibmb.2019.103258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The protease inhibitors found in silkworm cocoons can be divided into several families, a majority of which contain serpin, TIL, or Kunitz domains. Previously, it has been reported that TIL-type protease inhibitors have antimicrobial activity. To date, however, it has not been determined whether the Kunitz-type protease inhibitor BmSPI51, the most abundant of cocoon protease inhibitors, plays an antimicrobial role. Thus, in this study, we sought to determine the biological role of BmSPI51 in silkworm cocoons. Our results obtained from real-time quantitative reverse transcription PCR and immunofluorescence analyses indicate that BmSPI51 is expressed exclusively in the silk glands during the larval fifth instar stage and is subsequently secreted into cocoon silk. Moreover, at a molar ratio of 1:1, BmSPI51 produced via prokaryotic expression exhibited inhibitory activity against trypsin and also proved to be highly stable over wide ranges of temperature and pH values. The expression of BmSPI51 was also found to be significantly upregulated in the larval fat body after infection with three species of fungi, namely, Candida albicans, Beauveria bassiana, and Saccharomyces cerevisiae. In vitro inhibition tests revealed that BmSPI51 significantly inhibited the sporular growth of all three of these fungal species. Further, results obtained from a binding assay showed that BmSPI51 binds to β-d-glucan and mannan on the surface of fungal cells. In this study, we, thus, revealed the antimicrobial activity of BmSPI51 and its underlying mechanism in silkworm, thereby contributing to our present understanding of defense mechanisms in silkworm cocoons.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Kaiyu Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Zhiyong Chen
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Hongtao Zhu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Yan Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
22
|
Wang Z, Guo P, Wang Q, Zhang Y, Xu H, Zhao P. Overexpression of Gloverin2 in the Bombyx mori silk gland enhances cocoon/silk antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:6-12. [PMID: 30898519 DOI: 10.1016/j.dci.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The Bombyx mori cocoon/silk possesses many immune-related components, including protease inhibitors, seroins, and antimicrobial peptides, which likely help to protect the pupating larva from infection. However, the natural antimicrobial activity of the B. mori cocoon/silk is still too weak for biomedical applications. With the goal of enhancing this natural activity, we constructed a transgenic vector to overexpress the B. mori antimicrobial peptide Gloverin2 (BmGlv2) under control of the silk gland-specific Serion1 promoter. Transgenic silkworms were generated via embryo microinjection. A low level of BmGlv2 was expressed in the non-transgenic silk gland, but BmGlv2 was efficiently overexpressed and proteolytically activated in the transgenic line. Overexpressed BmGlv2 was secreted and incorporated into the silk during spanning without affecting cocoon/silk formation. Moreover, the transgenic cocoon/silk had significantly greater inhibitory activity against bacteria and fungi than the non-transgenic cocoon/silk. This strategy could help enhance the antimicrobial performance and biomedical application of silk.
Collapse
Affiliation(s)
- Zhan Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qian Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Yunshi Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Haiyang Xu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Chen R, Zhu C, Hu M, Zhou L, Yang H, Zheng H, Zhou Y, Hu Z, Peng Z, Wang B. Comparative analysis of proteins from Bombyx mori and Antheraea pernyi cocoons for the purpose of silk identification. J Proteomics 2019; 209:103510. [PMID: 31479798 DOI: 10.1016/j.jprot.2019.103510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Achieving efficient identification of silk protein requires highly sensitive analytical techniques and favorable extraction methods, which is of great significance to the research of ancient silk, especially for the controversial issue of the silk origin. In this paper, proteomics and western blot were proposed to analyze the silk proteins of Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi) dissolved by different methods. First, the differences in secondary structure were detected via spectroscopy. LC-MS/MS was then employed to characterize the peptides of silk proteins precisely. LiBr solution exhibited outstanding dissolution effect on B. mori cocoon, with 87 proteins detected; while copper-ethylenediamine solution (CED) was more appropriate for A. pernyi cocoon, and 16 proteins were identified in A. pernyi-CED. In addition to fibroin and sericin, abundant seroins, enzymes, protease inhibitors, other functional proteins and uncharacterized proteins were detected. Based on the LC-MS/MS data, diagnostic antibodies for the two species were prepared, and fibroin was successfully identified by western blot assay because both dissolution methods were gentle and did not destroy the antigenic epitopes in the protein molecule. Owing to their good specificity and high sensitivity, these diagnostic antibodies have good application prospects in immunoassays of different silk species. SIGNIFICANCE: This study presents the comprehensive analysis on silk identification of proteins from B. mori and A. pernyi extracted by different methods via the proteomic and immunology as well as the conventional approaches. Great coverage of two cocoon proteomes was accomplished, which demonstrated the outstanding difference in components and abundance. Based on the proteomics analysis, the diagnostic antibodies against two species were prepared and identified the corresponding fibroin successfully in the completed protein mixtures. To our knowledge, the proteomic and immunology procedures with high efficiency, sensitivity and specificity are novel analysis on the silk identification and has great potential in the field of ancient silk detection.
