1
|
Tang WK, Salinas ND, Kolli SK, Xu S, Urusova DV, Kumar H, Jimah JR, Subramani PA, Ogbondah MM, Barnes SJ, Adams JH, Tolia NH. Multistage protective anti-CelTOS monoclonal antibodies with cross-species sterile protection against malaria. Nat Commun 2024; 15:7487. [PMID: 39209843 PMCID: PMC11362571 DOI: 10.1038/s41467-024-51701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
CelTOS is a malaria vaccine antigen that is conserved in Plasmodium and other apicomplexan parasites and plays a role in cell-traversal. The structural basis and mechanisms of CelTOS-induced protective immunity to parasites are unknown. Here, CelTOS-specific monoclonal antibodies (mAbs) 7g7 and 4h12 demonstrated multistage activity, protecting against liver infection and preventing parasite transmission to mosquitoes. Both mAbs demonstrated cross-species activity with sterile protection against in vivo challenge with transgenic parasites containing either P. falciparum or P. vivax CelTOS, and with transmission reducing activity against P. falciparum. The mAbs prevented CelTOS-mediated pore formation providing insight into the protective mechanisms. X-ray crystallography and mutant-library epitope mapping revealed two distinct broadly conserved neutralizing epitopes. 7g7 bound to a parallel dimer of CelTOS, while 4h12 bound to a novel antiparallel dimer architecture. These findings inform the design of antibody therapies and vaccines and raise the prospect of a single intervention to simultaneously combat P. falciparum and P. vivax malaria.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Animals
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Malaria Vaccines/immunology
- Antibodies, Protozoan/immunology
- Mice
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/parasitology
- Crystallography, X-Ray
- Epitopes/immunology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Antigens, Protozoan/immunology
- Humans
- Female
- Epitope Mapping
- Malaria/immunology
- Malaria/prevention & control
- Malaria/parasitology
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
Collapse
Affiliation(s)
- Wai Kwan Tang
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nichole D Salinas
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Surendra Kumar Kolli
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Darya V Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pradeep Annamalai Subramani
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Samantha J Barnes
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Niraj H Tolia
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Ntumngia FB, Kolli SK, Annamalai Subramani P, Barnes SJ, Nicholas J, Ogbondah MM, Barnes BB, Salinas ND, Thawornpan P, Tolia NH, Chootong P, Adams JH. Naturally acquired antibodies against Plasmodium vivax pre-erythrocytic stage vaccine antigens inhibit sporozoite invasion of human hepatocytes in vitro. Sci Rep 2024; 14:1260. [PMID: 38218737 PMCID: PMC10787766 DOI: 10.1038/s41598-024-51820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
In Plasmodium vivax, the most studied vaccine antigens are aimed at blocking merozoite invasion of erythrocytes and disease development. Very few studies have evaluated pre-erythrocytic (PE) stage antigens. The P. vivax circumsporozoite protein (CSP), is considered the leading PE vaccine candidate, but immunity to CSP is short-lived and variant specific. Thus, there is a need to identify other potential candidates to partner with CSP in a multivalent vaccine to protect against infection and disease. We hypothesize that sporozoite antigens important for host cell infection are considered potential targets. In this study, we evaluated the magnitude and quality of naturally acquired antibody responses to four P. vivax PE antigens: sporozoite surface protein 3 (SSP3), sporozoite protein essential for traversal 1 (SPECT1), cell traversal protein of ookinetes and sporozoites (CelTOS) and CSP in plasma of P. vivax infected patients from Thailand. Naturally acquired antibodies to these antigens were prevalent in the study subjects, but with significant differences in magnitude of IgG antibody responses. About 80% of study participants had antibodies to all four antigens and only 2% did not have antibodies to any of the antigens. Most importantly, these antibodies inhibited sporozoite infection of hepatocytes in vitro. Significant variations in magnitude of antigen-specific inhibitory antibody responses were observed with individual samples. The highest inhibitory responses were observed with anti-CelTOS antibodies, followed by anti-SPECT1, SSP3 and CSP antibodies respectively. These data highlight the vaccine potential of these antigens in protecting against hepatocyte infection and the need for a multi-valent pre-erythrocytic vaccine to prevent liver stage development of P. vivax sporozoites.
