1
|
Yue C, Li J, Zhang S, Ma R, Suo M, Chen Y, Jin H, Zeng Y, Chen Y. Activation of the NLRP3-CASP-1 inflammasome is restrained by controlling autophagy during Glaesserella parasuis infection. Vet Microbiol 2024; 295:110160. [PMID: 38964034 DOI: 10.1016/j.vetmic.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Infection with Glaesserella parasuis, the primary pathogen behind Glässer's disease, is often associated with diverse clinical symptoms, including serofibrinous polyserositis, arthritis, and meningitis. Autophagy plays a dual role in bacterial infections, exerting either antagonistic or synergistic effects depending on the nature of the pathogen. Our previous studies have demonstrated that autophagy serves as a defense mechanism, combating inflammation and invasion caused by infection of highly virulent G. parasuis. However, the precise mechanisms remain to be elucidated. Pathogens exhibit distinct interactions with inflammasomes and autophagy processes. Herein, we explored the effect of autophagy on inflammasomes during G. parasuis infection. We found that G. parasuis infection triggers NLRP3-dependent pro-CASP-1-IL-18/IL-1β processing and maturation pathway, resulting in increased release of IL-1β and IL-18. Inhibition of autophagy enhances NLRP3 inflammasome activity, whereas stimulation of autophagy restricts it during G. parasuis infection. Furthermore, assembled NLRP3 inflammasomes undergo ubiquitination and recruit the autophagic adaptor, p62, facilitating their sequestration into autophagosomes during G. parasuis infection. These results suggest that the induction of autophagy mitigates inflammation by eliminating overactive NLRP3 inflammasomes during G. parasuis infection. Our research uncovers a mechanism whereby G. parasuis infection initiates inflammatory responses by promoting the assembly of the NLRP3 inflammasomes and activating NLRP3-CASP-1, both of which processes are downregulated by autophagy. This suggests that pharmacological manipulation of autophagy could be a promising approach to modulate G. parasuis-induced inflammatory responses.
Collapse
Affiliation(s)
- Chaoxiong Yue
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China; State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Siming Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruyi Ma
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mingjiao Suo
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yiwen Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Wang J, Yan P, Jia Y, Guo Z, Guo Y, Yin R, Wang L, Fan Z, Zhou Y, Yuan J, Yin R. Expression profiles of miRNAs in the lung tissue of piglets infected with Glaesserella parasuis and the roles of ssc-miR-135 and ssc-miR-155-3p in the regulation of inflammation. Comp Immunol Microbiol Infect Dis 2024; 111:102214. [PMID: 39002176 DOI: 10.1016/j.cimid.2024.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
MicroRNAs (miRNAs) have been shown to play an important regulatory role in the process of pathogenic infection. However, the miRNAs that regulate the pathogenic process of G. parasuis and their functions are still unknown. Here, high-throughput sequencing was used to quantify the expression of miRNA in piglet lung tissue after G. parasuis XX0306 strain infection. A total of 25 differentially expressed microRNAs (DEmiRNAs) were identified. GO and KEGG pathway enrichment analysis showed that many of the functions of genes that may be regulated by DEmiRNA are related to inflammatory response and immune regulation. Further studies found that ssc-miR-135 may promote the expression of inflammatory factors through NF-κB signaling pathway. Whereas, ssc-miR-155-3p inhibited the inflammatory response induced by G. parasuis, and its regulatory mechanism remains to be further investigated. This study provides a valuable reference for revealing the regulatory effects of miRNAs on the pathogenesis of G. parasuis. DATA AVAILABILITY: The datasets generated during the current study are not publicly available due to this study is currently in the ongoing research stage, and some of the data cannot be made public sooner yet, but are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China.
| | - Ping Yan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yongchao Jia
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhongbo Guo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ying Guo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ronglan Yin
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun 130062, China.