Collapse
Affiliation(s)
- Ruru Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cheng Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingzhou Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lian Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hailing Zheng
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Zhiwen Hu
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiqin Peng
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bing Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
24
|
Tang M, Dong Z, Guo P, Zhang Y, Zhang X, Guo K, An L, Liu X, Zhao P. Functional analysis and characterization of antimicrobial phosphatidylethanolamine-binding protein BmPEBP in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:1-9. [PMID: 30943432 DOI: 10.1016/j.ibmb.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Phosphatidylethanolamine-binding proteins (PEBPs) are a class of highly conserved, biologically diverse proteins, which are widely distributed in plants, insects, and mammals. In this study, a Bombyx mori PEBP (BmPEBP) gene was reported, which encodes a protein composed of 209 amino acid residues. BmPEBP includes a predicted signal peptide, indicating that it is an extracellular protein, which differs from the cytoplasmic PEBPs of plants and mammals. Recombinant soluble BmPEBP was successfully synthesized using a prokaryotic expression system and was then purified effectively by Ni2+-NTA affinity chromatography and gel filtration. Far-ultraviolet circular dichroism spectra indicated that BmPEBP had a well-defined β-sheet structure, with the β-sheet content accounting for about 41% of the protein. BmPEBP had a relatively stable structure at temperatures ranging from 15 °C to 57.5 °C. The Tm, ΔH, and ΔS of BmPEBP were 62.27 °C ± 0.14 °C, 570.10 ± 0.17 kJ/mol, and 1.70 ± 0.03 KJ/(mol·K), respectively. Homology modeling analysis suggested that the active sites of BmPEBP were conserved, comprising Pro96, His111, and His143. Quantitative real-time PCR showed that BmPEBP was highly expressed in the silk gland and had very low expression in other tissues. However, BmPEBP expression was significantly upregulated in the larval fat body after infection with two kinds of fungi, Beauveria bassiana and Candida albicans. Moreover, in vitro fungal inhibition tests showed that BmPEBP could significantly inhibit the sporular growth of Saccharomyces cerevisiae, C. albicans, B. bassiana, and Aspergillus fumigatus. To our knowledge, this is the first report to reveal the antifungal role of a PEBP in insects.
Collapse
Affiliation(s)
- Muya Tang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Pengchao Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Yan Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Xiaolu Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Kaiyu Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Lingna An
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Xinyang Liu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
25
|
Deep Insight into the Transcriptome of the Single Silk Gland of Bombyx mori. Int J Mol Sci 2019; 20:ijms20102491. [PMID: 31137550 PMCID: PMC6567255 DOI: 10.3390/ijms20102491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/04/2022] Open
Abstract
The silk gland synthesizes and secretes a large amount of protein and stores liquid silk protein at an extremely high concentration. Interestingly, silk proteins and serine protease inhibitors are orderly arranged in the silk gland lumen and cocoon shells. Silk fiber formation and the spinning mechanism have not been fully elucidated. Therefore, we conducted a comparative transcriptome analysis of seven segments of the single silk gland to characterize internal changes in the silk gland during the 5th instar of mature larvae. In total, 3121 differentially expressed genes were identified in the seven segments. Genes highly expressed in the middle silk gland (MSG) were mainly involved in unsaturated fatty acid biosynthesis, fatty acid metabolism, apoptosis—fly, and lysosome pathways, whereas genes highly expressed in the posterior silk gland (PSG) were mainly involved in ribosome, proteasome, citrate cycle, and glycolysis/gluconeogenesis pathways. Thus, the MSG and PSG differ greatly in energy source use and function. Further, 773 gradually upregulated genes (from PSG to MSG) were involved in energy metabolism, silk protein synthesis, and secretion, suggesting that these genes play an important role in silk fiber formation. Our findings provide insights into the mechanism of silk protein synthesis and transport and silk fiber formation.
