1
|
Galasso L, Termite F, Mignini I, Esposto G, Borriello R, Vitale F, Nicoletti A, Paratore M, Ainora ME, Gasbarrini A, Zocco MA. Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights. Cancers (Basel) 2025; 17:368. [PMID: 39941737 PMCID: PMC11816155 DOI: 10.3390/cancers17030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an environment conducive to cancer progression. F. nucleatum binds to and penetrates epithelial cells through adhesins such as FadA, impairing cell junctions and encouraging epithelial-to-mesenchymal transition (EMT), which is associated with cancer advancement. Additionally, the bacterium modulates the host immune system, suppressing immune cell activity and creating conditions favorable for tumor growth. Its interactions with the gut microbiome contribute to dysbiosis, further influencing carcinogenic pathways. Evidence indicates that F. nucleatum can inflict DNA damage either directly via reactive oxygen species or indirectly by creating a pro-inflammatory environment. Additionally, it triggers oncogenic pathways, especially the Wnt/β-catenin signaling pathway, which promotes tumor cell growth and longevity. Moreover, F. nucleatum alters the tumor microenvironment, impacting cancer cell behavior, metastasis, and therapeutic responses. The purpose of this review is to elucidate the molecular mechanisms by which F. nucleatum contributes to CRC. Understanding these mechanisms is crucial for the development of targeted therapies and diagnostic strategies for CRC associated with F. nucleatum.
Collapse
Affiliation(s)
- Linda Galasso
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Fabrizio Termite
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Irene Mignini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Giorgio Esposto
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Raffaele Borriello
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Federica Vitale
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Alberto Nicoletti
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
| | - Mattia Paratore
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Elena Ainora
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| | - Maria Assunta Zocco
- Internal Medicine, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.G.); (F.T.); (I.M.); (G.E.); (R.B.); (F.V.); (A.N.); (M.P.); (M.E.A.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy
| |
Collapse
|
2
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2025; 42:151-194. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Mabry SJ, Cao X, Zhu Y, Rowe C, Patel S, González-Arancibia C, Romanazzi T, Saleeby DP, Elam A, Lee HT, Turkmen S, Lauzon SN, Hernandez CE, Sun H, Wu H, Carter AM, Galli A. Fusobacterium nucleatum determines the expression of amphetamine-induced behavioral responses through an epigenetic phenomenon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633210. [PMID: 39868090 PMCID: PMC11761806 DOI: 10.1101/2025.01.15.633210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD. However, the mechanistic roles of microbes in AUD are unknown. Fusobacterium nucleatum (Fn) is a bacterium that increases in abundance in both rats and humans upon AMPH exposure. Fn releases short-chain fatty acids (SCFAs), bacterial byproducts thought to play a fundamental role in the gut-brain axis as well as the pathogenesis of AUD. We demonstrate that in gnotobiotic Drosophila melanogaster, colonization with Fn or dietary supplementation of the SCFA butyrate, a potent inhibitor of histone deacetylases (HDACs), enhances the psychomotor and rewarding properties of AMPH as well as its ability to promote male sexual motivation. Furthermore, solely HDAC1 RNAi targeted inhibition recapitulates these enhancements, pointing to a specific process underlying this Fn phenomenon. Of note is that the expression of these AMPH behaviors is determined by the increase in extracellular dopamine (DA) levels that result from AMPH-induced reversal of DA transporter (DAT) function, termed non-vesicular DA release (NVDR). The magnitude of AMPH-induced NVDR is dictated, at least in part, by DAT expression levels. Consistent with our behavioral data, we show that Fn, butyrate, and HDAC1 inhibition enhance NVDR by elevating DAT expression. Thus, the participation of Fn in AUD stems from its ability to release butyrate and inhibit HDAC1. These data offer a microbial target and probiotic interventions for AUD treatment.
Collapse
Affiliation(s)
- Samuel J Mabry
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Xixi Cao
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Yanqi Zhu
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Caleb Rowe
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Shalin Patel
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | | | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - David P Saleeby
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Anna Elam
- University of Alabama Birmingham, Department of Psychiatry, Birmingham, Alabama
| | - Hui-Ting Lee
- University of Alabama Birmingham, Department of Chemistry, Birmingham, Alabama
| | - Serhat Turkmen
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Shelby N Lauzon
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Cesar E Hernandez
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - HaoSheng Sun
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Hui Wu
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Angela M Carter
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| | - Aurelio Galli
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| |
Collapse
|
4
|
Dahlgren C, Forsman H, Sundqvist M, Björkman L, Mårtensson J. Signaling by neutrophil G protein-coupled receptors that regulate the release of superoxide anions. J Leukoc Biol 2024; 116:1334-1351. [PMID: 39056275 DOI: 10.1093/jleuko/qiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