Collapse
Affiliation(s)
- Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA.
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
| | | | - Samantha J Barnes
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
| | - Justin Nicholas
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
| | - Brian B Barnes
- College of Marine Science, University of South Florida, St Petersburg, FL, USA
| | - Nichole D Salinas
- Host Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Niraj H Tolia
- Host Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - John H Adams
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Bhide AR, Surve DH, Jindal AB. Nanocarrier based active targeting strategies against erythrocytic stage of malaria. J Control Release 2023; 362:297-308. [PMID: 37625598 DOI: 10.1016/j.jconrel.2023.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The Global Technical Strategy for Malaria 2016-2030 aims to achieve a 90% reduction in malaria cases, and strategic planning and execution are crucial for accomplishing this target. This review aims to understand the complex interaction between erythrocytic receptors and parasites and to use this knowledge to actively target the erythrocytic stage of malaria. The review provides insight into the malaria life cycle, which involves various receptors such as glycophorin A, B, C, and D (GPA/B/C/D), complement receptor 1, basigin, semaphorin 7a, Band 3/ GPA, Kx, and heparan sulfate proteoglycan for parasite cellular binding and ingress in the erythrocytic and exo-erythrocytic stages. Synthetic peptides mimicking P. falciparum receptor binding ligands, human serum albumin, chondroitin sulfate, synthetic polymers, and lipids have been utilized as ligands and decorated onto nanocarriers for specific targeting to parasite-infected erythrocytes. The need of the hour for treatment and prophylaxis against malaria is a broadened horizon that includes multiple targeting strategies against the entry, proliferation, and transmission stages of the parasite. Platform technologies with established pre-clinical safety and efficacy should be translated into clinical evaluation and formulation scale-up. Future development should be directed towards nanovaccines as proactive tools against malaria infection.
Collapse
Affiliation(s)
- Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India
| | - Dhanashree H Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India.
| |
Collapse
|
4
|
Baba M, Nozaki M, Tachibana M, Tsuboi T, Torii M, Ishino T. Rhoptry neck protein 4 plays important roles during Plasmodium sporozoite infection of the mammalian liver. mSphere 2023; 8:e0058722. [PMID: 37272704 PMCID: PMC10449513 DOI: 10.1128/msphere.00587-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
During invasion, Plasmodium parasites secrete proteins from rhoptry and microneme apical end organelles, which have crucial roles in attaching to and invading target cells. A sporozoite stage-specific gene silencing system revealed that rhoptry neck protein 2 (RON2), RON4, and RON5 are important for sporozoite invasion of mosquito salivary glands. Here, we further investigated the roles of RON4 during sporozoite infection of the liver in vivo. Following intravenous inoculation of RON4-knockdown sporozoites into mice, we demonstrated that sporozoite RON4 has multiple functions during sporozoite traversal of sinusoidal cells and infection of hepatocytes. In vitro infection experiments using a hepatoma cell line revealed that secreted RON4 is involved in sporozoite adhesion to hepatocytes and has an important role in the early steps of hepatocyte infection. In addition, in vitro motility assays indicated that RON4 is required for sporozoite attachment to the substrate and the onset of migration. These findings indicate that RON4 is crucial for sporozoite migration toward and invasion of hepatocytes via attachment ability and motility.IMPORTANCEMalarial parasite transmission to mammals is established when sporozoites are inoculated by mosquitoes and migrate through the bloodstream to infect hepatocytes. Many aspects of the molecular mechanisms underpinning migration and cellular invasion remain largely unelucidated. By applying a sporozoite stage-specific gene silencing system in the rodent malarial parasite, Plasmodium berghei, we demonstrated that rhoptry neck protein 4 (RON4) is crucial for sporozoite infection of the liver in vivo. Combined with in vitro investigations, it was revealed that RON4 functions during a crossing of the sinusoidal cell layer and invading hepatocytes, at an early stage of liver infection, by mediating the sporozoite capacity for adhesion and the onset of motility. Since RON4 is also expressed in Plasmodium merozoites and Toxoplasma tachyzoites, our findings contribute to understanding the conserved invasion mechanisms of Apicomplexa parasites.