Collapse
|
26
|
Kucerova L, Zurovec M, Kludkiewicz B, Hradilova M, Strnad H, Sehnal F. Modular structure, sequence diversification and appropriate nomenclature of seroins produced in the silk glands of Lepidoptera. Sci Rep 2019; 9:3797. [PMID: 30846749 PMCID: PMC6405961 DOI: 10.1038/s41598-019-40401-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identified in studied lepidopteran species and their classification required detailed phylogenetic analysis based on complete and verified cDNA sequences. We sequenced silk gland-specific cDNA libraries from ten species and identified 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is reflected in proposed nomenclature.
Collapse
Affiliation(s)
- Lucie Kucerova
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic
| | - Michal Zurovec
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic.
| | - Barbara Kludkiewicz
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic
| | - Miluse Hradilova
- Institute of Molecular Genetics CAS, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics CAS, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Frantisek Sehnal
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic.
| |
Collapse
|
27
|
Dai ZJ, Sun W, Zhang Z. Comparative analysis of iTRAQ-based proteomes for cocoons between the domestic silkworm (Bombyx mori) and wild silkworm (Bombyx mandarina). J Proteomics 2019; 192:366-373. [DOI: 10.1016/j.jprot.2018.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 01/29/2023]
|
28
|
Duplouy A, Minard G, Lähteenaro M, Rytteri S, Saastamoinen M. Silk properties and overwinter survival in gregarious butterfly larvae. Ecol Evol 2018; 8:12443-12455. [PMID: 30619557 PMCID: PMC6309129 DOI: 10.1002/ece3.4595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
All organisms are challenged by encounters with parasites, which strongly select for efficient escape strategies in the host. The threat is especially high for gregarious species entering immobile periods, such as diapause. Larvae of the Glanville fritillary butterfly, Melitaea cinxia, spend the winter in diapause in groups of conspecifics each sheltered in a silk nest. Despite intensive monitoring of the population, we have little understanding of the ecological factors influencing larval survival over the winter in the field. We tested whether qualitative and quantitative properties of the silk nest contribute to larval survival over diapause. We used comparative proteomics, metabarcoding analyses, microscopic imaging, and in vitro experiments to compare protein composition of the silk, community composition of the silk-associated microbiota, and silk density from both wild-collected and laboratory-reared families, which survived or died in the field. Although most traits assessed varied across families, only silk density was correlated with overwinter survival in the field. The silk nest spun by gregarious larvae before the winter acts as an efficient breathable physical shield that positively affects larval survival during diapause. Such benefit may explain how this costly trait is conserved across populations of this butterfly species and potentially across other silk-spinning insect species.
