1
|
Hidalgo-Vico S, Prieto D, Alonso-Monge R, Román E, Maufrais C, d'Enfert C, Pla J. Candida albicans strains adapted to the mouse gut are resistant to bile salts via a Flo8-dependent mechanism. Fungal Genet Biol 2024; 175:103939. [PMID: 39486612 DOI: 10.1016/j.fgb.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.albicans through microevolution in the mouse gut for a prolonged period (one year) that display a substantial increase in fitness in this niche. These strains show resistance to bile salts, an increase in their adhesion to the intestinal mucosa, and are unable to filament in response to serum. Genetic analysis revealed some alterations, mainly a triploidy of chr7, a whole chr6 homozygosis, and an SNP in the FLO8 gene (located in the chr6), resulting in a truncated protein version. A wild type FLO8 gene complemented filamentation and bile salt sensitivity but showed an intermediate fitness phenotype in colonization. Alterations in bile salt sensitivity were also evident in bmt mutants, defective in β-mannosylation, and transcriptional targets of Flo8, suggesting a link between the fungal cell wall and mammalian gut colonization via the Flo8 transcriptional regulator.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Centre de Ressources et Recherche en Informatique (C2RI), 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Portela FVM, Andrade ARCD, Pereira LMG, da Silva BN, Peixoto PHS, Amando BR, Fiallos NDM, Souza PDFSMD, Lima-Neto RGD, Guedes GMDM, Castelo-Branco DSCM, Cordeiro RDA. Antibiotics stimulates the development of persistent cells in biofilms of Candida albicans bloodstream isolates. BIOFOULING 2024; 40:593-601. [PMID: 39219014 DOI: 10.1080/08927014.2024.2396013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Candida albicans invasive candidiasis is considered a global health problem. In such cases, biofilm formation on implanted devices represents a therapeutic challenge and the presence of metabolically inactive persistent cells (PCs) in these communities increases their tolerance to fungicidal drugs. This study investigated the influence of amoxicillin, AMX; cefepime, CEF; gentamicin, GEN; amikacin, AMK; vancomycin, VAN; and ciprofloxacin, CIP; on the production of PCs in biofilms of C. albicans bloodstream isolates. 48 h-mature biofilms (n = 6) grown in RPMI-1640 supplemented with antibiotics were treated with 100 μg ml-1 amphotericin B and then evaluated for PCs. Biofilms grown in the presence of antibiotics produced more PCs, up to 10×, when exposed to AMX and CIP; 5 × to CEF; and 6 × to GEN and VAN. The results indicate that antibiotics can modulate PC production in C. albicans biofilms. This scenario may have clinical repercussions in immunocompromised patients under broad-spectrum antibiotic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicole de Mello Fiallos
- Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
- College of Dentistry, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
3
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Tseng KY, Huang YT, Huang YT, Su YT, Wang AN, Weng WY, Ke CL, Yeh YC, Wang JJ, Du SH, Gu ZQ, Chen WL, Lin CH, Tsai YH. Regulation of candidalysin underlies Candida albicans persistence in intravascular catheters by modulating NETosis. PLoS Pathog 2024; 20:e1012319. [PMID: 38885290 PMCID: PMC11213320 DOI: 10.1371/journal.ppat.1012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/28/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.
Collapse
Affiliation(s)
- Kuo-Yao Tseng
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Huang
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Su
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - An-Ni Wang
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yen Weng
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cai-Ling Ke
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chiao Yeh
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jhih-Jie Wang
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Hei Du
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zi-Qi Gu
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Lin Chen
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Huan Tsai
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Sekeresova Kralova J, Donic C, Dassa B, Livyatan I, Jansen PM, Ben-Dor S, Fidel L, Trzebanski S, Narunsky-Haziza L, Asraf O, Brenner O, Dafni H, Jona G, Boura-Halfon S, Stettner N, Segal E, Brunke S, Pilpel Y, Straussman R, Zeevi D, Bacher P, Hube B, Shlezinger N, Jung S. Competitive fungal commensalism mitigates candidiasis pathology. J Exp Med 2024; 221:e20231686. [PMID: 38497819 PMCID: PMC10949073 DOI: 10.1084/jem.20231686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.
Collapse
Affiliation(s)
| | - Catalina Donic
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Livyatan
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Mathias Jansen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Lena Fidel
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sébastien Trzebanski
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Omer Asraf
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Dafni
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ghil Jona
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sigalit Boura-Halfon
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Yitzhak Pilpel
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Zeevi
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neta Shlezinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem, Rehovot, Israel
| | - Steffen Jung
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Alonso-Monge R, Cortés-Prieto I, Román E, Pla J. Morphogenetic transitions in the adaptation of Candida albicans to the mammalian gut. Microbes Infect 2024; 26:105253. [PMID: 37977323 DOI: 10.1016/j.micinf.2023.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Candida albicans is a pathobiont in humans that forms part of the mycobiota in healthy individuals and can cause different pathologies upon alterations of the host defenses. The mammalian gut is clinically relevant as this niche is the most common pool for bloodstream-derived infections. The ability of C. albicans to switch from yeast to hypha has been related to the commensal-to-pathogen transition and is, therefore, considered relevant in virulence. Recently, filaments have been implicated in the humoral response in the gut. C. albicans exhibits other morphologies that play different roles in pathogenicity and commensalism. This review focuses on the role of these morphological transitions in C. albicans proliferation and its establishment as a commensal in the mammalian gut, paying special attention to the transcription factors involved in their regulation.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Isabel Cortés-Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Liang SH, Sircaik S, Dainis J, Kakade P, Penumutchu S, McDonough LD, Chen YH, Frazer C, Schille TB, Allert S, Elshafee O, Hänel M, Mogavero S, Vaishnava S, Cadwell K, Belenky P, Perez JC, Hube B, Ene IV, Bennett RJ. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 2024; 627:620-627. [PMID: 38448595 PMCID: PMC11230112 DOI: 10.1038/s41586-024-07142-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Shabnam Sircaik
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Joseph Dainis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Liam D McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ying-Han Chen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Osama Elshafee
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Maria Hänel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Shipra Vaishnava
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ken Cadwell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - J Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| | - Iuliana V Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Hsu C, Ghannoum M, Cominelli F, Martino LD. Mycobiome and Inflammatory Bowel Disease: Role in Disease Pathogenesis, Current Approaches and Novel Nutritional-based Therapies. Inflamm Bowel Dis 2023; 29:470-479. [PMID: 35851921 PMCID: PMC9977251 DOI: 10.1093/ibd/izac156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel disease (IBD), a disorder characterized by chronic inflammation of the gastrointestinal (GI) tract and a range of adverse health effects including diarrhea, abdominal pain, vomiting, and bloody stools, affects nearly 3.1 million genetically susceptible adults in the United States today. Although the etiology of IBD remains unclear, genetics, stress, diet, and gut microbiota dysbiosis- especially in immunocompromised individuals- have been identified as possible causes of disease. Although previous research has largely focused on the role of bacteria in IBD pathogenesis, recently observed alterations of fungal load and biodiversity in the GI tract of afflicted individuals suggest interkingdom interactions amongst different gut microbial communities, particularly between bacteria and fungi. These discoveries point to the potential utilization of treatment approaches such as antibiotics, antifungals, probiotics, and postbiotics that target both bacteria and fungi in managing IBD. In this review, we discuss the impact of specific fungi on disease pathogenesis, with a focus on the highly virulent genus Candida and how the presence of certain co-enzymes impacts its virulence. In addition, we evaluate current gut microbiome-based therapeutic approaches with the intention of better understanding the mechanisms behind novel therapies.