Collapse
Affiliation(s)
- Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Mamoru Nozaki
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Kehrer J, Formaglio P, Muthinja JM, Weber S, Baltissen D, Lance C, Ripp J, Grech J, Meissner M, Funaya C, Amino R, Frischknecht F. Plasmodium
sporozoite disintegration during skin passage limits malaria parasite transmission. EMBO Rep 2022; 23:e54719. [PMID: 35403820 PMCID: PMC9253755 DOI: 10.15252/embr.202254719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
During transmission of malaria‐causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane‐associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin‐GFP localizes at the cytoplasmic periphery and concavin(−) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(−) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(−) sporozoites are transmitted. Strikingly, motile concavin(−) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- Infectious Diseases Imaging Platform Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Pauline Formaglio
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Julianne Mendi Muthinja
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Sebastian Weber
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Danny Baltissen
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Christopher Lance
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
| | - Janessa Grech
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Markus Meissner
- Experimental Parasitology Ludwig Maximilian University Munich Planegg‐Martinsried Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility Heidelberg University Heidelberg Germany
| | - Rogerio Amino
- Malaria Infection and Immunity Unit Department of Parasites and Insect Vectors Institut Pasteur Paris France
| | - Friedrich Frischknecht
- Integrative Parasitology Center for Infectious Diseases Heidelberg University Medical School Heidelberg Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg Heidelberg Germany
| |
Collapse
|
6
|
Beyer K, Kracht S, Kehrer J, Singer M, Klug D, Frischknecht F. Limited Plasmodium sporozoite gliding motility in the absence of TRAP family adhesins. Malar J 2021; 20:430. [PMID: 34717635 PMCID: PMC8557484 DOI: 10.1186/s12936-021-03960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Background Plasmodium sporozoites are the highly motile forms of malaria-causing parasites that are transmitted by the mosquito to the vertebrate host. Sporozoites need to enter and cross several cellular and tissue barriers for which they employ a set of surface proteins. Three of these proteins are members of the thrombospondin related anonymous protein (TRAP) family. Here, potential additive, synergistic or antagonistic roles of these adhesion proteins were investigated. Methods Four transgenic Plasmodium berghei parasite lines that lacked two or all three of the TRAP family adhesins TRAP, TLP and TREP were generated using positive–negative selection. The parasite lines were investigated for their capacity to attach to and move on glass, their ability to egress from oocysts and their capacity to enter mosquito salivary glands. One strain was in addition interrogated for its capacity to infect mice. Results The major phenotype of the TRAP single gene deletion dominates additional gene deletion phenotypes. All parasite lines including the one lacking all three proteins were able to conduct some form of active, if unproductive movement. Conclusions The individual TRAP-family adhesins appear to play functionally distinct roles during motility and infection. Other proteins must contribute to substrate adhesion and gliding motility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03960-3.