In human peripheral blood, the neutrophil granulocytes (neutrophils) are the most abundant white blood cells. These professional phagocytes are rapidly recruited from the bloodstream to inflamed tissues by chemotactic factors that signal danger. Neutrophils, which express many receptors that are members of the large family of G protein-coupled receptors (GPCRs), are critical for the elimination of pathogens and inflammatory insults, as well as for the resolution of inflammation leading to tissue repair. Danger signaling molecular patterns such as the N-formylated peptides that are formed during bacterial and mitochondrial protein synthesis and recognized by formyl peptide receptors (FPRs) and free fatty acids recognized by free fatty acid receptors (FFARs) regulate neutrophil functions. Short peptides and short-chain fatty acids activate FPR1 and FFA2R, respectively, while longer peptides and fatty acids activate FPR2 and GPR84, respectively. The activation profiles of these receptors include the release of reactive oxygen species (ROS) generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Activation of the oxidase and the production of ROS are processes that are regulated by proinflammatory mediators, including tumor necrosis factor α and granulocyte/macrophage colony-stimulating factor. The receptors have signaling and functional similarities, although there are also important differences, not only between the two closely related neutrophil FPRs, but also between the FPRs and the FFARs. In neutrophils, these receptors never walk alone, and additional mechanistic insights into the regulation of the GPCRs and the novel regulatory mechanisms underlying the activation of NADPH oxidase advance our understanding of the role of receptor transactivation in the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gulhedsgatan 10, Göteborg S-41346, Sweden
| |
Collapse
|
5
|
Luk-In S, Leepiyasakulchai C, Saelee C, Keeratichamroen A, Srisangwan N, Ponprachanuvut P, Chammari K, Chatsuwan T, Wannigama DL, Shein AMS, Kueakulpattana N, Srisakul S, Sranacharoenpong K. Impact of resistant starch type 3 on fecal microbiota and stool frequency in Thai adults with chronic constipation randomized clinical trial. Sci Rep 2024; 14:27944. [PMID: 39543201 PMCID: PMC11564901 DOI: 10.1038/s41598-024-79465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Constipation poses a significant health concern affecting individuals of varying ages and geographic locations worldwide. While the impacts of numerous probiotics on constipation are well-characterized, there has been limited assessment of the potential prebiotic effects of resistant starches. We therefore conducted a randomized, double-blind and placebo-controlled, clinical trial of resistant starch type 3 (RS-3) in Thai adults with self-reported chronic constipation. The effects of these mixed natural starch fibers on beneficial gut bacteria, bowel movements and stool consistency were evaluated after 6- and 12-week periods. Regardless of subject age, consumption of RS-3 compared to placebo resulted in significant improvements in gut health by dramatically increasing levels of beneficial bacteria (Bifidobacterium, Prevotella, Akkermansia and Megamonas) in the gut and relieving constipation. RS-3 consumption was associated with a significantly increased frequency of bowel movements, with subjects reporting these as healthy stools. Our findings provide important insights into the therapeutic advantages of RS-3 for constipation, and propose RS-3 as a feasible alternative strategy for management of constipation.
Collapse
Affiliation(s)
- Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
| | - Chutiphon Saelee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Arisa Keeratichamroen
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Nuttarat Srisangwan
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Punnee Ponprachanuvut
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Kantanit Chammari
- Department of Community Nutrition, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sukrit Srisakul
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Multidisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kitti Sranacharoenpong
- Department of Health Development, ASEAN Institute for Health Development, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
6
|
Wang X, Fang Y, Liang W, Wong CC, Qin H, Gao Y, Liang M, Song L, Zhang Y, Fan M, Liu C, Lau HCH, Xu L, Li X, Song W, Wang J, Wang N, Yang T, Mo M, Zhang X, Fang J, Liao B, Sung JJY, Yu J. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell 2024; 42:1729-1746.e8. [PMID: 39303724 DOI: 10.1016/j.ccell.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Microsatellite stable (MSS) colorectal cancers (CRCs) are often resistant to anti-programmed death-1 (PD-1) therapy. Here, we show that a CRC pathogen, Fusobacterium nucleatum (Fn), paradoxically sensitizes MSS CRC to anti-PD-1. Fecal microbiota transplantation (FMT) from patients with Fn-high MSS CRC to germ-free mice bearing MSS CRC confers sensitivity to anti-PD-1 compared to FMT from Fn-low counterparts. Single Fn administration also potentiates anti-PD-1 efficacy in murine allografts and CD34+-humanized mice bearing MSS CRC. Mechanistically, we demonstrate that intratumoral Fn generates abundant butyric acid, which inhibits histone deacetylase (HDAC) 3/8 in CD8+ T cells, inducing Tbx21 promoter H3K27 acetylation and expression. TBX21 transcriptionally represses PD-1, alleviating CD8+ T cell exhaustion and promoting effector function. Supporting this notion, knockout of a butyric acid-producing gene in Fn abolishes its anti-PD-1 boosting effect. In patients with MSS CRC, high intratumoral Fn predicts favorable response to anti-PD-1 therapy, indicating Fn as a potential biomarker of immunotherapy response in MSS CRC.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Chun Wong
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Meinong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Song
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miao Fan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuanfa Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengmiao Mo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhang
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jun Yu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
8
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
9
|
Forsman H, Dahlgren C, Mårtensson J, Björkman L, Sundqvist M. Function and regulation of GPR84 in human neutrophils. Br J Pharmacol 2024; 181:1536-1549. [PMID: 36869866 DOI: 10.1111/bph.16066] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Human neutrophils are components of the innate immune system and are the most abundant white blood cells in the circulation. They are professional phagocytes and express several G protein-coupled receptors (GPCRs), which are essential for proper neutrophil functions. So far, the two formyl peptide receptors, FPR1 and FPR2, have been the most extensively studied group of neutrophil GPCRs, but recently, a new group, the free fatty acid (FFA) receptors, has attracted growing attention. Neutrophils express two FFA receptors, GPR84 and FFA2, which sense medium- and short-chain fatty acids respectively, and display similar activation profiles. The exact pathophysiological role of GPR84 is not yet fully understood, but it is generally regarded as a pro-inflammatory receptor that mediates neutrophil activation. In this review, we summarize current knowledge of how GPR84 affects human neutrophil functions and discuss the regulatory mechanisms that control these responses, focusing on the similarities and differences in comparison to the two FPRs and FFA2. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
- Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Liang Y, Yao X, Meng Z, Lan J, Qiu Y, Cen C, Feng Y. Gut microbial network signatures of early colonizers in preterm neonates with extrauterine growth restriction. BMC Microbiol 2024; 24:82. [PMID: 38461289 PMCID: PMC10924324 DOI: 10.1186/s12866-024-03234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/25/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) represents a prevalent condition observed in preterm neonates, which poses potential adverse implications for both neonatal development and long-term health outcomes. The manifestation of EUGR has been intricately associated with perturbations in microbial and metabolic profiles. This study aimed to investigate the characteristics of the gut microbial network in early colonizers among preterm neonates with EUGR. METHODS Twenty-nine preterm infants participated in this study, comprising 14 subjects in the EUGR group and 15 in the normal growth (AGA) group. Meconium (D1) and fecal samples were collected at postnatal day 28 (D28) and 1 month after discharge (M1). Subsequently, total bacterial DNA was extracted and sequenced using the Illumina MiSeq system, targeting the V3-V4 hyper-variable regions of the 16S rRNA gene. RESULTS The outcomes of principal coordinates analysis (PCoA) and examination of the microbial network structure revealed distinctive developmental trajectories in the gut microbiome during the initial three months of life among preterm neonates with and without EUGR. Significant differences in microbial community were observed at the D1 (P = 0.039) and M1 phases (P = 0.036) between the EUGR and AGA groups, while a comparable microbial community was noted at the D28 phase (P = 0.414). Moreover, relative to the AGA group, the EUGR group exhibited significantly lower relative abundances of bacteria associated with secretion of short-chain fatty acids, including Lactobacillus (P = 0.041) and Parabacteroides (P = 0.033) at the D1 phase, Bifidobacterium at the D28 phase, and genera Dysgonomonas (P = 0.042), Dialister (P = 0.02), Dorea (P = 0.042), and Fusobacterium (P = 0.017) at the M1 phase. CONCLUSION Overall, the present findings offer crucial important insights into the distinctive gut microbial signatures exhibited by earlier colonizers in preterm neonates with EUGR. Further mechanistic studies are needed to establish whether these differences are the cause or a consequence of EUGR.
Collapse
Affiliation(s)
- Yumei Liang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Xiaomin Yao
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Zida Meng
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Jinyun Lan
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Yanqing Qiu
- Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China
| | - Chao Cen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China.
| | - Yanni Feng
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, 533000, China.
| |
Collapse
|
11
|
Khamzeh A, Dahlstrand Rudin A, Venkatakrishnan V, Stylianou M, Sanchez Klose FP, Urban CF, Björnsdottir H, Bylund J, Christenson K. High levels of short-chain fatty acids secreted by Candida albicans hyphae induce neutrophil chemotaxis via free fatty acid receptor 2. J Leukoc Biol 2024; 115:536-546. [PMID: 37992073 DOI: 10.1093/jleuko/qiad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Candida albicans belongs to our commensal mucosal flora and in immune-competent individuals in the absence of epithelial damage, this fungus is well tolerated and controlled by our immune defense. However, C. albicans is an opportunistic microorganism that can cause different forms of infections, ranging from superficial to life-threatening systemic infections. C. albicans is polymorphic and switches between different phenotypes (e.g. from yeast form to hyphal form). C. albicans hyphae are invasive and can grow into tissues to eventually reach circulation. During fungal infections, neutrophils in particular play a critical role for the defense, but how neutrophils are directed toward the invasive forms of fungi is less well understood. We set out to investigate possible neutrophil chemoattractants released by C. albicans into culture supernatants. We found that cell-free culture supernatants from the hyphal form of C. albicans induced both neutrophil chemotaxis and concomitant intracellular calcium transients. Size separation and hydrophobic sorting of supernatants indicated small hydrophilic factors as responsible for the activity. Further analysis showed that the culture supernatants contained high levels of short-chain fatty acids with higher levels from hyphae as compared to yeast. Short-chain fatty acids are known neutrophil chemoattractants acting via the neutrophil free fatty acid receptor 2. In line with this, the calcium signaling in neutrophils induced by hyphae culture supernatants was blocked by a free fatty acid receptor 2 antagonist and potently increased in the presence of a positive allosteric modulator. Our data imply that short-chain fatty acids may act as a recruitment signal whereby neutrophils can detect C. albicans hyphae.
Collapse
Affiliation(s)
- Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammations Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
- Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 58 Gothenburg, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Felix P Sanchez Klose
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| |
Collapse
|
12
|
Wang C, Ma A, Li Y, McNutt ME, Zhang S, Zhu J, Hoyd R, Wheeler CE, Robinson LA, Chan CH, Zakharia Y, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Singer EA, Ikeguchi AP, McCarter MD, Denko N, Tinoco G, Husain M, Jin N, Osman AE, Eljilany I, Tan AC, Coleman SS, Denko L, Riedlinger G, Schneider BP, Spakowicz D, Ma Q. A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset. CANCER RESEARCH COMMUNICATIONS 2024; 4:293-302. [PMID: 38259095 PMCID: PMC10840455 DOI: 10.1158/2767-9764.crc-23-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. SIGNIFICANCE Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.