Collapse
Affiliation(s)
- Caitlyn Hsu
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106, USA
| | - Fabio Cominelli
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Pathology, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| |
Collapse
|
9
|
Bose S, Singh DV, Adhya TK, Acharya N. Escherichia coli, but Not Staphylococcus aureus, Functions as a Chelating Agent That Exhibits Antifungal Activity against the Pathogenic Yeast Candida albicans. J Fungi (Basel) 2023; 9:jof9030286. [PMID: 36983454 PMCID: PMC10057578 DOI: 10.3390/jof9030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Humans are colonized by diverse populations of microbes. Infections by Candida albicans, an opportunistic fungal pathogen, are a result of imbalances in the gut microbial ecosystem and are due to the suppressed immunity of the host. Here, we explored the potential effects of the polymicrobial interactions of C. albicans with Staphylococcus aureus, a Gram-positive bacterium, and Escherichia coli, a Gram-negative bacterium, in dual and triple in vitro culture systems on their respective growth, morphology, and biofilms. We found that S. aureus promoted the fungal growth and hyphal transition of C. albicans through cell-to-cell contacts; contrarily, both the cell and cell-free culture filtrate of E. coli inhibited fungal growth. A yet to be identified secretory metabolite of E. coli functionally mimicked EDTA and EGTA to exhibit antifungal activity. These findings suggested that E. coli, but not S. aureus, functions as a chelating agent and that E. coli plays a dominant role in regulating excessive growth and, potentially, the commensalism of C. albicans. Using animal models of systemic candidiasis, we found that the E. coli cell-free filtrate suppressed the virulence of C. albicans. In general, this study unraveled a significant antimicrobial activity and a potential role in the nutritional immunity of E. coli, and further determining the underlying processes behind the E. coli–C. albicans interaction could provide critical information in understanding the pathogenicity of C. albicans.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
- KIIT School of Biotechnology, Bhubaneswar 751021, India
| | - Durg Vijai Singh
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824236, India
| | | | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
- Correspondence: ; Tel.: +91-674-230-4278; Fax: +91-674-230-0728
| |
Collapse
|
10
|
Chen Q, Fan Y, Zhang B, Yan C, Chen Z, Wang L, Hu Y, Huang Q, Su J, Ren J, Xu H. Specific fungi associated with response to capsulized fecal microbiota transplantation in patients with active ulcerative colitis. Front Cell Infect Microbiol 2023; 12:1086885. [PMID: 36683707 PMCID: PMC9849685 DOI: 10.3389/fcimb.2022.1086885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Objective Fecal microbiota transplantation (FMT) is a novel microbial treatment for patients with ulcerative colitis (UC). In this study, we performed a clinical trial of capsulized FMT in UC patients to determine the association between the gut fungal community and capsulized FMT outcomes. Design This study recruited patients with active UC (N = 22) and healthy individuals (donor, N = 9) according to the criteria. The patients received capsulized FMT three times a week. Patient stool samples were collected before (week 0) and after FMT follow-up visits at weeks 1, 4, and 12. Fungal communities were analysed using shotgun metagenomic sequencing. Results According to metagenomic analysis, fungal community evenness index was greater in samples collected from patients, and the overall fungal community was clustered among the samples collected from donors. The dominant fungi in fecal samples collected from donors and patients were Ascomycota and Basidiomycota. However, capsulized FMT ameliorated microbial fungal diversity and altered fungal composition, based on metagenomic analysis of fecal samples collected before and during follow-up visits after capsulized FMT. Fungal diversity decreased in samples collected from patients who achieved remission after capsulized FMT, similar to samples collected from donors. Patients achieving remission after capsulized FMT had specific enrichment of Kazachstania naganishii, Pyricularia grisea, Lachancea thermotolerans, and Schizosaccharomyces pombe compared with patients who did not achieve remission. In addition, the relative abundance of P. grisea was higher in remission fecal samples during the follow-up visit. Meanwhile, decreased levels of pathobionts, such as Candida and Debaryomyces hansenii, were associated with remission in patients receiving capsulized FMT. Conclusion In the metagenomic analysis of fecal samples from donors and patients with UC receiving capsulized FMT, shifts in gut fungal diversity and composition were associated with capsulized FMT and validated in patients with active UC. We also identified the specific fungi associated with the induction of remission. ClinicalTrails.gov (NCT03426683).
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| |
Collapse
|
11
|
Jacobsen ID. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:55-65. [PMID: 37151578 PMCID: PMC10154278 DOI: 10.1007/s40588-023-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
Abstract Purpose of Review The fungus Candida albicans has evolved to live in close association with warm-blooded hosts and is found frequently on mucosal surfaces of healthy humans. As an opportunistic pathogen, C. albicans can also cause mucosal and disseminated infections (candidiasis). This review describes the features that differentiate the fungus in the commensal versus pathogenic state and the main factors underlying C. albicans commensal-to-pathogen transition. Recent Findings Adhesion, invasion, and tissue damage are critical steps in the infection process. Especially invasion and damage require transcriptional and morphological changes that differentiate C. albicans in the pathogenic from the commensal state. While the commensal-to-pathogen transition has some conserved causes and features in the oral cavity, the female urogenital tract, and the gut, site-specific differences have been identified in recent years. Summary This review highlights how specific factors in the different mucosal niches affect development of candidiasis. Recent evidence suggests that colonization of the gut is not only a risk factor for systemic candidiasis but might also provide beneficial effects to the host.