Collapse
Affiliation(s)
- Konrad Beyer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Simon Kracht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,German Center for Infection Research, Partner Site Heidelberg, 69120, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Straße 48, Planegg, 82152, Munich, Germany
| | - Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, 67000, Strasbourg, France
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,German Center for Infection Research, Partner Site Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Loubens M, Vincensini L, Fernandes P, Briquet S, Marinach C, Silvie O. Plasmodium sporozoites on the move: Switching from cell traversal to productive invasion of hepatocytes. Mol Microbiol 2021; 115:870-881. [PMID: 33191548 PMCID: PMC8247013 DOI: 10.1111/mmi.14645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Parasites of the genus Plasmodium, the etiological agent of malaria, are transmitted through the bite of anopheline mosquitoes, which deposit sporozoites into the host skin. Sporozoites migrate through the dermis, enter the bloodstream, and rapidly traffic to the liver. They cross the liver sinusoidal barrier and traverse several hepatocytes before switching to productive invasion of a final one for replication inside a parasitophorous vacuole. Cell traversal and productive invasion are functionally independent processes that require proteins secreted from specialized secretory organelles known as micronemes. In this review, we summarize the current understanding of how sporozoites traverse through cells and productively invade hepatocytes, and discuss the role of environmental sensing in switching from a migratory to an invasive state. We propose that timely controlled secretion of distinct microneme subsets could play a key role in successful migration and infection of hepatocytes. A better understanding of these essential biological features of the Plasmodium sporozoite may contribute to the development of new strategies to fight against the very first and asymptomatic stage of malaria.
Collapse
Affiliation(s)
- Manon Loubens
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Laetitia Vincensini
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Priyanka Fernandes
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Sylvie Briquet
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Carine Marinach
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Olivier Silvie
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| |
Collapse
|
8
|
Arredondo SA, Schepis A, Reynolds L, Kappe SHI. Secretory Organelle Function in the Plasmodium Sporozoite. Trends Parasitol 2021; 37:651-663. [PMID: 33589364 DOI: 10.1016/j.pt.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium sporozoites exhibit a complex infection biology in the mosquito and mammalian hosts. The sporozoite apical secretory organelles, the micronemes and rhoptries, store protein mediators of parasite/host/vector interactions and must secrete them in a temporally and spatially well orchestrated manner. Micronemal proteins are critical for sporozoite motility throughout its journey from the mosquito midgut oocyst to the mammalian liver, and also for cell traversal (CT) and hepatocyte invasion. Rhoptry proteins, until recently thought to be only important for hepatocyte invasion, appear to also play an unexpected role in motility and in the interaction with mosquito tissue. Therefore, navigating the different microenvironments with secretion likely requires the sporozoite to have a more complex system of secretory organelles than previously appreciated.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
9
|
Chuang YM, Agunbiade TA, Tang XD, Freudzon M, Almeras L, Fikrig E. The Effects of A Mosquito Salivary Protein on Sporozoite Traversal of Host Cells. J Infect Dis 2020; 224:544-553. [PMID: 33306099 DOI: 10.1093/infdis/jiaa759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 01/03/2023] Open
Abstract
Malaria begins when Plasmodium-infected Anopheles mosquitoes take a blood meal on a vertebrate. During the initial probing process, mosquitoes inject saliva and sporozoites into the host skin. Components of mosquito saliva have the potential to influence sporozoite functionality. Sporozoite-associated mosquito saliva protein 1 (SAMSP1; AGAP013726) was among several proteins identified when sporozoites were isolated from saliva, suggesting it may have an effect on Plasmodium. Recombinant SAMSP1 enhanced sporozoite gliding and cell traversal activity in vitro. Moreover, SAMSP1 decreased neutrophil chemotaxis in vivo and in vitro, thereby also exerting an influence on the host environment in which the sporozoites reside. Active or passive immunization of mice with SAMSP1 or SAMSP1 antiserum diminished the initial Plasmodium burden after infection. Passive immunization of mice with SAMSP1 antiserum also added to the protective effect of a circumsporozoite protein monoclonal antibody. SAMSP1 is, therefore, a mosquito saliva protein that can influence sporozoite infectivity in the vertebrate host.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tolulope A Agunbiade
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Xu-Dong Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Marianna Freudzon
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs-Infections Tropicales et Méditerranéennes, IHU-Méditerranée Infection, Marseille, France
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Moreau CA, Quadt KA, Piirainen H, Kumar H, Bhargav SP, Strauss L, Tolia NH, Wade RC, Spatz JP, Kursula I, Frischknecht F. A function of profilin in force generation during malaria parasite motility that is independent of actin binding. J Cell Sci 2020; 134:jcs233775. [PMID: 32034083 DOI: 10.1242/jcs.233775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023] Open
Abstract
During transmission of malaria-causing parasites from mosquito to mammal, Plasmodium sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration. Mutations in the actin-binding region of profilin, a near ubiquitous actin-binding protein, revealed that loss of actin binding also correlates with loss of force production and motility. Here, we show that different mutations in profilin, that do not affect actin binding in vitro, still generate lower force during Plasmodium sporozoite migration. Lower force generation inversely correlates with increased retrograde flow suggesting that, like in mammalian cells, the slow down of flow to generate force is the key underlying principle governing Plasmodium gliding motility.
