1
|
Lee J, Thomas Broome S, Jansen MI, Mandwie M, Logan GJ, Marzagalli R, Musumeci G, Castorina A. Altered Hippocampal and Striatal Expression of Endothelial Markers and VIP/PACAP Neuropeptides in a Mouse Model of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:11118. [PMID: 37446298 DOI: 10.3390/ijms241311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.
Collapse
Affiliation(s)
- Jayden Lee
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Davis CM, Ammi AY, Zhu W, Methner C, Cao Z, Giraud D, Alkayed NJ, Woltjer RL, Kaul S. Low-Intensity Ultrasound Reduces Brain Infarct Size by Upregulating Phosphorylated Endothelial Nitric Oxide in Mouse Model of Middle Cerebral Artery Occlusion. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1091-1101. [PMID: 36739244 PMCID: PMC10050145 DOI: 10.1016/j.ultrasmedbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE There have been attempts to use therapeutic ultrasound (US) for the treatment of both experimental and clinical stroke. We hypothesized that low-intensity US has direct beneficial effects on the brain independent of cerebral blood flow (CBF) during middle cerebral artery occlusion (MCAO). METHODS Three groups of mice were studied. Group I included 84 mice with MCAO undergoing US treatment/no treatment at two US frequencies (0.25 and 1.05 MHz) with three different acoustic pressures at each frequency in which infarct size (IS) was measured 24 h later. Group II included 11 mice undergoing treatment based on best US results from group I animals in which the IS/risk area (RA) ratio was measured 24 h later. Group III included 38 normal mice undergoing US treatment/no treatment for assessment of CBF, tissue metabolite and protein expression and histopathology. DISCUSSION Ultrasound at both frequencies and most acoustic pressures resulted in reduction in IS in group I animals, with the best results obtained with 0.25 MHz at 2.0 MPa: IS was reduced 4-fold in the cerebral cortex, 1.5-fold in the caudate putamen and 3.5-fold in the cerebral hemisphere compared with control. US application in group III animals elicited only a marginal increase in CBF despite a 2.6-fold increase in phosphorylated endothelial nitric oxide synthase (p-eNOS)-S1177 and a corresponding decrease in p-eNOS-T494. Histopathology revealed no evidence of hemorrhage, inflammation or necrosis. CONCLUSION Low-intensity US at specific frequencies and acoustic pressures results in marked neuroprotection in a mouse model of stroke by modulation of p-eNOS independent of its effect on CBF.
Collapse
Affiliation(s)
- Catherine M Davis
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Azzdine Y Ammi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Carmen Methner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - David Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Jia Z, Feng J, Yuan G, Xiao H, Dang H, Zhang Y, Chen K, Zou J, Wang J. The Meteorin-like cytokine is upregulated in grass carp after infection with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104632. [PMID: 36608897 DOI: 10.1016/j.dci.2023.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Meteorin-like (Metrnl) is a novel immune regulatory factor or adipokine which is mainly produced by activated macrophages. In teleost fish, two homologs are present. In this study, monoclonal antibodies were prepared against recombinant grass carp (Ctenopharyngodon idella, Ci) Metrnl-a in mice and characterized by Western blotting, flow cytometry and immunofluorescent microscopy. In grass carp infected with Aeromonus hydrophila (A. hydrophila), the cells expressing CiMetrnl-a markedly increased in the gills, head kidney and intestine. In the inflamed intestine caused by A. hydrophila infection, the CiMetrnl-a producing cells were detected mainly in the mucosal layer of anterior, middle and posterior segments. Consistently, qRT-PCR analysis showed that the mRNA expression of CiMetrnl-a was markedly induced. Our results suggest that CiMetrnl-a is involved in regulating intestine inflammation caused by bacterial infection.
Collapse
Affiliation(s)
- Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Selected Factors of Vascular Changes: The Potential Pathological Processes Underlying Primary Headaches in Children. CHILDREN 2022; 9:children9111660. [DOI: 10.3390/children9111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Background: The prevalence, social consequences and complicated pathogenesis make headaches in children a significant clinical issue. Studies in adults suggest that primary headaches could be the first sign of atherosclerosis and platelet aggregation. Aim: To analyze the blood levels of selected biomarkers of vascular changes potentially associated with a higher risk of atherosclerosis in children with primary headaches. Methods: The medical family history, brain-derived neurotrophic factor (BDNF), soluble CD40 ligands (sCD40L), endothelial plasminogen activator inhibitor (PAI I), vascular endothelial growth factor (VEGF) and intima-media thickness (IMT) measurements were performed in the 83 children (52 with primary headaches, 31 controls). Selected factors were compared with basic laboratory parameters that are potentially related to atherosclerosis: C-reactive protein (CRP) and lipid concentration. Results: There were no significant differences in biomarkers of vascular changes in the study group and controls in general. In the study group, boys had a higher BDNF level than girls (p = 0.046). Normal-weight migraine patients had significantly higher PAI-I levels than controls (p = 0.034). A positive correlation between PAI-1 and triglycerides (TG) was observed. IMT did not differ between children with primary headaches and controls; however, IMT showed a positive correlation with BMI z-score and TG. Children with headaches had, more often, a positive family history of cardiovascular disease (p = 0.049). Conclusions: There were no clear clinical changes indicative of atherosclerosis in the study population. However, some trends are visible. Primary headaches are more often related to a family history of cardiovascular diseases. IMT is associated with TG levels and BMI z-score. The measured biomarkers of vascular changes show mutual relations.