Collapse
Affiliation(s)
- Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Megan E. McNutt
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Shiqi Zhang
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Jiangjiang Zhu
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Caroline E. Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carlos H.F. Chan
- University of Iowa, Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, University of Iowa, Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Afaf E.G. Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Islam Eljilany
- Clinical Science Lab – Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aik Choon Tan
- Departments of Oncological Science and Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Samuel S. Coleman
- Departments of Oncological Science and Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Louis Denko
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Bryan P. Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
13
|
Chen G, Gao C, Jiang S, Cai Q, Li R, Sun Q, Xiao C, Xu Y, Wu B, Zhou H. Fusobacterium nucleatum outer membrane vesicles activate autophagy to promote oral cancer metastasis. J Adv Res 2024; 56:167-179. [PMID: 37059221 PMCID: PMC10834801 DOI: 10.1016/j.jare.2023.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
INTRODUCTION Metastasis is an important cause of high mortality and lethality of oral cancer. Fusobacterium nucleatum (Fn) can promote tumour metastasis. Outer membrane vesicles (OMVs) are secreted by Fn. However, the effects of Fn-derived extracellular vesicles on oral cancer metastasis and the underlying mechanisms are unclear. OBJECTIVES We aimed to determine whether and how Fn OMVs mediate oral cancer metastasis. METHODS OMVs were isolated from brain heart infusion (BHI) broth supernatant of Fn by ultracentrifugation. Tumour-bearing mice were treated with Fn OMVs to evaluate the effect of OMVs on cancer metastasis. Transwell assays were performed to determine how Fn OMVs affect cancer cell migration and invasion. The differentially expressed genes in Fn OMV-treated/untreated cancer cells were identified by RNA-seq. Transmission electron microscopy, laser confocal microscopy, and lentiviral transduction were used to detect changes in autophagic flux in cancer cells stimulated with Fn OMVs. Western blotting assay was performed to determine changes in EMT-related marker protein levels in cancer cells. Fn OMVs' effects on migration after blocking autophagic flux by autophagy inhibitors were determined by in vitro and in vivo experiments. RESULTS Fn OMVs were structurally similar to vesicles. In the in vivo experiment, Fn OMVs promoted lung metastasis in tumour-bearing mice, while chloroquine (CHQ, an autophagy inhibitor) treatment reduced the number of pulmonary metastases resulting from the intratumoral Fn OMV injection. Fn OMVs promoted the migration and invasion of cancer cells in vivo, leading to altered expression levels of EMT-related proteins (E-cadherin downregulation; Vimentin/N-cadherin upregulation). RNA-seq showed that Fn OMVs activate intracellular autophagy pathways. Blocking autophagic flux with CHQ reduced in vitro and in vivo migration of cancer cells induced by Fn OMVs as well as reversed changes in EMT-related protein expression. CONCLUSION Fn OMVs not only induced cancer metastasis but also activated autophagic flux. Blocking autophagic flux weakened Fn OMV-stimulated cancer metastasis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China; Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chunna Gao
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shan Jiang
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China
| | - Qiaoling Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Can Xiao
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
14
|
Yeo K, Li R, Wu F, Bouras G, Mai LTH, Smith E, Wormald PJ, Valentine R, Psaltis AJ, Vreugde S, Fenix K. Identification of consensus head and neck cancer-associated microbiota signatures: a systematic review and meta-analysis of 16S rRNA and The Cancer Microbiome Atlas datasets. J Med Microbiol 2024; 73. [PMID: 38299619 DOI: 10.1099/jmm.0.001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Introduction. Multiple reports have attempted to describe the tumour microbiota in head and neck cancer (HNSC).Gap statement. However, these have failed to produce a consistent microbiota signature, which may undermine understanding the importance of bacterial-mediated effects in HNSC.Aim. The aim of this study is to consolidate these datasets and identify a consensus microbiota signature in HNSC.Methodology. We analysed 12 published HNSC 16S rRNA microbial datasets collected from cancer, cancer-adjacent and non-cancer tissues to generate a consensus microbiota signature. These signatures were then validated using The Cancer Microbiome Atlas (TCMA) database and correlated with the tumour microenvironment phenotypes and patient's clinical outcome.Results. We identified a consensus microbial signature at the genus level to differentiate between HNSC sample types, with cancer and cancer-adjacent tissues sharing more similarity than non-cancer tissues. Univariate analysis on 16S rRNA datasets identified significant differences in the abundance of 34 bacterial genera among the tissue types. Paired cancer and cancer-adjacent tissue analyses in 16S rRNA and TCMA datasets identified increased abundance in Fusobacterium in cancer tissues and decreased abundance of Atopobium, Rothia and Actinomyces in cancer-adjacent tissues. Furthermore, these bacteria were associated with different tumour microenvironment phenotypes. Notably, high Fusobacterium signature was associated with high neutrophil (r=0.37, P<0.0001), angiogenesis (r=0.38, P<0.0001) and granulocyte signatures (r=0.38, P<0.0001) and better overall patient survival [continuous: HR 0.8482, 95 % confidence interval (CI) 0.7758-0.9273, P=0.0003].Conclusion. Our meta-analysis demonstrates a consensus microbiota signature for HNSC, highlighting its potential importance in this disease.