Collapse
Affiliation(s)
- Anne Duplouy
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Guillaume Minard
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
- Laboratory of Microbial EcologyUniversity of Lyon, University Claude Bernard Lyon 1UMR CNRS 5557, UMR INRA 1418VetAgro SupVilleurbanneFrance
| | - Meri Lähteenaro
- Finnish Museum of Natural HistoryZoology UnitUniversity of HelsinkiHelsinkiFinland
| | - Susu Rytteri
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
29
|
Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Jiang YM, Chen P, Pan MH, Lu C. C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:54-60. [PMID: 29778904 DOI: 10.1016/j.jinsphys.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Lysozymes is a ubiquitous immune effector that is widely distributed in both vertebrates and invertebrates. Previous reports have shown that lysozymes significantly inhibit viral infections in vertebrates. However, the antiviral effects of lysozymes in invertebrates remain unclear. Here, we investigated the role of lysozymes in Bombyx mori (B. mori) response to viral infection by overexpressing B. mori C-lysozyme (BmC-LZM) in larvae and cells. We found that BmC-LZM was up-regulated in cells in response to viral infection. Indeed, the overexpressing of BmC-LZM significantly inhibited viral replication in cells during late-stage infection. However, this effect was reversed by BmC-LZM mRNA. BmC-LZM was successfully overexpressed in B. mori strain 871 using Baculovirus Expression Vector System (BEVS). This overexpression markedly reduced viral proliferation and increased larval survival percentage. Thus, BmC-LZM inhibited viral replication both in vivo and in vitro, indicating that BmC-LZM is involved in the insect immune response to viral infection. Our results provide a basis for further applications of lysozymes.
Collapse
Affiliation(s)
- Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Li-Rong Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ya-Ming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
30
|
Koh LD, Yeo J, Lee YY, Ong Q, Han M, Tee BCK. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Jo YY, Kweon H, Kim DW, Baek K, Kim MK, Kim SG, Chae WS, Choi JY, Rotaru H. Bone regeneration is associated with the concentration of tumour necrosis factor-α induced by sericin released from a silk mat. Sci Rep 2017; 7:15589. [PMID: 29138464 PMCID: PMC5686134 DOI: 10.1038/s41598-017-15687-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/31/2017] [Indexed: 01/04/2023] Open
Abstract
To understand the osteogenic effect of the middle layer of the silk cocoon, sericin was examined for its cellular effects associated with tumor necrosis factor-α (TNF-α) signaling in this study. The fragmented sericin proteins in the silk mat were evaluated for the TNF-α expression level in murine macrophages. The concentration of protein released from silk mats was higher in the outermost and the innermost layers than in the middle layers, and the protein released from the silk mat was identified as sericin. The level of TNF-α in murine macrophages was dependent on the applied concentration of sericin, and the expression of genes associated with osteogenesis in osteoblast-like cells was dependent on the applied concentration of TNF-α. In animal experiments, silk mats from the middle layers led to a higher regenerated bone volume than silk mats from the innermost layer or the outermost layer. If TNF-α protein was incorporated into the silk mats from the middle layers, bone regeneration was suppressed compared with unloaded silk mats from the middle layers. Accordingly, silk mats from the silk cocoon can be considered to be a fragmented sericin-secreting carrier, and the level of sericin secretion is associated with TNF-α induction and bone regeneration.
Collapse
Affiliation(s)
- You-Young Jo
- Sericultural and Apicultural Division, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - HaeYong Kweon
- Sericultural and Apicultural Division, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea
| | - Kyunghwa Baek
- Department of Oral Pharmacology, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea
| | - Min-Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 28644, Republic of Korea.
| | - Weon-Sik Chae
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Je-Yong Choi
- School of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), Kyungpook National University, Daegu, 41944, Korea.