Collapse
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
13
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
14
|
Sprague JL, Kasper L, Hube B. From intestinal colonization to systemic infections: Candida albicans translocation and dissemination. Gut Microbes 2022; 14:2154548. [PMID: 36503341 PMCID: PMC9746630 DOI: 10.1080/19490976.2022.2154548] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Candida species are the most prevalent cause of invasive fungal infections, of which Candida albicans is the most common. Translocation across the epithelial barrier into the bloodstream by intestinal-colonizing C. albicans cells serves as the main source for systemic infections. Understanding the fungal mechanisms behind this process will give valuable insights on how to prevent such infections and keep C. albicans in the commensal state in patients with predisposing conditions. This review will focus on recent developments in characterizing fungal translocation mechanisms, compare what we know about enteric bacterial pathogens with C. albicans, and discuss the different proposed hypotheses for how C. albicans enters and disseminates through the bloodstream immediately following translocation.
Collapse
Affiliation(s)
- Jakob L. Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany,Contact: Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
15
|
Peroumal D, Sahu SR, Kumari P, Utkalaja BG, Acharya N. Commensal Fungus Candida albicans Maintains a Long-Term Mutualistic Relationship with the Host To Modulate Gut Microbiota and Metabolism. Microbiol Spectr 2022; 10:e0246222. [PMID: 36135388 PMCID: PMC9603587 DOI: 10.1128/spectrum.02462-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans survives as a commensal fungus in the gastrointestinal tract, and that its excessive growth causes infections in immunosuppressed individuals is widely accepted. However, any mutualistic relationship that may exist between C. albicans and the host remains undetermined. Here, we showed that a long-term feeding of C. albicans does not cause any noticeable infections in the mouse model. Our 16S and 18S ribosomal DNA (rDNA) sequence analyses suggested that C. albicans colonizes in the gut and modulates microbiome dynamics, which in turn mitigates high-fat-diet-induced uncontrolled body weight gain and metabolic hormonal imbalances. Interestingly, adding C. albicans to a nonobesogenic diet stimulated the appetite-regulated hormones and helped the mice maintain a healthy body weight. In concert, our results suggest a mutualism between C. albicans and the host, contrary to the notion that C. albicans is always an adversary and indicating it can instead be a bona fide admirable companion of the host. Finally, we discuss its potential translational implication as a probiotic, especially in obese people or people dependent on high-fat calorie intakes to manage obesity associated complications. IMPORTANCE Candida albicans is mostly considered an opportunistic pathogen that causes fetal systemic infections. However, this study demonstrates that in its commensal state, it maintains a long-term mutualistic relationship with the host and regulates microbial dynamics in the gut and host physiology. Thus, we concluded that C. albicans is not always an adversary but rather can be a bona fide admirable companion of the host. More importantly, as several genomic knockout strains of C. albicans were shown to be avirulent, such candidate strains may be explored further as preferable probiotic isolates to control obesity.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
16
|
Jungnickel B, Jacobsen ID. Systemic Candidiasis in Mice: New Insights From an Old Model. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:940884. [PMID: 37746206 PMCID: PMC10512337 DOI: 10.3389/ffunb.2022.940884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 09/26/2023]
Abstract
Animal models are essential to understand the pathophysiology of infections, to test novel antifungal compounds, and to determine the potential of adjunctive therapies, e.g. immune modulation. The murine model of systemic candidiasis induced by intravenous infection is technically straightforward, highly reproducible, and well-characterized. However, intravenous inoculation circumvents the necessity for the fungus to translocate across mucosal barriers, and the use of SPF mice that are immunologically naïve to Candida does not reflect the situation in human patients, in whom adaptive immune responses have been induced by mucosal colonization prior to infection. Therefore, mouse models that combine intestinal colonization and systemic infection have been developed, resulting in novel insights into host-fungal interactions and immunity. In this review, we summarize the main findings, current questions, and discuss how these might impact the translatability of results from mice to humans.
Collapse
Affiliation(s)
- Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena, Germany
| |
Collapse
|
17
|
Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S, Amorim-Vaz S, Rai LS, d’Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 2022; 18:e1010012. [PMID: 35404986 PMCID: PMC9041809 DOI: 10.1371/journal.ppat.1010012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
As part of the human microbiota, the fungus Candida albicans colonizes the oral cavity and other mucosal surfaces of the human body. Commensalism is tightly controlled by complex interactions of the fungus and the host to preclude fungal elimination but also fungal overgrowth and invasion, which can result in disease. As such, defects in antifungal T cell immunity render individuals susceptible to oral thrush due to interrupted immunosurveillance of the oral mucosa. The factors that promote commensalism and ensure persistence of C. albicans in a fully immunocompetent host remain less clear. Using an experimental model of C. albicans oral colonization in mice we explored fungal determinants of commensalism in the oral cavity. Transcript profiling of the oral isolate 101 in the murine tongue tissue revealed a characteristic metabolic profile tailored to the nutrient poor conditions in the stratum corneum of the epithelium where the fungus resides. Metabolic adaptation of isolate 101 was also reflected in enhanced nutrient acquisition when grown on oral mucosa substrates. Persistent colonization of the oral mucosa by C. albicans also correlated inversely with the capacity of the fungus to induce epithelial cell damage and to elicit an inflammatory response. Here we show that these immune evasive properties of isolate 101 are explained by a strong attenuation of a number of virulence genes, including those linked to filamentation. De-repression of the hyphal program by deletion or conditional repression of NRG1 abolished the commensal behaviour of isolate 101, thereby establishing a central role of this factor in the commensal lifestyle of C. albicans in the oral niche of the host. The oral microbiota represents an important part of the human microbiota and includes several hundreds to several thousands of bacterial and fungal species. One of the most prominent fungus colonizing the oral cavity is the yeast Candida albicans. While the presence of C. albicans usually remains unnoticed, the fungus can under certain circumstances cause lesions on the lining of the mouth referred to as oral thrush or contribute to other common oral diseases such as caries. Maintaining C. albicans commensalism in the oral mucosa is therefore of utmost importance for oral health and overall wellbeing. While overt fungal growth and disease is limited by immunosurveillance mechanisms during homeostasis, C. albicans strives to survive and evades elimination from the host. Here, we show that while commensalism in the oral cavity is characterized by a restricted fungal virulence and hyphal program, enforcing filamentation in a commensal isolate is sufficient for driving pathogenicity and fungus-induced inflammation in the oral mucosa thwarting persistent colonization. Our results further support a critical role for specialized nutrient acquisition allowing the fungus to thrive in the nutrient poor environment of the squamous epithelium. Together, this work revealed key determinants of C. albicans commensalism in the oral niche.