Collapse
Affiliation(s)
- Kenny Yeo
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Runhao Li
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Fangmeinuo Wu
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - George Bouras
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Linh T H Mai
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Haematology and Oncology, Basil Hetzel Institute for Translational Health Research and The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Peter-John Wormald
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Rowan Valentine
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Alkis James Psaltis
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Sarah Vreugde
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide SA, 5000, Australia
- Department of Surgery- Otolaryngology Head and Neck Surgery, The University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South SA, 5011, Australia
| |
Collapse
|
15
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
16
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
17
|
Quan J, Xu C, Ruan D, Ye Y, Qiu Y, Wu J, Zhou S, Luan M, Zhao X, Chen Y, Lin D, Sun Y, Yang J, Zheng E, Cai G, Wu Z, Yang J. Composition, function, and timing: exploring the early-life gut microbiota in piglets for probiotic interventions. J Anim Sci Biotechnol 2023; 14:143. [PMID: 37957747 PMCID: PMC10641937 DOI: 10.1186/s40104-023-00943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The establishment of a robust gut microbiota in piglets during their early developmental stage holds the potential for long-term advantageous effects. However, the optimal timeframe for introducing probiotics to achieve this outcome remains uncertain. RESULTS In the context of this investigation, we conducted a longitudinal assessment of the fecal microbiota of 63 piglets at three distinct pre-weaning time points. Simultaneously, we gathered vaginal and fecal samples from 23 sows. Employing 16S rRNA gene and metagenomic sequencing methodologies, we conducted a comprehensive analysis of the fluctuation patterns in microbial composition, functional capacity, interaction networks, and colonization resistance within the gut microbiota of piglets. As the piglets progressed in age, discernible modifications in intestinal microbial diversity, composition, and function were observed. A source-tracking analysis unveiled the pivotal role of fecal and vaginal microbiota derived from sows in populating the gut microbiota of neonatal piglets. By D21, the microbial interaction network displayed a more concise and efficient configuration, accompanied by enhanced colonization resistance relative to the other two time points. Moreover, we identified three strains of Ruminococcus sp. at D10 as potential candidates for improving piglets' weight gain during the weaning phase. CONCLUSIONS The findings of this study propose that D10 represents the most opportune juncture for the introduction of external probiotic interventions during the early stages of piglet development. This investigation augments our comprehension of the microbiota dynamics in early-life of piglets and offers valuable insights for guiding forthcoming probiotic interventions.
Collapse
Affiliation(s)
- Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
- National Engineering Research Center for Breeding Swine Industry, Wens Foodstuff Group Co., Ltd., Yunfu, Guangdong, People's Republic of China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Menghao Luan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xiang Zhao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yue Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Ying Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jifei Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China.
- National Engineering Research Center for Breeding Swine Industry, Wens Foodstuff Group Co., Ltd., Yunfu, Guangdong, People's Republic of China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Leonov GE, Varaeva YR, Livantsova EN, Starodubova AV. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023; 11:2749. [PMID: 37893122 PMCID: PMC10604844 DOI: 10.3390/biomedicines11102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The human oral microbiome has emerged as a focal point of research due to its profound implications for human health. The involvement of short-chain fatty acids in oral microbiome composition, oral health, and chronic inflammation is gaining increasing attention. In this narrative review, the results of early in vitro, in vivo, and pilot clinical studies and research projects are presented in order to define the boundaries of this new complicated issue. According to the results, the current research data are disputable and ambiguous. When investigating the role of SCFAs in human health and disease, it is crucial to distinguish between their local GI effects and the systemic influences. Locally, SCFAs are a part of normal oral microbiota metabolism, but the increased formation of SCFAs usually attribute to dysbiosis; excess SCFAs participate in the development of local oral diseases and in oral biota gut colonization and dysbiosis. On the other hand, a number of studies have established the positive impact of SCFAs on human health as a whole, including the reduction of chronic systemic inflammation, improvement of metabolic processes, and decrease of some types of cancer incidence. Thus, a complex and sophisticated approach with consideration of origin and localization for SCFA function assessment is demanded. Therefore, more research, especially clinical research, is needed to investigate the complicated relationship of SCFAs with health and disease and their potential role in prevention and treatment.
Collapse
Affiliation(s)
- Georgy E Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Yurgita R Varaeva
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Elena N Livantsova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
19
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
20
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
21
|
Higashiyama M, Miura S, Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front Immunol 2023; 14:1113467. [PMID: 36860849 PMCID: PMC9968923 DOI: 10.3389/fimmu.2023.1113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Luminal antigens, nutrients, metabolites from commensal bacteria, bile acids, or neuropeptides influence the function and trafficking of immune cells in the intestine. Among the immune cells in the gut, innate lymphoid cells, including macrophages, neutrophils, dendritic cells, mast cells, and innate lymphoid cells, play an important role for the maintenance of intestinal homeostasis through a rapid immune response to luminal pathogens. These innate cells are influenced by several luminal factors, possibly leading to dysregulated gut immunity and intestinal disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and intestinal allergy. Luminal factors are sensed by distinct neuro-immune cell units, which also have a strong impact on immunoregulation of the gut. Immune cell trafficking from the blood stream through the lymphatic organ to lymphatics, an essential function for immune responses, is also modulated by luminal factors. This mini-review examines knowledge of luminal and neural factors that regulate and modulate response and migration of leukocytes including innate immune cells, some of which are clinically associated with pathological intestinal inflammation.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan,*Correspondence: Masaaki Higashiyama,