| | - Linxi Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zenglei Fan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuanyuan Zhou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jing Yuan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ronghuan Yin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
He Y, Peng Y, Sun Y, Wan Y, Zhuo R, Hu S, Wang Y, Hu X, Jin H, Hua K. AMPK signaling pathway regulated the expression of the ApoA1 gene via the transcription factor Egr1 during G. parasuis stimulation. Vet Microbiol 2024; 294:110106. [PMID: 38776767 DOI: 10.1016/j.vetmic.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Glaesserella parasuis (G. parasuis) is the causative agent of porcine Glässer's disease, resulting in high mortality rates in pigs due to excessive inflammation-induced tissue damage. Previous studies investigating the protective effects of G. parasuis vaccination indicated a possible role of ApoA1 in reflecting disease progression following G. parasuis infection. However, the mechanisms of ApoA1 expression and its role in these infections are not well understood. In this investigation, newborn porcine tracheal (NPTr) epithelial cells infected with G. parasuis were used to elucidate the molecular mechanism and role of ApoA1. The study revealed that the AMPK pathway activation inhibited ApoA1 expression in NPTr cells infected with G. parasuis for the first time. Furthermore, Egr1 was identified as a core transcription factor regulating ApoA1 expression using a CRISPR/Cas9-based system. Importantly, it was discovered that APOA1 protein significantly reduced apoptosis, pyroptosis, necroptosis, and inflammatory factors induced by G. parasuis in vivo. These findings not only enhance our understanding of ApoA1 in response to bacterial infections but also highlight its potential in mitigating tissue damage caused by G. parasuis infection.
Collapse
Affiliation(s)
- Yanling He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yanxi Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Ran Zhuo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Shuai Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yi Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Xueying Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China.
| | - Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China.
| |
Collapse
|
4
|
Deng X, Li S, Zhu Y, Yu B, Zhang J, Fang Q, Li Z, Chen H, Zhou H. Assessment of the Macrophage Scavenger Receptor CD163 in Mediating Glaesserella parasuis Infection of Host Cells. Vet Sci 2023; 10:vetsci10030235. [PMID: 36977274 PMCID: PMC10054613 DOI: 10.3390/vetsci10030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The macrophage CD163 surface glycoprotein is a member of the SRCR family class B, which has been identified as the key trigger in host-pathogen interactions, but its specific roles in sensing Glaesserella parasuis (G. parasuis) infection are largely unknown. Here, we investigated porcine CD163 in mediating the adhesion and immune response of G. parasuis using in vitro host-bacteria interaction models. CD163-overexpressing Chinese hamster ovary K1 cells (CHO-K1) showed obvious subcellular localization in the cytoplasm, especially in the cytomembrane. Although detection using scanning electron microscopy (SEM) confirmed the bacterial adhesion, there was no significant difference in the adhesion of G. parasuis to CHO-K1 cells between the presence and absence of CD163. In addition, similar results were observed in 3D4/21 cells. Meanwhile, bindings of G. parasuis to nine synthetic peptides, the bacterial binding motifs within SRCR domains of CD163, were weak based on a solid-phase adhesion assay and agglutination assay. Moreover, CD163 had no effect on the expression of G. parasuis-induced inflammatory cytokines (IL-6, INF-γ, IL-10, IL-4 and TGF-β) in CHO-K1 cells. In conclusion, these findings indicate that porcine CD163 plays a minor role in sensing G. parasuis infection.
Collapse
Affiliation(s)
- Xiangwei Deng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuilian Li
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ying Zhu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jing Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qianhai Fang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhimin Li
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huanhuan Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Wu J, Nan W, Peng G, Hu H, Xu C, Huang J, Xiao Z. Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2. Front Cell Infect Microbiol 2023; 13:1192651. [PMID: 37207184 PMCID: PMC10189045 DOI: 10.3389/fcimb.2023.1192651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of pigs, but virulent strains can cause Glässer's disease, resulting in significant economic losses to the swine industry. OmpP2 is an outer membrane protein of this organism that shows considerable heterogeneity between virulent and non-virulent strains, with classification into genotypes I and II. It also acts as a dominant antigen and is involved in the inflammatory response. In this study, 32 monoclonal antibodies (mAbs) against recombinant OmpP2 (rOmpP2) of different genotypes were tested for reactivity to a panel of OmpP2 peptides. Nine linear B cell epitopes were screened, including five common genotype epitopes (Pt1a, Pt7/Pt7a, Pt9a, Pt17, and Pt19/Pt19a) and two groups of genotype-specific epitopes (Pt5 and Pt5-II, Pt11/Pt11a, and Pt11a-II). In addition, we used positive sera from mice and pigs to screen for five linear B-cell epitopes (Pt4, Pt14, Pt15, Pt21, and Pt22). After porcine alveolar macrophages (PAMs) were stimulated with overlapping OmpP2 peptides, we found that the epitope peptides Pt1 and Pt9, and the loop peptide Pt20 which was adjacent epitopes could all significantly upregulated the mRNA expression levels of IL-1α, IL-1β, IL-6, IL-8, and TNF-α. Additionally, we identified epitope peptides Pt7, Pt11/Pt11a, Pt17, Pt19, and Pt21 and loop peptides Pt13 and Pt18 which adjacent epitopes could also upregulate the mRNA expression levels of most proinflammatory cytokines. This suggested that these peptides may be the virulence-related sites of the OmpP2 protein, with proinflammatory activity. Further study revealed differences in the mRNA expression levels of proinflammatory cytokines, including IL-1β and IL-6, between genotype-specific epitopes, which may be responsible for pathogenic differences between different genotype strains. Here, we profiled a linear B-cell epitope map of the OmpP2 protein and preliminarily analyzed the proinflammatory activities and effects of these epitopes on bacterial virulence, providing a reliable theoretical basis for establishing a method to distinguish strain pathogenicity and to screen candidate peptides for subunit vaccines.