Collapse
Affiliation(s)
- Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sarah Mertens
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sara Amorim-Vaz
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Laxmi Shanker Rai
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Gutierrez MW, van Tilburg Bernardes E, Changirwa D, McDonald B, Arrieta MC. "Molding" immunity-modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunol 2022; 15:573-583. [PMID: 35474360 DOI: 10.1038/s41385-022-00515-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Fungi are important yet understudied contributors to the microbial communities of the gastrointestinal tract. Starting at birth, the intestinal mycobiome undergoes a period of dynamic maturation under the influence of microbial, host, and extrinsic influences, with profound functional implications for immune development in early life, and regulation of immune homeostasis throughout life. Candida albicans serves as a model organism for understanding the cross-talk between fungal colonization dynamics and immunity, and exemplifies unique mechanisms of fungal-immune interactions, including fungal dimorphism, though our understanding of other intestinal fungi is growing. Given the prominent role of the gut mycobiome in promoting immune homeostasis, emerging evidence points to fungal dysbiosis as an influential contributor to immune dysregulation in a variety of inflammatory and infectious diseases. Here we review current knowledge on the factors that govern host-fungi interactions in the intestinal tract and immunological outcomes in both mucosal and systemic compartments.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Erik van Tilburg Bernardes
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Diana Changirwa
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Oh S, Li K, Prince A, Wheeler ML, Hamade H, Nguyen C, Michelsen KS, Underhill DM. Pathogen size alters C-type lectin receptor signaling in dendritic cells to influence CD4 Th9 cell differentiation. Cell Rep 2022; 38:110567. [PMID: 35354044 PMCID: PMC9052946 DOI: 10.1016/j.celrep.2022.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Dectin-1 recognizes β-glucan in fungal cell walls, and activation of Dectin-1 in dendritic cells (DCs) influences immune responses against fungi. Although many studies have shown that DCs activated via Dectin-1 induce different subsets of T helper cells according to different cytokine milieus, the mechanisms underlying such differences remain unknown. By harnessing polymorphic Candida albicans and polystyrene beads of different sizes, we find that target size influences production of cytokines that control differentiation of T helper cell subsets. Hyphal C. albicans and large beads activate DCs but cannot be phagocytosed due to their sizes, which prolongs the duration of Dectin-1 signaling. Transcriptomic analysis reveals that expression of Il33 is significantly increased by larger targets, and increased IL-33 expression promotes TH9 responses. Expression of IL-33 is regulated by the Dectin-1-SYK-PLCγ-CARD9-ERK pathway. Altogether, our study demonstrates that size of fungi can be a determining factor in how DCs induce context-appropriate adaptive immune responses. Oh et al. show that dendritic cells exposed to C. albicans hyphae more strongly induce IL-9-producing T cells compared with cells exposed to yeast. They find that this TH9 response is driven in large part by Dectin-1 sensing microbe size, leading to elevated production of IL-33.
Collapse
Affiliation(s)
- Seeun Oh
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kai Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Prince
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew L Wheeler
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; The Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Prieto D, Pla J. Comparative Analysis of the Fitness of Candida albicans Strains During Colonization of the Mice Gastrointestinal Tract. Methods Mol Biol 2022; 2542:233-244. [PMID: 36008669 DOI: 10.1007/978-1-0716-2549-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Candida albicans populations present in the mammalian gastrointestinal tract are a major source of candidemia and subsequent severe invasive candidiasis in those individuals with acquired or congenital immune defects. Understanding the mechanisms used by this fungus to colonize this niche is, therefore, of primary importance to develop new therapeutic options that could lead to control its proliferation in the host. The recent popularization of models of commensalism in mice combined with the already powerful tools in C. albicans genetics allows to analyze the role of specific genes during colonization. Fitness can be analyzed for a specific C. albicans strain (test strain) by comparing its growth in vivo with an otherwise isogenic control strain via the analysis of the luminal content of the mouse gastrointestinal tract using flow cytometry, qPCR, or viable fungal cell counting. While all these procedures have limitations, they can be used to estimate the degree of adaptation of the test strain to the mammalian tract by determining its relative abundance with an internal control strain. By using specific genetically engineered C. albicans and mouse strains, antibiotic regimes, or even germ-free mice, this methodology allows to determine the role of the host immunological status, the bacterial microbiota, or individual fungal features (e.g., dimorphism) in the process of colonization of C. albicans of the mammalian gut.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
McDonough LD, Mishra AA, Tosini N, Kakade P, Penumutchu S, Liang SH, Maufrais C, Zhai B, Taur Y, Belenky P, Bennett RJ, Hohl TM, Koh AY, Ene IV. Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. mBio 2021; 12:e0287821. [PMID: 34724818 PMCID: PMC8561340 DOI: 10.1128/mbio.02878-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans isolates, 529L and CHN1, that stably colonize the murine GI tract in three different animal facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial microbiota did not show notable differences among mice colonized with the three C. albicans strains. We compared the genotypes and phenotypes of these three strains and identified thousands of single nucleotide polymorphisms (SNPs) and multiple phenotypic differences, including their ability to grow and filament in response to nutritional cues. Despite striking filamentation differences under laboratory conditions, however, analysis of cell morphology in the GI tract revealed that the three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-deficient mice modestly increased the ability of SC5314 to colonize the GI tract relative to CHN1 and 529L. These studies provide new insights into how strain-specific differences impact C. albicans traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans pathobiology in its natural host niche. IMPORTANCE Understanding how fungi colonize the GI tract is increasingly recognized as highly relevant to human health. The animal models used to study Candida albicans commensalism commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to establish successful GI colonization by the C. albicans reference isolate SC5314. Here, we characterize two C. albicans isolates that can colonize the murine GI tract without antibiotic treatment and can therefore be used as tools for studying fungal commensalism. Importantly, experiments were replicated in three different animal facilities and utilized three different mouse strains. Differential colonization between fungal isolates was not associated with alterations in the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial peptide. This work emphasizes the importance of C. albicans intraspecies variation as well as host antimicrobial defense mechanisms in defining the outcome of commensal interactions.