| | - Soichiro Miura
- International University of Health and Welfare, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
22
|
Hu R, Zou L, Wang L, Xu C, Qi M, Yang Z, Jiang G, Ji L. Probiotics alleviate maternal metabolic disorders and offspring-islet abnormalities in gestational diabetic mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Dahlgren C, Lind S, Mårtensson J, Björkman L, Wu Y, Sundqvist M, Forsman H. G
protein coupled pattern recognition receptors expressed in neutrophils
: Recognition, activation/modulation, signaling and receptor regulated functions. Immunol Rev 2022; 314:69-92. [PMID: 36285739 DOI: 10.1111/imr.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| |
Collapse
|
24
|
Corrêa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, Ryffel B. Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Front Nutr 2022; 9:1011732. [PMID: 36337621 PMCID: PMC9631819 DOI: 10.3389/fnut.2022.1011732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites released by bacterial components of the microbiota. These molecules have a wide range of effects in the microbiota itself, but also in host cells in which they are known for contributing to the regulation of cell metabolism, barrier function, and immunological responses. Recent studies indicate that these molecules are important players in the gut-lung axis and highlight the possibility of using strategies that alter their intestinal production to prevent or treat distinct lung inflammatory diseases. Here, we review the effects of the SCFA butyrate and its derivatives in vitro and in vivo on murine models of respiratory disorders, besides discussing the potential therapeutic use of butyrate and the other SCFAs in lung diseases.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Intestinal Immunology, Institut Imagine, INSERM U1163, Paris, France
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Marcantonio Ferreira
- Department of Pharmaceutics Science, Institute of Environmental, Chemistry, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | | | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Institute of Biology, University of Campinas, Campinas, Brazil
- Center for Research on Obesity and Comorbidities, University of Campinas, Campinas, Brazil
- *Correspondence: Marco Aurélio Ramirez Vinolo,
| | - Bernhard Ryffel
- CNRS, INEM, UMR 7355, University of Orléans, Orléans, France
- Bernhard Ryffel,
| |
Collapse
|
25
|
Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022; 11:foods11182863. [PMID: 36140990 PMCID: PMC9498509 DOI: 10.3390/foods11182863] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and their metabolites could play an important role in health and diseases of human beings. Short-chain fatty acids (SCFAs) are mainly produced by gut microbiome fermentation of dietary fiber and could also be produced by bacteria of the skin and vagina. Acetate, propionate, and butyrate are three major SCFAs, and their bioactivities have been widely studied. The SCFAs have many health benefits, such as anti-inflammatory, immunoregulatory, anti-obesity, anti-diabetes, anticancer, cardiovascular protective, hepatoprotective, and neuroprotective activities. This paper summarizes health benefits and side effects of SCFAs with a special attention paid to the mechanisms of action. This paper provides better support for people eating dietary fiber as well as ways for dietary fiber to be developed into functional food to prevent diseases.
Collapse
|
26
|
Xiao W, Li J, Gao X, Yang H, Su J, Weng R, Gao Y, Ni W, Gu Y. Involvement of the gut-brain axis in vascular depression via tryptophan metabolism: A benefit of short chain fatty acids. Exp Neurol 2022; 358:114225. [PMID: 36100045 DOI: 10.1016/j.expneurol.2022.114225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Cerebral hemodynamic dysfunction and hypoperfusion have been found to underlie vascular depression, but whether the gut-brain axis is involved remains unknown. In this study, a rat model of bilateral common carotid artery occlusion (BCCAO) was adopted to mimic chronic cerebral hypoperfusion. A reduced sucrose preference ratio, increased immobility time in the tail suspension test and forced swim test, and compromised gut homeostasis were found. A promoted conversion of tryptophan (Trp) into kynurenine (Kyn) instead of 5-hydroxytryptamine (5-HT) was observed in the hippocampus and gut of BCCAO rats. Meanwhile, 16S ribosomal RNA gene sequencing suggested a compromised profile of the gut SCFA-producing microbiome, with a decreased serum level of SCFAs revealed by targeted metabolomics analysis. With SCFA supplementation, BCCAO rats exhibited ameliorated depressive-like behaviors and improved gut dysbiosis, compared with the salt-matched BCCAO group. Enzyme-linked immunosorbent assays and quantitative RT-PCR suggested that SCFA supplementation suppressed the conversion of Trp to Kyn and rescued the reduction in 5-HT levels in the hippocampus and gut. In addition to inhibiting the upregulation of inflammatory cytokines, SCFA supplementation ameliorated the activated oxidative stress and reduced the number of microglia and the expression of its proinflammatory markers in the hippocampus post BCCAO. In conclusion, our data suggested the participation of the gut-brain axis in vascular depression, shedding light on the neuroprotective potential of treatment with gut-derived SCFAs.
Collapse
Affiliation(s)
- Weiping Xiao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Ruiyuan Weng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China.
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Neurosurgery, Fudan University, Shanghai 200052, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200052, China; National Medical Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
27
|
Reis Ferreira M, Pasto A, Ng T, Patel V, Guerrero Urbano T, Sears C, Wade WG. The microbiota and radiotherapy for head and neck cancer: What should clinical oncologists know? Cancer Treat Rev 2022; 109:102442. [PMID: 35932549 DOI: 10.1016/j.ctrv.2022.102442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Radiotherapy is a linchpin in head and neck squamous cell carcinoma (HN-SCC) treatment. Modulating tumour and/or normal tissue biology offers opportunities to further develop HN-SCC radiotherapy. The microbiota, which can exhibit homeostatic properties and be a modulator of immunity, has recently received considerable interest from the Oncology community. Microbiota research in head and neck oncology has also flourished. However, available data are difficult to interpret for clinical and radiation oncologists. In this review, we focus on how microbiota research can contribute to the improvement of radiotherapy for HN-SCC, focusing on how current and future research can be translated back to the clinic. We include in-depth discussions about the microbiota, its multiple habitats and relevance to human physiology, mechanistic interactions with HN-SCC, available evidence on microbiota and HNC oncogenesis, efficacy and toxicity of treatment. We discuss clinically-relevant areas such as the role of the microbiota as a predictive and prognostic biomarker, as well as the potential of leveraging the microbiota and its interactions with immunity to improve treatment results. Importantly, we draw parallels with other cancers where research is more mature. We map out future directions of research and explain clinical implications in detail.