Collapse
Affiliation(s)
- Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Katharina A Quadt
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Laboratory of Biophysical Chemistry, Heidelberg University, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Henni Piirainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Saligram P Bhargav
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Léanne Strauss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Laboratory of Biophysical Chemistry, Heidelberg University, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Arévalo-Pinzón G, Garzón-Ospina D, Pulido FA, Bermúdez M, Forero-Rodríguez J, Rodríguez-Mesa XM, Reyes-Guarín LP, Suárez CF, Patarroyo MA. Plasmodium vivax Cell Traversal Protein for Ookinetes and Sporozoites (CelTOS) Functionally Restricted Regions Are Involved in Specific Host-Pathogen Interactions. Front Cell Infect Microbiol 2020; 10:119. [PMID: 32266169 PMCID: PMC7105572 DOI: 10.3389/fcimb.2020.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Following the injection of Plasmodium sporozoites by a female Anopheles mosquito into the dermis, they become engaged on a long journey to hepatic tissue where they must migrate through different types of cell to become established in parasitophorous vacuoles in hepatocytes. Studies have shown that proteins such as cell traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) play a crucial role in cell-traversal ability. Although CelTOS has been extensively studied in various species and included in pre-clinical assays it remains unknown which P. vivax CelTOS (PvCelTOS) regions are key in its interaction with traversed or target cells (Kupffer or hepatocytes) and what type of pressure, association and polymorphism these important regions could have to improve their candidacy as important vaccine antigens. This work has described producing a recombinant PvCelTOS which was recognized by ~30% P. vivax-infected individuals, thereby confirming its ability for inducing a natural immune response. PvCelTOS' genetic diversity in Colombia and its ability to interact with HeLa (traversal cell) and/or HepG2 cell (target cell) external membrane have been assessed. One region in the PvCelTOS amino-terminal region and another in its C-terminus were seen to be participating in host-pathogen interactions. These regions had important functional constraint signals (ω < 0.3 and several sites under negative selection) and were able to inhibit specific rPvCelTOS binding to HeLa cells. This led to suggesting that sequences between aa 41-60 (40833) and 141-160 (40838) represent promising candidates for an anti-P. vivax subunit-based vaccine.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diego Garzón-Ospina
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogota, Colombia
| | - Fredy A Pulido
- Receptor-Ligand Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota, Colombia
| | - Maritza Bermúdez
- Receptor-Ligand Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Xandy M Rodríguez-Mesa
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Leidy P Reyes-Guarín
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Carlos F Suárez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.,Biomathematics Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Manuel A Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.,Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| |
Collapse
|
12
|
Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat Commun 2019; 10:4964. [PMID: 31673027 PMCID: PMC6823429 DOI: 10.1038/s41467-019-12936-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition. Here, the authors report transcriptomes and proteomes of oocyst sporozoite and salivary gland sporozoite stages in rodent-infectious Plasmodium yoelii parasites and human infectious Plasmodium falciparum parasites and define two waves of translational repression during sporozoite maturation.