Collapse
Affiliation(s)
- Liam D. McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Animesh A. Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas Tosini
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Andrew Y. Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Iuliana V. Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR, Jin Y, Gu H, Guo GL. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J Fungi (Basel) 2021; 7:jof7121030. [PMID: 34947012 PMCID: PMC8708873 DOI: 10.3390/jof7121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (CA), a commensal and opportunistic eukaryotic organism, frequently inhabits the gastrointestinal (GI) tract and causes life-threatening infections. Antibiotic-induced gut dysbiosis is a major risk factor for increased CA colonization and dissemination from the GI tract. We identified a significant increase of taurocholic acid (TCA), a major bile acid in antibiotic-treated mice susceptible to CA infection. In vivo findings indicate that administration of TCA through drinking water is sufficient to induce colonization and dissemination of CA in wild-type and immunosuppressed mice. Treatment with TCA significantly reduced mRNA expression of immune genes ang4 and Cxcr3 in the colon. In addition, TCA significantly decreased the relative abundance of three culturable species of commensal bacteria, Turicibacter sanguinis, Lactobacillus johnsonii, and Clostridium celatum, in both cecal contents and mucosal scrapings from the colon. Taken together, our results indicate that TCA promotes fungal colonization and dissemination of CA from the GI tract by controlling the host defense system and intestinal microbiota that play a critical role in regulating CA in the intestine.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
- Correspondence: ; Tel.: +1-765-494-0763
| | - Ross Monasky
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Jung Keun Lee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Vijay Antharam
- Department of Chemistry, College of Arts, Humanities and Sciences, Methodist University, Fayetteville, NC 28311, USA;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA;
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
- Center for Translational Science, Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL 33199, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
23
|
|
24
|
Vico SH, Prieto D, Monge RA, Román E, Pla J. The Glyoxylate Cycle Is Involved in White-Opaque Switching in Candida albicans. J Fungi (Basel) 2021; 7:jof7070502. [PMID: 34202465 PMCID: PMC8304919 DOI: 10.3390/jof7070502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans. The master regulator of the white-opaque transition WOR1 has been implicated in the adaptation to this commensal status. A proteomic analysis of cells overexpressing this transcription factor (WOR1OE) suggested an altered metabolism of carbon sources and a phenotypic analysis confirmed this alteration. The WOR1OE cells are deficient in using trehalose and xylose and are unable to use 2C sources, which is consistent with a reduction in the amount of Icl1, the isocitrate lyase enzyme. The icl1Δ/Δ mutants overexpressing WOR1 are deficient in the production of phloxine B positive cells, a main characteristic of opaque cells, a phenotype also observed in mating type hemizygous mtla1Δ icl1Δ/Δ cells, suggesting the involvement of Icl1 in the adaptation to the commensal state. In fact, icl1Δ/Δ cells have reduced fitness in mouse gastrointestinal tract as compared with essentially isogenic heterozygous ICL1/icl1Δ, but overproduction of WOR1 in an icl1Δ/Δ mutant does not restore fitness. These results implicate the glyoxylate shunt in the adaptation to commensalism of C. albicans by mechanisms that are partially independent of WOR1.
Collapse
|
25
|
Dunker C, Polke M, Schulze-Richter B, Schubert K, Rudolphi S, Gressler AE, Pawlik T, Prada Salcedo JP, Niemiec MJ, Slesiona-Künzel S, Swidergall M, Martin R, Dandekar T, Jacobsen ID. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nat Commun 2021; 12:3899. [PMID: 34162849 PMCID: PMC8222383 DOI: 10.1038/s41467-021-24095-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.
Collapse
Affiliation(s)
- Christine Dunker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
| | - Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
- Laboratory Dr. Wisplinghoff, Department of Molecular Biology, Horbeller Strasse 18-20, Cologne, Germany
| | - Bianca Schulze-Richter
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
- Institute of Immunology, Molecular Pathogenesis, Center for Biotechnology and Biomedicine (BBZ), College of Veterinary Medicine, Leipzig University, Deutscher Platz 5, Leipzig, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
| | - Sven Rudolphi
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
| | - A Elisabeth Gressler
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
- Institute of Immunology, Molecular Pathogenesis, Center for Biotechnology and Biomedicine (BBZ), College of Veterinary Medicine, Leipzig University, Deutscher Platz 5, Leipzig, Germany
| | - Tony Pawlik
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
| | - Juan P Prada Salcedo
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - M Joanna Niemiec
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
| | - Silvia Slesiona-Künzel
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstraße 11a, Jena, Germany.
| |
Collapse
|
26
|
Tan CT, Xu X, Qiao Y, Wang Y. A peptidoglycan storm caused by β-lactam antibiotic's action on host microbiota drives Candida albicans infection. Nat Commun 2021; 12:2560. [PMID: 33963193 PMCID: PMC8105390 DOI: 10.1038/s41467-021-22845-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
The commensal fungus Candida albicans often causes life-threatening infections in patients who are immunocompromised with high mortality. A prominent but poorly understood risk factor for the C. albicans commensal‒pathogen transition is the use of broad-spectrum antibiotics. Here, we report that β-lactam antibiotics cause bacteria to release significant quantities of peptidoglycan fragments that potently induce the invasive hyphal growth of C. albicans. We identify several active peptidoglycan subunits, including tracheal cytotoxin, a molecule produced by many Gram-negative bacteria, and fragments purified from the cell wall of Gram-positive Staphylococcus aureus. Feeding mice with β-lactam antibiotics causes a peptidoglycan storm that transforms the gut from a niche usually restraining C. albicans in the commensal state to promoting invasive growth, leading to systemic dissemination. Our findings reveal a mechanism underlying a significant risk factor for C. albicans infection, which could inform clinicians regarding future antibiotic selection to minimize this deadly disease incidence.
Collapse
Affiliation(s)
- Chew Teng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoli Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuan Qiao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
27
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
28
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
29
|
Fungi of the human gut microbiota: Roles and significance. Int J Med Microbiol 2021; 311:151490. [DOI: 10.1016/j.ijmm.2021.151490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
|
30
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
|
32
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
33
|
Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. Cell Host Microbe 2019; 25:432-443.e6. [PMID: 30870623 DOI: 10.1016/j.chom.2019.02.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/11/2018] [Accepted: 02/21/2019] [Indexed: 01/12/2023]
Abstract
Candida albicans is a gut commensal and opportunistic pathogen. The transition between yeast and invasive hyphae is central to virulence but has unknown functions during commensal growth. In a mouse model of colonization, yeast and hyphae co-occur throughout the gastrointestinal tract. However, competitive infections of C. albicans homozygous gene disruption mutants revealed an unanticipated, inhibitory role for the yeast-to-hypha morphogenesis program on commensalism. We show that the transcription factor Ume6, a master regulator of filamentation, inhibits gut colonization, not by effects on cell shape, but by activating the expression of a hypha-specific pro-inflammatory secreted protease, Sap6, and a hyphal cell surface adhesin, Hyr1. Like a ume6 mutant, strains lacking SAP6 exhibit enhanced colonization fitness, whereas SAP6-overexpression strains are attenuated in the gut. These results reveal a tradeoff between fungal programs supporting commensalism and virulence in which selection against hypha-specific markers limits the disease-causing potential of this ubiquitous commensal-pathogen.