Collapse
Affiliation(s)
- Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK.
| | | | - Tony Ng
- King's College London, London, UK
| | - Vinod Patel
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | | | - Cynthia Sears
- Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, USA
| | | |
Collapse
|
28
|
Lee JY, Seo S, Shin B, Hong SH, Kwon E, Park S, Hur YM, Lee DK, Kim YJ, Han SB. Development of a New Biomarker Model for Predicting Preterm Birth in Cervicovaginal Fluid. Metabolites 2022; 12:metabo12080734. [PMID: 36005605 PMCID: PMC9416165 DOI: 10.3390/metabo12080734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Preterm birth (PTB) is a social problem that adversely affects not only the survival rate of the fetus, but also the premature babies and families, so there is an urgent need to find accurate biomarkers. We noted that among causes, eubiosis of the vaginal microbial community to dysbiosis leads to changes in metabolite composition. In this study, short chain fatty acids (SCFAs) representing dysbiosis were derivatized using (N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide, MTBSTFA) and targeted analysis was conducted in extracted organic phases of cervicovaginal fluid (CVF). In residual aqueous CVF, polar metabolites produced biochemistry process were derivatized using methoxyamine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), and non-targeted analysis were conducted. Nine SCFAs were quantified, and 58 polar metabolites were detected in 90 clinical samples using gas chromatography/mass spectrometry (GC/MS). The criteria of statistical analysis and detection rate of clinical sample for development of PTB biomarkers were presented, and 19 biomarkers were selected based on it, consisting of 1 SCFA, 2 organic acids, 4 amine compounds, and 12 amino acids. In addition, the model was evaluated as a suitable indicator for predicting PTB without distinction between sample collection time. We hope that the developed biomarkers based on microbiota-derived metabolites could provide useful diagnostic biomarkers for actual patients and pre-pregnancy.
Collapse
Affiliation(s)
- Ji-Youn Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Sumin Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Bohyun Shin
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Se Hee Hong
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Eunjin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Korea
| | - Dong-Kyu Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
- Correspondence: (D.-K.L.); (Y.J.K.); (S.B.H.)
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul 07984, Korea
- Correspondence: (D.-K.L.); (Y.J.K.); (S.B.H.)
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
- Correspondence: (D.-K.L.); (Y.J.K.); (S.B.H.)
| |
Collapse
|
29
|
Tsugami Y, Suzuki N, Nii T, Isobe N. Sodium Acetate and Sodium Butyrate Differentially Upregulate Antimicrobial Component Production in Mammary Glands of Lactating Goats. J Mammary Gland Biol Neoplasia 2022; 27:133-144. [PMID: 35678903 DOI: 10.1007/s10911-022-09519-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022] Open
Abstract
Short-chain fatty acids activate antimicrobial component production in the intestine. However, their effects on mammary glands remain unclear. We investigated the effects of acetate and butyrate on antimicrobial component production in mammary epithelial cells (MECs) or leukocytes cultured in vitro and in mammary glands of lactating Tokara goats in vivo. Our results showed that butyrate enhanced the production of β-defensin-1 and S100A7 in MECs. Additionally, the infusion of butyrate into mammary glands through the teats enhanced β-defensin-1 and S100A7 concentrations in milk. The infusion of acetate also increased β-defensin-1 and S100A7 concentrations along with those of cathelicidin-2 and interleukin-8, which are produced by leukocytes. Furthermore, acetate promoted cathelicidin-2 and interleukin-8 secretion in leukocytes in vitro. These findings suggest that acetate and butyrate differentially upregulate antimicrobial component production in mammary glands, which could help to develop appropriate treatment for mastitis, thereby reducing economic losses and improving animal welfare in farming environments.
Collapse
Affiliation(s)
- Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan.
| |
Collapse
|
30
|
Chen G, Sun Q, Cai Q, Zhou H. Outer Membrane Vesicles From Fusobacterium nucleatum Switch M0-Like Macrophages Toward the M1 Phenotype to Destroy Periodontal Tissues in Mice. Front Microbiol 2022; 13:815638. [PMID: 35391731 PMCID: PMC8981991 DOI: 10.3389/fmicb.2022.815638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects nearly 50% of all adults. Fusobacterium nucleatum (F. nucleatum) is known to be involved in the formation and development of periodontitis. Outer membrane vesicles (OMVs) harboring toxic bacterial components are continuously released during F. nucleatum growth and regulate the extent of the inflammatory response by controlling the functions of immune and non-immune cells in tissues. Macrophages are important immune cells in periodontal tissue that resist pathogen invasion and play an important role in the pathophysiological process of periodontitis. However, the role of the interaction between F. nucleatum OMVs and macrophages in the occurrence and development of periodontitis has not been studied. The purpose of this study was to clarify the effect of F. nucleatum OMVs on the polarization of macrophages and the roles of this specific polarization and F. nucleatum OMVs in the pathophysiology of periodontitis. The periodontitis model was established by inducing ligation in C57BL/6 mice as previously described. Micro-CT, RT-qPCR, hematoxylin-eosin (H&E) and tartrate acid phosphatase (TRAP) staining assays were performed to analyze the periodontal tissue, alveolar bone loss, number of osteoclasts and expression of inflammatory factors in gingival tissue. The changes in the state and cytokine secretion of bone marrow-derived macrophages (BMDMs) stimulated by F. nucleatum OMVs were observed in vivo by confocal microscopy, flow cytometry, Western blot and ELISA. Mouse gingival fibroblasts (MGFs) were isolated and then cocultured with macrophages. The effects of F. nucleatum OMVs on the proliferation and apoptosis of MGFs were analyzed by flow cytometry and lactate