| | - Horatiu Rotaru
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400001, Romania
| |
Collapse
|
32
|
Liu C, Hu W, Cheng T, Peng Z, Mita K, Xia Q. Osiris9a is a major component of silk fiber in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 89:107-115. [PMID: 28887014 DOI: 10.1016/j.ibmb.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
In a previous high-throughput proteomics study, it was found that the silkworm cocoon contains hundreds of complex proteins, many of which have unknown functions, in addition to fibroins, sericins, and some protease inhibitors. Osiris was one of the proteins with no known function. In this study, we identified the Osiris gene family members and constructed a phylogenetic tree based on the sequences from different species. Our results indicate that the Osiris9 gene subfamily contains six members; it is specifically expressed in lepidopteran insects and has evolved by gene duplication. An Osiris gene family member from Bombyx mori was designated as BmOsiris9a (BmOsi9a) on the basis of its homology to Drosophila melanogaster Osiris9. The expression pattern of BmOsi9a showed that it was highly expressed only in the middle silk gland of silkworm larvae, similar to Sericin1 (Ser1). BmOsi9a was visualized as two bands in western blot analysis, implying that it probably undergoes post-translational modifications. Immunohistochemistry analysis revealed that BmOsi9a was synthesized and secreted into the lumen of the middle silk gland, and was localized in the sericin layer in the silk fiber. BmOsi9a was found in the silk fibers of not only three Bombycidae species, viz. B. mori, B. mandarina, and B. huttoni, but also in the fibers collected from Saturniidae species, including Antheraea assama, Antheraea mylitta, and Samia cynthia. Although the exact biological function of Osi9a in the silk fibers is unknown, our results are important because they demonstrate that Osi9a is a common structural component of silk fiber and is expressed widely among the silk-producing Bombycidae and Saturniidae insects. Our results should help in understanding the role of Osi9a in silk fibers.
Collapse
Affiliation(s)
- Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Zhangchuan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
33
|
Zhang Y, Zhao D, Meng Z, Dong Z, Lin Y, Chen S, Xia Q, Zhao P. Wild Silkworm Cocoon Contains More Metabolites Than Domestic Silkworm Cocoon to Improve Its Protection. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:4560634. [PMID: 29117380 PMCID: PMC5717709 DOI: 10.1093/jisesa/iex069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 05/11/2023]
Abstract
The silk of silkworm consists of fibroin fiber coated by sericins. In addition, some nonprotein components were also identified in the sericin fraction. The presence of nonprotein components in the silk has not been well explained. In the present study, methods based on gas chromatography-mass spectrometry were used to identify the metabolites in the cocoon silk from a wild silkworm and two domestic silkworm strains. In total, 45 metabolites were in the cocoon silk, including organic acids, fatty acids, carbohydrates, amino acids, and hydrocarbons. Comparative analyses revealed that 17 metabolites were significant more in the wild silkworm cocoon than in the domestic silkworm cocoon, including three organic acids, three fatty acids, three aldoses, four sugar alcohols, three hydrocarbons, and pyridine. Of them, citric acid in the wild silkworm cocoon is more than 40 times that in the domestic silkworm cocoon, which may have protective value against microbes. The carbohydrate, lipid, and the long-chain hydrocarbons may act as water repellent to make the pupa survive longer in the dry environment. Many metabolites in the cocoon silk may play roles to improve the silk resistance. Lots of nonprotein components were identified in the silk for the first time, providing useful data for understanding the biological function of the cocoon silk.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Zhu Meng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Shiyi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
- Corresponding author, e-mail:
| |
Collapse
|
34
|
Kweon H, Jo YY, Seok H, Kim SG, Chae WS, Sapru S, Kundu SC, Kim DW, Park NR, Che X, Choi JY. In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method. Macromol Res 2017. [DOI: 10.1007/s13233-017-5085-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Dong Z, Song Q, Zhang Y, Chen S, Zhang X, Zhao P, Xia Q. Structure, evolution, and expression of antimicrobial silk proteins, seroins in Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:24-31. [PMID: 27180727 DOI: 10.1016/j.ibmb.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/20/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