Collapse
Affiliation(s)
- Jingbo Wu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Wenjin Nan
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
- *Correspondence: Wenjin Nan,
| | - Guoliang Peng
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Honghui Hu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Pig Breeding Waste Reduction Engineering Technology Center, Shaoguan University, Shaoguan, China
| | - Chongbo Xu
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Jianqiang Huang
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| | - Zhengzhong Xiao
- Henry Fok College of Yingdong Biology and Agricultural, Shaoguan University, Shaoguan, China
- North Guangdong Collaborative Innovation and Development Center of Pig Farming and Disease Control, Shaoguan University, Shaoguan, China
| |
Collapse
|
6
|
Macrophage Mitochondrial Biogenesis and Metabolic Reprogramming Induced by Leishmania donovani Require Lipophosphoglycan and Type I Interferon Signaling. mBio 2022; 13:e0257822. [PMID: 36222510 PMCID: PMC9764995 DOI: 10.1128/mbio.02578-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogen-specific rewiring of host cell metabolism creates the metabolically adapted microenvironment required for pathogen replication. Here, we investigated the mechanisms governing the modulation of macrophage mitochondrial properties by the vacuolar pathogen Leishmania. We report that induction of oxidative phosphorylation and mitochondrial biogenesis by Leishmania donovani requires the virulence glycolipid lipophosphoglycan, which stimulates the expression of key transcriptional regulators and structural genes associated with the electron transport chain. Leishmania-induced mitochondriogenesis also requires a lipophosphoglycan-independent pathway involving type I interferon (IFN) receptor signaling. The observation that pharmacological induction of mitochondrial biogenesis enables an avirulent lipophosphoglycan-defective L. donovani mutant to survive in macrophages supports the notion that mitochondrial biogenesis contributes to the creation of a metabolically adapted environment propitious to the colonization of host cells by the parasite. This study provides novel insight into the complex mechanism by which Leishmania metacyclic promastigotes alter host cell mitochondrial biogenesis and metabolism during the colonization process. IMPORTANCE To colonize host phagocytes, Leishmania metacyclic promastigotes subvert host defense mechanisms and create a specialized intracellular niche adapted to their replication. This is accomplished through the action of virulence factors, including the surface coat glycoconjugate lipophosphoglycan. In addition, Leishmania induces proliferation of host cell mitochondria as well as metabolic reprogramming of macrophages. These metabolic alterations are crucial to the colonization process of macrophages, as they may provide metabolites required for parasite growth. In this study, we describe a new key role for lipophosphoglycan in the stimulation of oxidative phosphorylation and mitochondrial biogenesis. We also demonstrate that host cell pattern recognition receptors Toll-like receptor 4 (TLR4) and endosomal TLRs mediate these Leishmania-induced alterations of host cell mitochondrial biology, which also require type I IFN signaling. These findings provide new insight into how Leishmania creates a metabolically adapted environment favorable to their replication.
Collapse
|
7
|
Metal Ion Periplasmic-Binding Protein YfeA of Glaesserella parasuis Induces the Secretion of Pro-Inflammatory Cytokines of Macrophages via MAPK and NF-κB Signaling through TLR2 and TLR4. Int J Mol Sci 2022; 23:ijms23179627. [PMID: 36077023 PMCID: PMC9456096 DOI: 10.3390/ijms23179627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.