Collapse
Affiliation(s)
- Jessica N Witchley
- Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Pallavi Penumetcha
- Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Nina V Abon
- Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Carol A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
|
35
|
Swidergall M. Candida albicans at Host Barrier Sites: Pattern Recognition Receptors and Beyond. Pathogens 2019; 8:E40. [PMID: 30934602 PMCID: PMC6471378 DOI: 10.3390/pathogens8010040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last decades, fungal infections have emerged as a growing threat to human health. Although the human body is at potential risk, various body sites host several commensal fungal species, including Candida albicans. In healthy individuals, C. albicans colonizes different mucosal surfaces without causing harm, while under diverse circumstances the fungus can proliferate and cause disease. In this context, the understanding of host⁻C. albicans interactions in health and during infection may lead to novel therapeutic approaches. Importantly, host cells express pattern recognition receptors (PRRs), which sense conserved fungal structures and orchestrate innate immune responses. Herein, important findings on the topic of the recognition of C. albicans at host barrier sites are discussed. This review briefly summarizes the importance and functions of myeloid PRRs, reviews the fungal recognition and biology of stromal cells, and highlights important C. albicans virulence attributes during site-specific proliferation and invasion.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
36
|
Wu Y, Du S, Johnson JL, Tung HY, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, Zheng H, Corry DB. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat Commun 2019; 10:58. [PMID: 30610193 PMCID: PMC6320369 DOI: 10.1038/s41467-018-07991-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Bloodborne infections with Candida albicans are an increasingly recognized complication of modern medicine. Here, we present a mouse model of low-grade candidemia to determine the effect of disseminated infection on cerebral function and relevant immune determinants. We show that intravenous injection of 25,000 C. albicans cells causes a highly localized cerebritis marked by the accumulation of activated microglial and astroglial cells around yeast aggregates, forming fungal-induced glial granulomas. Amyloid precursor protein accumulates within the periphery of these granulomas, while cleaved amyloid beta (Aβ) peptides accumulate around the yeast cells. CNS-localized C. albicans further activate the transcription factor NF-κB and induce production of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor (TNF), and Aβ peptides enhance both phagocytic and antifungal activity from BV-2 cells. Mice infected with C. albicans display mild memory impairment that resolves with fungal clearance. Our results warrant additional studies to understand the effect of chronic cerebritis on cognitive and immune function. The potential links between infections and neurodegenerative disorders are unclear. Here, Wu et al. present a mouse model of low-grade candidemia characterized by highly localized cerebritis, accumulation of amyloid precursor protein and beta peptides, and mild memory impairment that resolves with fungal clearance.
Collapse
Affiliation(s)
- Yifan Wu
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shuqi Du
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jennifer L Johnson
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hui-Ying Tung
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cameron T Landers
- Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yuwei Liu
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Brittany G Seman
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Robert T Wheeler
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Mauro Costa-Mattioli
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Farrah Kheradmand
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA
| | - Hui Zheng
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - David B Corry
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Román E, Huertas B, Prieto D, Díez-Orejas R, Pla J. TUP1-mediated filamentation in Candida albicans leads to inability to colonize the mouse gut. Future Microbiol 2018; 13:857-867. [PMID: 29877100 DOI: 10.2217/fmb-2018-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM To investigate the role of Candida albicans TUP1-mediated filamentation in the colonization of the mice gut. MATERIALS & METHODS We used molecular genetics to generate a strain where filamentation is regulated by altering the expression of the TUP1 gene with tetracyclines. RESULTS The colonization rates reached with the TUP1REP-RFPREP strain were lower compared with wild-type strain and completely absent after induction of filamentation. No differences in the susceptibility to bile salts nor in the adhesion to the mouse intestine epithelium were observed. CONCLUSION Blockage of C. albicans in a filamentous form impedes gut cell colonization in the mouse.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Blanca Huertas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
38
|
Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge MT, Jacobsen ID, Naglik JR, Kasper L, Mogavero S, Hube B. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. mBio 2018; 9:e00915-18. [PMID: 29871918 PMCID: PMC5989070 DOI: 10.1128/mbio.00915-18] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | | | - Jonathan P Richardson
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Tony Pawlik
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sven Rudolphi
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Marc Juraschitz
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Mariana Blagojevic
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
39
|
Li J, Chen D, Yu B, He J, Zheng P, Mao X, Yu J, Luo J, Tian G, Huang Z, Luo Y. Fungi in Gastrointestinal Tracts of Human and Mice: from Community to Functions. MICROBIAL ECOLOGY 2018; 75:821-829. [PMID: 29110065 DOI: 10.1007/s00248-017-1105-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 05/10/2023]
Abstract
Fungi are often ignored in studies on gut microbes because of their low level of presence (making up only 0.1% of the total microorganisms) in the gastrointestinal tract (GIT) of monogastric animals. Recent studies using novel technologies such as next generation sequencing have expanded our understanding on the importance of intestinal fungi in humans and animals. Here, we provide a comprehensive review on the fungal community, the so-called mycobiome, and their functions from recent studies in humans and mice. In the GIT of humans, fungi belonging to the phyla Ascomycota, Basidiomycota and Chytridiomycota are predominant. The murine intestines harbor a more diverse assemblage of fungi. Diet is one of the major factors influencing colonization of fungi in the GIT. Presence of the genus Candida is positively associated with dietary carbohydrates, but are negatively correlated with dietary amino acids, proteins, and fatty acids. However, the relationship between diet and the fungal community (and functions), as well as the underlying mechanisms remains unclear. Dysbiosis of intestinal fungi can cause invasive infections and inflammatory bowel diseases (IBD). However, it is not clear whether dysbiosis of the mycobiome is a cause, or a result of IBD. Compared to non-inflamed intestinal mucosa, the abundance and diversity of fungi is significantly increased in the inflamed mucosa. The commonly observed commensal fungal species Candida albicans might contribute to occurrence and development of IBD. Limited studies show that Candida albicans might interact with immune cells of the host intestines through the pathways associated with Dectin-1, Toll-like receptor 2 (TLR2), and TLR4. This review is expected to provide new thoughts for future studies on intestinal fungi and for new therapies to fungal infections in the GIT of human and animals.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
40
|
Kobayashi-Sakamoto M, Tamai R, Isogai E, Kiyoura Y. Gastrointestinal colonisation and systemic spread of Candida albicans in mice treated with antibiotics and prednisolone. Microb Pathog 2018; 117:191-199. [PMID: 29477742 DOI: 10.1016/j.micpath.2018.02.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
Abstract
Normally, Candida albicans is a commensal microbe that resides in the human oral cavity, gut and vagina. However, the fungus can cause mucosal and systemic infections in immunocompromised individuals. The mechanism by which local mucosal infections progress to systemic candidiasis is poorly understood. Here, a murine model of gastrointestinal (GI) candidiasis was developed by inoculation of the oral cavity, followed by treatment with tetracycline (TC) and prednisolone (PSL). Temporal progression from a local infection of the oral cavity to a systemic infection was then monitored. Histological analysis of tissues from mice treated with both TC and PSL revealed massive infiltration of the tongue and stomach by hyphae. PSL increased the fungal burden in the tongue, stomach and small intestine, and facilitated dissemination to the spleen, kidney and liver within 3 days post-infection. Treatment with both TC and PSL supressed interferon (IFN)-γ and interleukin (IL)-17 (cytokines that play key roles in host defence against fungal infection) levels in the tongue, which were induced by C. albicans infection. In addition, the mucosal layer of the small intestine of mice treated with both TC and PSL was almost destroyed by the fungal infection; this may be a critical event that allows passage of the fungus across the mucosa and into the systemic circulation. Thus, this mouse model is useful for studying mechanisms underlying progression of C. albicans from a local infection of the oral cavity to a systemic infection in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| | - Emiko Isogai
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| |
Collapse
|
41
|
Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol 2018; 89:78-90. [PMID: 29366628 DOI: 10.1016/j.semcdb.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Abstract
Fungal infections remain a significant global health problem in humans. Fungi infect millions of people worldwide and cause from acute superficial infections to life-threatening systemic disease to chronic illnesses. Trying to decipher the complex innate and adaptive immune mechanisms that protect humans from pathogenic fungi is therefore a key research goal that may lead to immune-based therapeutic strategies and improved patient outcomes. In this review, we summarize how the cells and molecules of the innate immune system activate the adaptive immune system to elicit long-term immunity to fungi. We present current knowledge and exciting new advances in the context of organ-specific immunity, outlining the tissue-specific tropisms for the major pathogenic fungi of humans, the antifungal functions of tissue-resident myeloid cells, and the adaptive immune responses required to protect specific organs from fungal challenge.