Collapse
|
13
|
Ishino T, Murata E, Tokunaga N, Baba M, Tachibana M, Thongkukiatkul A, Tsuboi T, Torii M. Rhoptry neck protein 2 expressed in Plasmodium sporozoites plays a crucial role during invasion of mosquito salivary glands. Cell Microbiol 2018; 21:e12964. [PMID: 30307699 PMCID: PMC6587811 DOI: 10.1111/cmi.12964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/03/2023]
Abstract
Malaria parasite transmission to humans is initiated by the inoculation of Plasmodium sporozoites into the skin by mosquitoes. Sporozoites develop within mosquito midgut oocysts, first invade the salivary glands of mosquitoes, and finally infect hepatocytes in mammals. The apical structure of sporozoites is conserved with the infective forms of other apicomplexan parasites that have secretory organelles, such as rhoptries and micronemes. Because some rhoptry proteins are crucial for Plasmodium merozoite infection of erythrocytes, we examined the roles of rhoptry proteins in sporozoites. Here, we demonstrate that rhoptry neck protein 2 (RON2) is also localized to rhoptries in sporozoites. To elucidate RON2 function in sporozoites, we applied a promoter swapping strategy to restrict ron2 transcription to the intraerythrocytic stage in the rodent malaria parasite, Plasmodium berghei. Ron2 knockdown sporozoites were severely impaired in their ability to invade salivary glands, via decreasing the attachment capacity to the substrate. This is the first rhoptry protein demonstrated to be involved in salivary gland invasion. In addition, ron2 knockdown sporozoites showed less infectivity to hepatocytes, possibly due to decreased attachment/gliding ability, indicating that parts of the parasite invasion machinery are conserved, but their contribution might differ among infective forms. Our sporozoite stage‐specific knockdown system will help to facilitate understanding the comprehensive molecular mechanisms of parasite invasion of target cells.
Collapse
Affiliation(s)
- Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eri Murata
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Naohito Tokunaga
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | | | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
14
|
Armistead JS, Jennison C, O'Neill MT, Lopaticki S, Liehl P, Hanson KK, Annoura T, Rajasekaran P, Erickson SM, Tonkin CJ, Khan SM, Mota MM, Boddey JA. Plasmodium falciparum
subtilisin-like ookinete protein SOPT plays an important and conserved role during ookinete infection of the Anopheles stephensi
midgut. Mol Microbiol 2018; 109:458-473. [DOI: 10.1111/mmi.13993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer S. Armistead
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Charlie Jennison
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
| | - Peter Liehl
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; 1649-028 Lisbon Portugal
| | - Kirsten K. Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; 1649-028 Lisbon Portugal
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology; Leiden University Medical Centre; 2333ZA Leiden the Netherlands
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Sara M. Erickson
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Christopher J. Tonkin
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology; Leiden University Medical Centre; 2333ZA Leiden the Netherlands
| | - Maria M. Mota
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; 1649-028 Lisbon Portugal
| | - Justin A. Boddey
- The Walter and Eliza Hall Institute of Medical Research; Parkville 3052 Australia
- Department of Medical Biology; The University of Melbourne; Parkville 3052 Australia
| |
Collapse
|
15
|
Kehrer J, Kuss C, Andres-Pons A, Reustle A, Dahan N, Devos D, Kudryashev M, Beck M, Mair GR, Frischknecht F. Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Sci Rep 2018; 8:11249. [PMID: 30050042 PMCID: PMC6062611 DOI: 10.1038/s41598-018-29590-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Claudia Kuss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Amparo Andres-Pons
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anna Reustle
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Noa Dahan
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Damien Devos
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Centro Andaluz de Biología del Desarrollo CABD, Universidad Pablo de Olavide-CSIC, Carretera de Utrera, 41013, Sevilla, Spain
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,Iowa State University, Biomedical Sciences, College of Veterinary Medicine, 1800 Christensen Drive, Ames, IA, 50011, USA.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.
| |
Collapse
|