Collapse
|
8
|
Wen Y, Chen Z, Tian Y, Yang M, Dong Q, Yang Y, Ding H. Incomplete autophagy promotes the proliferation of Mycoplasma hyopneumoniae through the JNK and Akt pathways in porcine alveolar macrophages. Vet Res 2022; 53:62. [PMID: 35927699 PMCID: PMC9351181 DOI: 10.1186/s13567-022-01074-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Autophagy is an important conserved homeostatic process related to nutrient and energy deficiency and organelle damage in diverse eukaryotic cells and has been reported to play an important role in cellular responses to pathogens and bacterial replication. The respiratory bacterium Mycoplasma hyopneumoniae has been identified to enter porcine alveolar macrophages, which are considered important immune cells. However, little is known about the role of autophagy in the pathogenesis of M. hyopneumoniae infection of porcine alveolar macrophages. Our experiments demonstrated that M. hyopneumoniae infection enhanced the formation of autophagosomes in porcine alveolar macrophages but prevented the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux and preventing the acidification and destruction of M. hyopneumoniae in low-pH surroundings. In addition, using different autophagy regulators to intervene in the autophagy process, we found that incomplete autophagy promoted the intracellular proliferation of M. hyopneumoniae. We also found that blocking the phosphorylation of JNK and Akt downregulated the autophagy induced by M. hyopneumoniae, but pathways related to two mitogen-activated protein kinases (Erk1/2 and p38) did not affect the process. Collectively, M. hyopneumoniae induced incomplete autophagy in porcine alveolar macrophages through the JNK and Akt signalling pathways; conversely, incomplete autophagy prevented M. hyopneumoniae from entering and degrading lysosomes to realize the proliferation of M. hyopneumoniae in porcine alveolar macrophages. These findings raise the possibility that targeting the autophagic pathway may be effective for the prevention or treatment of M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zhengkun Chen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Mei Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qingshuang Dong
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yujiao Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Transcriptomics analysis reveals key lncRNAs and genes related to the infection of porcine lung macrophages by Glaesserella parasuis. Microb Pathog 2022; 169:105617. [DOI: 10.1016/j.micpath.2022.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
10
|
Zhu K, Yu D, An J, Li Y. Characterization and protective activity of monoclonal antibodies directed against Fe (3+) ABC transporter substrate-binding protein of Glaesserella parasuis. Vet Res 2021; 52:100. [PMID: 34225787 PMCID: PMC8256651 DOI: 10.1186/s13567-021-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Glässer's disease is caused by the agent Glaesserella parasuis and is difficult to prevent and control. Candidate screening for subunit vaccines contributes to the prevention of this disease. Therefore, in this study, the inactivated G. parasuis reference serovar 5 strain (G. parasuis-5) was used to generate specific monoclonal antibodies (mAbs) to screen subunit vaccine candidates. Six mAbs (1A12, 3E3, 4C6, 2D1, 3E6, and 4B2) were screened, and they all reacted with the G. parasuis serovar 5 strain according to laser confocal microscopy and flow cytometry (FCM). Indirect enzyme-linked immunosorbent assay (ELISA) showed that one mAb 2D1, can react with all 15 reference serovars of G. parasuis. Protein mass spectrometry and Western blot analysis demonstrated that mAb 2D1 specifically reacts with Fe (3+) ABC transporter substrate-binding protein. A complement killing assay found that the colony numbers of bacteria were significantly reduced in the G. parasuis-5 group incubated with mAb 2D1 (p < 0.01) in comparison with the control group. Opsonophagocytic assays demonstrated that mAb 2D1 significantly enhanced the phagocytosis of 3D4/21 cells by G. parasuis (p < 0.05). RAW264.7 cells with stronger phagocytic ability were also used for the opsonophagocytic assay, and the difference was highly significant (p < 0.01). Passive immunization of mice revealed that mAb 2D1 can eliminate the bacteria in the blood and provide protection against G. parasuis-5. Our study found one mAb that can be used to prevent and control G. parasuis infection in vivo and in vitro, which may suggest that Fe (3+) ABC transporter substrate-binding protein is an immunodominant antigen and a promising candidate for subunit vaccine development.