Collapse
|
42
|
Cavalieri D, Di Paola M, Rizzetto L, Tocci N, De Filippo C, Lionetti P, Ardizzoni A, Colombari B, Paulone S, Gut IG, Berná L, Gut M, Blanc J, Kapushesky M, Pericolini E, Blasi E, Peppoloni S. Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential. Front Immunol 2018; 8:1997. [PMID: 29403478 PMCID: PMC5780349 DOI: 10.3389/fimmu.2017.01997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/22/2017] [Indexed: 01/29/2023] Open
Abstract
The transition from commensalism to pathogenicity of Candida albicans reflects both the host inability to mount specific immune responses and the microorganism’s dimorphic switch efficiency. In this study, we used whole genome sequencing and microarray analysis to investigate the genomic determinants of the phenotypic changes observed in two C. albicans clinical isolates (YL1 and YQ2). In vitro experiments employing epithelial, microglial, and peripheral blood mononuclear cells were thus used to evaluate C. albicans isolates interaction with first line host defenses, measuring adhesion, susceptibility to phagocytosis, and induction of secretory responses. Moreover, a murine model of peritoneal infection was used to compare the in vivo pathogenic potential of the two isolates. Genome sequence and gene expression analysis of C. albicans YL1 and YQ2 showed significant changes in cellular pathways involved in environmental stress response, adhesion, filamentous growth, invasiveness, and dimorphic transition. This was in accordance with the observed marked phenotypic differences in biofilm production, dimorphic switch efficiency, cell adhesion, invasion, and survival to phagocyte-mediated host defenses. The mutations in key regulators of the hyphal growth pathway in the more virulent strain corresponded to an overall greater number of budding yeast cells released. Compared to YQ2, YL1 consistently showed enhanced pathogenic potential, since in vitro, it was less susceptible to ingestion by phagocytic cells and more efficient in invading epithelial cells, while in vivo YL1 was more effective than YQ2 in recruiting inflammatory cells, eliciting IL-1β response and eluding phagocytic cells. Overall, these results indicate an unexpected isolate-specific variation in pathways important for host invasion and colonization, showing how the genetic background of C. albicans may greatly affect its behavior both in vitro and in vivo. Based on this approach, we propose that the co-occurrence of changes in sequence and expression in genes and pathways driving dimorphic transition and pathogenicity reflects a selective balance between traits favoring dissemination of the pathogen and traits involved in host defense evasion. This study highlights the importance of investigating strain-level, rather than species level, differences, when determining fungal–host interactions and defining commensal or pathogen behavior.
Collapse
Affiliation(s)
- Duccio Cavalieri
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Monica Di Paola
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Florence, Italy
| | - Lisa Rizzetto
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Noemi Tocci
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Pisa, Italy
| | - Paolo Lionetti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università di Firenze, Florence, Italy
| | - Andrea Ardizzoni
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Bruna Colombari
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Simona Paulone
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Ivo G Gut
- Centro Nacional de Anàlisi Genòmica, Barcelona, Spain
| | - Luisa Berná
- Unidad de Biologia Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marta Gut
- Centro Nacional de Anàlisi Genòmica, Barcelona, Spain
| | - Julie Blanc
- Centro Nacional de Anàlisi Genòmica, Barcelona, Spain
| | - Misha Kapushesky
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Eva Pericolini
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Elisabetta Blasi
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Samuele Peppoloni
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
43
|
Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. Curr Top Microbiol Immunol 2018; 422:265-301. [PMID: 30062595 DOI: 10.1007/82_2018_117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human microbiota consists of bacteria, archaea, viruses, and fungi that build a highly complex network of interactions between each other and the host. While there are many examples for commensal bacterial influence on host health and immune modulation, little is known about the role of commensal fungi inside the gut community. Up until now, fungal research was concentrating on opportunistic diseases caused by fungal species, leaving the possible role of fungi as part of the microbiota largely unclear. Interestingly, fungal and bacterial abundance in the gut appear to be negatively correlated and disruption of the bacterial microbiota is a prerequisite for fungal overgrowth. The mechanisms behind bacterial colonization resistance are likely diverse, including direct antagonism as well as bacterial stimulation of host defense mechanisms. In this work, we will review the current knowledge of the development of the intestinal bacterial and fungal community, the influence of the microbiota on human health and disease, and the role of the opportunistic yeast C. albicans. We will furthermore discuss the possible benefits of commensal fungal colonization. Finally, we will summarize the recent findings on bacterial-fungal interactions.