dehydrogenase (LDH) assays. The periodontitis symptoms of mice in the F. nucleatum OMVs + ligation group were more serious than those of mice in the simple ligation group, with more osteoclasts and more inflammatory factors (IL-1β, IL-6, and TNF-α) being observed in their gingival tissues. M0 macrophages transformed into M1 macrophages after the stimulation of BMDMs with F. nucleatum OMVs, and the M1 macrophages then released more inflammatory cytokines. Analysis of the coculture model showed that the MGF apoptosis and LDH release in the inflammatory environment were increased by F. nucleatum OMV treatment. In conclusion, F. nucleatum OMVs were shown to aggravate periodontitis, alveolar bone loss and the number of osteoclasts in an animal model of periodontitis. F. nucleatum OMVs promoted the polarization of macrophages toward the proinflammatory M1 phenotype, and the inflammatory environment further aggravated the toxicity of F. nucleatum OMVs on MGFs. These results suggest that M1 macrophages and F. nucleatum OMVs play roles in the occurrence and development of periodontitis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - QiaoLing Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - HongWei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Schlatterer K, Peschel A, Kretschmer D. Short-Chain Fatty Acid and FFAR2 Activation - A New Option for Treating Infections? Front Cell Infect Microbiol 2021; 11:785833. [PMID: 34926327 PMCID: PMC8674814 DOI: 10.3389/fcimb.2021.785833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
The human innate immune system is equipped with multiple mechanisms to detect microbe-associated molecular patterns (MAMPs) to fight bacterial infections. The metabolite short-chain fatty acids (SCFAs) acetate, propionate and butyrate are released by multiple bacteria or are food ingredients. SCFA production, especially acetate production, is usually essential for bacteria, and knockout of pathways involved in acetate production strongly impairs bacterial fitness. Because host organisms use SCFAs as MAMPs and alter immune reactions in response to SCFAs, interventions that modulate SCFA levels can be a new strategy for infection control. The interaction between SCFAs and host cells has been primarily investigated in the intestinal lumen because of the high local levels of SCFAs released by bacterial microbiome members. However, members of not only the intestinal microbiome but also the skin microbiome produce SCFAs, which are known ligands of the seven-transmembrane G-protein-coupled receptor FFAR2. In addition to enterocytes, FFAR2 is expressed on other human cell types, including leukocytes, especially neutrophils. This finding is in line with other research that determined that targeted activation of FFAR2 diminishes susceptibility toward various types of infection by bacteria such as Klebsiella pneumonia, Citrobacter rodentium, and Staphylococcus aureus but also by viruses such as respiratory syncytial and influenza viruses. Thus, our immune system appears to be able to use FFAR2-dependent detection of SCFAs for perceiving and even averting severe infections. We summarize recent advances in understanding the role of SCFAs and FFAR2 in various infection types and propose the manipulation of this receptor as an additional therapeutic strategy to fight infections.
Collapse
Affiliation(s)
- Katja Schlatterer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| | - Andreas Peschel
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
32
|
Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front Cell Dev Biol 2021; 9:710165. [PMID: 34490259 PMCID: PMC8417943 DOI: 10.3389/fcell.2021.710165] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Brennan CA, Clay SL, Lavoie SL, Bae S, Lang JK, Fonseca-Pereira D, Rosinski KG, Ou N, Glickman JN, Garrett WS. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 2021; 13:1987780. [PMID: 34781821 PMCID: PMC8604392 DOI: 10.1080/19490976.2021.1987780] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 02/04/2023] Open
Abstract
The colorectal cancer (CRC)-associated microbiota creates a pro-tumorigenic intestinal milieu and shapes immune responses within the tumor microenvironment. However, how oncomicrobes - like Fusobacterium nucleatum, found in the oral cavity and associated with CRC tissues- affect these distinct aspects of tumorigenesis is difficult to parse. Herein, we found that neonatal inoculation of ApcMin/+ mice with F. nucleatum strain Fn7-1 circumvents technical barriers preventing its intestinal colonization, drives colonic Il17a expression prior to tumor formation, and potentiates intestinal tumorigenesis. Using gnotobiotic mice colonized with a minimal complexity microbiota (the altered Schaedler's flora), we observed that intestinal Fn7-1 colonization increases colonic Th17 cell frequency and their IL-17A and IL-17F expression, along with a concurrent increase in colonic lamina propria Il23p19 expression. As Fn7-1 stably colonizes the intestinal tract in our models, we posited that microbial metabolites, specifically short-chain fatty acids (SCFA) that F. nucleatum abundantly produces in culture and, as we demonstrate, in the intestinal tract, might mediate part of its immunomodulatory effects in vivo. Supporting this hypothesis, we found that Fn7-1 did not alter RORγt+ CD4+T cell frequency in the absence of the SCFA receptor FFAR2. Taken together, our work suggests that F. nucleatum influences intestinal immunity by shaping Th17 responses in an FFAR2-dependent manner, although further studies are necessary to clarify the precise and multifaceted roles of FFAR2. The potential to increase intestinal Th17 responses is shared by another oncomicrobe, enterotoxigenic Bacteroides fragilis, highlighting a conserved pathway that could potentially be targeted to slow oncomicrobe-mediated CRC.
Collapse
Affiliation(s)
- Caitlin A. Brennan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Slater L. Clay
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Sydney L. Lavoie
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Jessica K. Lang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Kathryn G. Rosinski
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Nora Ou
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
| | - Jonathan N. Glickman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|