Collapse
Affiliation(s)
- Kexin Zhu
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Yu
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui An
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Jiang R, Xiang M, Chen W, Zhang P, Wu X, Zhu G, Tu T, Jiang D, Yao X, Luo Y, Yang Z, Chen D, Wang Y. Biofilm characteristics and transcriptomic analysis of Haemophilus parasuis. Vet Microbiol 2021; 258:109073. [PMID: 33984794 DOI: 10.1016/j.vetmic.2021.109073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
Haemophilus parasuis (H. parasuis) is a conditional pathogen with the ability to form biofilms which can lead to ineffective drug treatment and severe chronic infections resulting in significant economic losses to the pig industry. Currently, knowledge of biofilm formation by H. parasuis is not well developed. The objective of this study was to investigate the three-dimensional morphology of biofilms and perform transcriptomic analysis on H. parasuis cells in biofilm versus planktonic forms. The results showed that proteins and DNA accounted for a large proportion of the H. parasuis biofilm extracellular matrix. Here, we have traced the entire biofilm formation process of H. parasuis from beginning to end for the first time. These biofilms grew rapidly in the first 48 h and became stable at 60 h. According to GO and KEGG analysis, the differentially expressed genes (DEG) artM, artQ, ssrS, pflA and HutX were implicated as being involved in bacterial colonisation and adhesion; these are the most likely genes to affect biofilm formation. Most functional gene enrichments were of those involved in metabolic pathways, biosynthesis of secondary metabolites, ATP-binding cassette (ABC) transporters, and starch and sucrose metabolism. Thus, in the present pilot study, the composition and characteristics of these biofilms were explored, and the genes related to biofilm formation were screened for. This research lays the foundation for further studies on mechanisms regulating biofilm formation, in order to find new drug targets and develop new therapeutic drugs against H. parasuis.
Collapse
Affiliation(s)
- Ruijiao Jiang
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mingyuan Xiang
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanting Chen
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengfei Zhang
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xulong Wu
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611130, China
| | - Guangheng Zhu
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Teng Tu
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dike Jiang
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Yao
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zexiao Yang
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610047, China.
| | - Yin Wang
- Sichuan Provincial Key Laboratory of Animal Diseases and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Wu H, Liu K, Zhang J. Excess fibronectin 1 participates in pathogenesis of pre-eclampsia by promoting apoptosis and autophagy in vascular endothelial cells. Mol Hum Reprod 2021; 27:6244180. [PMID: 33881516 DOI: 10.1093/molehr/gaab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/06/2021] [Indexed: 01/26/2023] Open
Abstract
Plasma fibronectin 1 (FN1) levels are elevated in individuals with pre-eclampsia (PE), which may be applied as a possible b marker for vascular endothelial injury during PE. In the present study, the possible role of FN1 in the pathogenesis of PE and regulation of apoptosis and autophagy in vascular endothelial cells was explored. Plasma FN1 levels in 80 patients with PE and 40 healthy pregnant individuals were measured using ELISA to verify its relationship with the severity of PE. pcDNA3.1-FN1 or FN1-small interfering (si) RNA was used to manipulate the expression of FN1 in human umbilical vein endothelial cells (HUVECs) to assess the effects of FN1 on cell apoptosis, autophagy, and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. It was found that upregulation of FN1 promoted apoptosis and autophagy, in addition to significantly inhibiting the activation of AKT and mTOR in HUVECs. By contrast, downregulation of FN1 expression inhibited cell apoptosis and autophagy, but increased AKT and mTOR phosphorylation in HUVECs that were cultured in serum samples obtained from patients with PE. Rescue experiments found that the PI3K/AKT inhibitor LY294002 reversed the effects of FN1-siRNA on apoptosis and autophagy in HUVECs cultured in serum from patients with PE. Therefore, data from the present study suggest that FN1 participates in the pathogenesis of PE by promoting apoptosis and autophagy in vascular endothelial cells, which is associated with the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Haiying Wu
- Department of Obstetrical, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kan Liu
- Department of Obstetrical, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jingli Zhang
- Department of Obstetrical, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Luo X, Chang X, Zhou H, Lin H, Fan H. Glaesserella parasuis induces inflammatory response in 3D4/21 cells through activation of NLRP3 inflammasome signaling pathway via ROS. Vet Microbiol 2021; 256:109057. [PMID: 33799227 DOI: 10.1016/j.vetmic.2021.109057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/21/2021] [Indexed: 02/08/2023]
Abstract
Glaesserella parasuis (G. parasuis) is an important pathogenic bacterium that can cause Glässer's disease, and it has resulted in tremendous economic losses to the global swine industry. The intensive pulmonary inflammatory response caused by G. parasuis infection is the main cause of lung injury and death in pigs. However, the exact mechanism by which it causes severe pulmonary inflammation is not fully understood yet. In this study, severe pneumonia was observed in piglets infected with G. parasuis; and an infection cell model was established using porcine alveolar macrophages cell line 3D4/21, which was determined to be susceptible to G. parasuis infection in vitro. G. parasuis infection of 3D4/21 cells induced upregulation of proinflammatory cytokines TNF-α, IL-1β, IL-18 and production of intracellular reactive oxygen species (ROS). The expression of IL-1β related to activation of the NLRP3 inflammasome signaling pathway, which had not been shown before in G. parasuis infection. Furthermore, it was first found that release of intracellular ROS, which was mediated by NADPH oxidase in 3D4/21 cells, was found crucial for the activation of the NLRP3 signaling pathway and promoted the expression of proinflammatory cytokines, such as TNF-α and IL-1. In general, this study explored the specific mechanism of severe pulmonary inflammation caused by G. parasuis infection, and provides a foundation for further elucidating the pathogenic mechanism of G. parasuis.