Collapse
Affiliation(s)
- Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - M Joanna Niemiec
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Alexander Steimle
- Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
| | - Julia S Frick
- Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
44
|
Prieto D, Román E, Alonso-Monge R, Pla J. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans. Front Cell Infect Microbiol 2017; 7:389. [PMID: 28955659 PMCID: PMC5600957 DOI: 10.3389/fcimb.2017.00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
45
|
Kolls JK. Commentary: Understanding the Impact of Infection, Inflammation and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med (Lausanne) 2017; 4:24. [PMID: 28303241 PMCID: PMC5332367 DOI: 10.3389/fmed.2017.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jay K Kolls
- Department of Pediatrics, Richard King Mellon Institute for Pediatric Research, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
46
|
ADHESIVE PROPERTIES AND SENSITIVITY TO ANTIFUNGAL DRUGS OF CANDIDA ALBICANS, WHICH ARE RELEASED FROM PATIENTS OF GASTROENTEROLOGICAL PROFILE WITH CANDIDIASIS OF THE MUCOSA OF THE UPPER PART OF THE DIGESTIVE TRACT. EUREKA: HEALTH SCIENCES 2016. [DOI: 10.21303/2504-5679.2016.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans were released from 146 loci from 89 patients in order to perform the investigation. The fourth stage of contamination by Candida albicans in the scrape from the tongue and candidiasis of the esophagus or /and the stomach during microbiologic investigations of the biopsy materials were the main criterion for this research. HIV-infected patients and patients in whom antibacterial therapy was done less than in four weeks were excluded from the investigation. Microorganisms were taken from the next biopsy materials: oropharyngeal area included 81, esophagus contained 30, stomach included 24 in general (the body of the stomach contained 14 and antrum included 10, gastric juice included 11. Adhesion evaluation was done by microtechnique in U-shaped microplates with formalized erythrocytes 0(І), Rh +. According to the results of the investigation, the released fungi in 51,37 % of cases were characterized as nonadherent ones, in 28,77 % of cases it was defined as low level of adhesiveness and only in 17,12 % of cases it was determined as average and high level of the adhesiveness. Adhesiveness increase was not associated with the increase of the contamination of the oral cavity and with the severity of the damage of the mucosa of the esophagus or /and the stomach. In 97,8 % of cases, strains of Candida albicans were sensitive to fluconazole, in 75,6 % of cases, strains were sensitive to itraconasole and in 24,4 % of cases they were determined as moderately sensitive and resistant that initiates fluconazole as the drug of the choice for the treatment of the candidiasis of the mucosa of the upper part of the digestive tract. So, received data determines the necessity to detect factors of dysfunction of antifungal resistance of the mucosa that detects the development of its candidal damage.
Collapse
|
47
|
da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, Gow NA. Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 2016; 34:111-118. [PMID: 27689902 PMCID: PMC5660506 DOI: 10.1016/j.mib.2016.08.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
Abstract
The cell biology of Candida albicans is adapted both for life as a commensal and as a pathogen. C. albicans can either downregulate or upregulate virulence properties in the human host. This fungus modulates the activity of phagocytes to enable its own survival. Candida is metabolically flexible enabling it to survive in multiple niches in the host.
Candida albicans is a commensal coloniser of most people and a pathogen of the immunocompromised or patients in which barriers that prevent dissemination have been disrupted. Both the commensal and pathogenic states involve regulation and adaptation to the host microenvironment. The pathogenic potential can be downregulated to sustain commensalism or upregulated to damage host tissue and avoid and subvert immune surveillance. In either case it seems as though the cell biology of this fungus has evolved to enable the establishment of different types of relationships with the human host. Here we summarise latest advances in the analysis of mechanisms that enable C. albicans to occupy different body sites whilst avoiding being eliminated by the sentinel activities of the human immune system.
Collapse
Affiliation(s)
- Alessandra da Silva Dantas
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Kathy K Lee
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Ingrida Raziunaite
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Katja Schaefer
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Jeanette Wagener
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Bhawna Yadav
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Neil Ar Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK.
| |
Collapse
|
48
|
Rodrigues L, Miranda IM, Andrade GM, Mota M, Cortes L, Rodrigues AG, Cunha RA, Gonçalves T. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly. Oncotarget 2016; 7:62862-62872. [PMID: 27590517 PMCID: PMC5325332 DOI: 10.18632/oncotarget.11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density.
Collapse
Affiliation(s)
- Lisa Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M. Miranda
- Department of Microbiology, Cardiovascular Research & Development Unit, CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Geanne M. Andrade
- Department of Physiology and Pharmacology, Federal University of Ceará, Ceará, Brazil
| | - Marta Mota
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luísa Cortes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Acácio G. Rodrigues
- Department of Microbiology, Cardiovascular Research & Development Unit, CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rodrigo A. Cunha
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Liang W, Guan G, Dai Y, Cao C, Tao L, Du H, Nobile CJ, Zhong J, Huang G. Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen Candida albicans. Mol Microbiol 2016; 102:506-519. [PMID: 27479705 DOI: 10.1111/mmi.13475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 01/17/2023]
Abstract
Microorganisms rarely exist as single species in natural environments. The opportunistic fungal pathogen Candida albicans and lactic acid bacteria (LAB) are common members of the microbiota of several human niches such as the mouth, gut and vagina. Lactic acid bacteria are known to suppress filamentation, a key virulence feature of C. albicans, through the production of lactic acid and other metabolites. Here we report that C. albicans cells switch between two heritable cell types, white and opaque, to undergo filamentation to adapt to diversified environments. We show that acidic pH conditions caused by LAB and low temperatures support opaque cell filamentation, while neutral pH conditions and high temperatures promote white cell filamentation. The cAMP signalling pathway and the Rfg1 transcription factor play major roles in regulating the responses to these conditions. This cell type-specific response of C. albicans to different environmental conditions reflects its elaborate regulatory control of phenotypic plasticity.
Collapse
Affiliation(s)
- Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chengjun Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California, United States of America
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabrò A, Jousson O, Donati C, Cavalieri D, De Filippo C. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front Microbiol 2016; 7:1227. [PMID: 27536299 PMCID: PMC4971113 DOI: 10.3389/fmicb.2016.01227] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here, we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals' life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to fungal gut populations.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund MachSan Michele all' Adige, Italy; Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Monica Di Paola
- Department of Neuroscience, Psychology, Drug Research and Child Health, Meyer Children's Hospital, University of Florence Florence, Italy
| | - Irene Stefanini
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all' Adige, Italy
| | - Davide Albanese
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all' Adige, Italy
| | - Lisa Rizzetto
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all' Adige, Italy
| | - Paolo Lionetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Meyer Children's Hospital, University of Florence Florence, Italy
| | - Antonio Calabrò
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence Florence, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento Trento, Italy
| | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all' Adige, Italy
| | - Duccio Cavalieri
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund MachSan Michele all' Adige, Italy; Department of Biology, University of Florence, Sesto FiorentinoFlorence, Italy
| | | |
Collapse
|