The silks of silkworm and waxworm contain abundant antimicrobial proteins, including protease inhibitors and seroins. Protease inhibitors have antifungal activities, whereas seroins have antiviral and antibacterial activities. In order to obtain insights into the structure, evolution, and expression of seroins, we performed an extensive survey based on the available genome, transcriptome, and expressed sequence tags datasets. Sixty-four seroins were identified in 32 lepidopteran species. The phylogenetic and structural analyses revealed that seroins can be classified into five subfamilies: seroin 1, seroin 2, seroin 3, seroin 2 + 1, and seroin 3 + 3. It is interesting that seroin 2 + 1 contains two tandem seroin domains, seroin 2 and seroin 1, whereas seroin 3 + 3 has two tandem seroin 3 domains. Each seroin domain contains a proline-rich N-terminal motif and a conserved C-terminal motif. The transcriptome and EST data indicated that seroin 1 and seroin 2 genes were expressed in the silk gland but seroin 3 genes were not. Semi-quantitative RT-PCR and western blot analyses suggested that seroin 1 and seroin 2 were constantly accumulated in the silk gland of silkworm during the fifth instar, and then secreted into cocoon silk during spinning. Immunofluorescence analyses indicated that seroin 1 was secreted into the fibroin and sericin layers, whereas seroin 2 protein was only secreted into the sericin layer. However, the antimicrobial activity of seroin 2 was more effective than that of seroin 1. The presence of seroin 1 in the fibroin layer suggested that this protein not only acts as an antimicrobial protein, but might also play a role in the assembly and secretion of fibroins. Seroin 3, which was first identified here, might be related to pheromone synthesis or recognition, as it was highly expressed in male antennae and in the pheromone gland.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qianru Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Shiyi Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
36
|
Dong Z, Zhao P, Zhang Y, Song Q, Zhang X, Guo P, Wang D, Xia Q. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori. Sci Rep 2016; 6:21158. [PMID: 27102218 PMCID: PMC4840313 DOI: 10.1038/srep21158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qianru Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
37
|
Guo X, Dong Z, Zhang Y, Li Y, Liu H, Xia Q, Zhao P. Proteins in the Cocoon of Silkworm Inhibit the Growth of Beauveria bassiana. PLoS One 2016; 11:e0151764. [PMID: 27032085 PMCID: PMC4816445 DOI: 10.1371/journal.pone.0151764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/03/2016] [Indexed: 12/31/2022] Open
Abstract
Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue proteins (sericins), which provide a physical barrier to protect the inside pupa. Moreover, other proteins were identified in the cocoon silk, many of which are immune related proteins. In this study, we extracted proteins from the silkworm cocoon by Tris-HCl buffer (pH7.5), and found that they had a strong inhibitory activity against fungal proteases and they had higher abundance in the outer cocoon layers than in the inner cocoon layers. Moreover, we found that extracted cocoon proteins can inhibit the germination of Beauveria bassiana spores. Consistent with the distribution of protease inhibitors, we found that proteins from the outer cocoon layers showed better inhibitory effects against B. bassiana spores than proteins from the inner layers. Liquid chromatography-tandem mass spectrometry was used to reveal the extracted components in the scaffold silk, the outermost cocoon layer. A total of 129 proteins were identified, 30 of which were annotated as protease inhibitors. Protease inhibitors accounted for 89.1% in abundance among extracted proteins. These protease inhibitors have many intramolecular disulfide bonds to maintain their stable structure, and remained active after being boiled. This study added a new understanding to the antimicrobial function of the cocoon.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Youshan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
38
|
Zhang Y, Zhao P, Dong Z, Wang D, Guo P, Guo X, Song Q, Zhang W, Xia Q. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. PLoS One 2015; 10:e0123403. [PMID: 25860555 PMCID: PMC4393245 DOI: 10.1371/journal.pone.0123403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Bombyx mori cocoon has a multi-layer structure that provides optimal protection for silkworm pupa. Research on the mechanical properties of the multi-layer structure revealed structure-property relationships of the cocoon. Here, we investigated the protein components of the B. mori cocoon in terms of its multi-layer structure. Liquid chromatography-tandem mass spectrometry identified 286 proteins from the multiple cocoon layers. In addition to fibroins and sericins, we identified abundant protease inhibitors, seroins and proteins of unknown function. By comparing protein abundance across layers, we found that the outermost layer contained more sericin1 and protease inhibitors and the innermost layer had more seroin1. As many as 36 protease inhibitors were identified in cocoons, showing efficient inhibitory activities against a fungal protease. Thus, we propose that more abundant protease inhibitors in the outer cocoon layers may provide better protection for the cocoon. This study increases our understanding of the multi-layer mechanism of cocoons, and helps clarify the biological characteristics of cocoons. The data have been deposited to the ProteomeXchange with identifier PXD001469.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaomeng Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qianru Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Weiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|