Collapse
Affiliation(s)
- Xinran Luo
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaojing Chang
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hong Zhou
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huixing Lin
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hongjie Fan
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
The effects of baicalin on piglets challenged with Glaesserella parasuis. Vet Res 2020; 51:102. [PMID: 32795339 PMCID: PMC7427943 DOI: 10.1186/s13567-020-00826-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) causes porcine vascular inflammation and damage. Baicalin is reported to have antioxidant and anti-inflammatory functions. However, whether baicalin protects piglets against G. parasuis challenge and the potential protective mechanism have not been investigated. Therefore, in this study, we comprehensively examined the protective efficacy of baicalin in piglets challenged with G. parasuis and the possible protective mechanism. Our results show that baicalin attenuated the release of the inflammation-related cytokines interleukin (IL) 1β, IL6, IL8, IL10, and tumour necrosis factor α (TNF-α) and reduced high mobility group box 1 (HMGB1) production and cell apoptosis in piglets infected with G. parasuis. Baicalin also inhibited the activation of the mitogen-activated protein kinase (MAPK) signalling pathway and protected piglets against G. parasuis challenge. Taken together, our data suggest that baicalin could protect piglets from G. parasuis by reducing HMGB1 release, attenuating cell apoptosis, and inhibiting MAPK signalling activation, thereby alleviating the inflammatory response induced by the bacteria. Our results suggest that baicalin has utility as a novel therapeutic drug to control G. parasuis infection.
Collapse
|
15
|
Dai K, Ma X, Yang Z, Chang YF, Cao S, Zhao Q, Huang X, Wu R, Huang Y, Yan Q, Han X, Ma X, Wen X, Wen Y. Polyamine Transport Protein PotD Protects Mice against Haemophilus parasuis and Elevates the Secretion of Pro-Inflammatory Cytokines of Macrophage via JNK-MAPK and NF-κB Signal Pathways through TLR4. Vaccines (Basel) 2019; 7:vaccines7040216. [PMID: 31847381 PMCID: PMC6963478 DOI: 10.3390/vaccines7040216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The potD gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system potABCD, encodes the bacterial substrate-binding subunit of the polyamine transport system. In this study, we found PotD in Haemophilus (Glaesserella) parasuis could actively stimulate both humoral immune and cellular immune responses and elevate lymphocyte proliferation, thus eliciting a Th1-type immune response in a murine immunity and infection model. Stimulation of Raw 264.7 macrophages with PotD validated that Toll-like receptor 4, rather than 2, participated in the positive transcription and expression of pro-inflammatory cytokines IL–1β, IL–6, and TNF–α using qPCR and ELISA. Blocking signal-regulated JNK–MAPK and RelA(p65) pathways significantly decreased PotD-induced pro-inflammatory cytokine production. Overall, we conclude that vaccination of PotD could induce both humoral and cellular immune responses and provide immunoprotection against H. parasuis challenge. The data also suggest that Glaesserella PotD is a novel pro-inflammatory mediator and induces TLR4-dependent pro-inflammatory activity in Raw 264.7 macrophages through JNK–MAPK and RelA(p65) pathways.
Collapse
Affiliation(s)
- Ke Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xiaoyu Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Zhen Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, New York, NY 14850, USA
- Correspondence: (Y.-F.C.); (Y.W.); Tel.: +1-607-253-3675 (Y.-F.C.); +86-135-5006-2555 (Y.W.)
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Xintian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (K.D.); (X.M.); (Z.Y.); (S.C.); (Q.Z.); (X.H.); (R.W.); (Y.H.); (Q.Y.); (X.H.); (X.M.); (X.W.)
- Correspondence: (Y.-F.C.); (Y.W.); Tel.: +1-607-253-3675 (Y.-F.C.); +86-135-5006-2555 (Y.W.)
| |
Collapse
|