Collapse
|
5
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
6
|
Protective Mechanisms of Nootropic Herb Shankhpushpi ( Convolvulus pluricaulis) against Dementia: Network Pharmacology and Computational Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1015310. [PMID: 36225186 PMCID: PMC9550454 DOI: 10.1155/2022/1015310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.
Collapse
|
7
|
Zhu S, Liu F, Zhang R, Xiong Z, Zhang Q, Hao L, Chen S. Neuroprotective Potency of Neolignans in Magnolia officinalis Cortex Against Brain Disorders. Front Pharmacol 2022; 13:857449. [PMID: 35784755 PMCID: PMC9244706 DOI: 10.3389/fphar.2022.857449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, neurological diseases including Alzheimer’s disease, Parkinson’s disease and stroke are one of the main causes of death in the world. At the same time, the incidence of psychiatric disorders including depression and anxiety has been increasing. Accumulating elderly and stressed people suffer from these brain disorders, which is undoubtedly a huge burden on the modern aging society. Neolignans, the main active ingredients in Magnolia officinalis cortex, were reported to have neuroprotective effects. In addition, the key bioactive ingredients of neolignans, magnolol (1) and honokiol (2), were proved to prevent and treat neurological diseases and psychiatric disorders by protecting nerve cells and brain microvascular endothelial cells (BMECs). Furthermore, neolignans played a role in protecting nerve cells via regulation of neuronal function, suppression of neurotoxicity, etc. This review summarizes the neuroprotective effect, primary mechanisms of the leading neolignans and provides new prospects for the treatment of brain disorders in the future.
Collapse
Affiliation(s)
- Shun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongxiang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Hao
- Huarun Sanjiu (ya’an) Pharmaceutical Group Co., LTD., Ya’an, China
| | - Shiyin Chen
- Department of Orthopedics of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| |
Collapse
|
8
|
Sarmah N, Nauli AM, Ally A, Nauli SM. Interactions among Endothelial Nitric Oxide Synthase, Cardiovascular System, and Nociception during Physiological and Pathophysiological States. Molecules 2022; 27:2835. [PMID: 35566185 PMCID: PMC9105107 DOI: 10.3390/molecules27092835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide synthase (NOS) plays important roles within the cardiovascular system in physiological states as well as in pathophysiologic and specific cardiovascular (CV) disease states, such as hypertension (HTN), arteriosclerosis, and cerebrovascular accidents. This review discusses the roles of the endothelial NOS (eNOS) and its effect on cardiovascular responses that are induced by nociceptive stimuli. The roles of eNOS enzyme in modulating CV functions while experiencing pain will be discussed. Nociception, otherwise known as the subjective experience of pain through sensory receptors, termed "nociceptors", can be stimulated by various external or internal stimuli. In turn, events of various cascade pathways implicating eNOS contribute to a plethora of pathophysiological responses to the noxious pain stimuli. Nociception pathways involve various regions of the brain and spinal cord, including the dorsolateral periaqueductal gray matter (PAG), rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla, and intermediolateral column of the spinal cord. These pathways can interrelate in nociceptive responses to pain stimuli. The alterations in CV responses that affect GABAergic and glutamatergic pathways will be discussed in relation to mechanical and thermal (heat and cold) stimuli. Overall, this paper will discuss the aggregate recent and past data regarding pain pathways and the CV system.
Collapse
Affiliation(s)
- Niribili Sarmah
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Andromeda M. Nauli
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA;
| | - Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Atypical Teratoid Rhabdoid Tumours Are Susceptible to Panobinostat-Mediated Differentiation Therapy. Cancers (Basel) 2021; 13:cancers13205145. [PMID: 34680294 PMCID: PMC8534272 DOI: 10.3390/cancers13205145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Atypical teratoid rhabdoid tumour (ATRT) is an aggressive undifferentiated malignancy of the central nervous system in children. A defining feature of ATRT is the loss of the SMARCB1 gene that is essential for regulating gene expression required for normal developmental processes. We show that treatment of human ATRT cell models with the histone deacetylate inhibitor, panobinostat, inhibits tumour growth, reactivates the expression of developmental genes, and drives neuronal differentiation. These results demonstrate the therapeutic potential of panobinostat for the treatment of ATRT. Abstract Atypical teratoid rhabdoid tumour (ATRT) is a rare but highly aggressive undifferentiated solid tumour arising in the central nervous system and predominantly affecting infants and young children. ATRT is exclusively characterized by the inactivation of SMARCB1, a member of the SWI/SNF chromatin remodelling complex that is essential for the regulation of large sets of genes required for normal development and differentiation. Histone deacetylase inhibitors (HDACi) are a promising anticancer therapy and are able to mimic the normal acetylation functions of SMARCB1 in SMARCB1-deficient cells and drive multilineage differentiation in extracranial rhabdoid tumours. However, the potential efficacy of HDACi in ATRT is unknown. Here, we show that human ATRT cells are highly responsive to the HDACi panobinostat and that sustained treatment leads to growth arrest, increased cell senescence, decreased clonogenicity and induction of a neurogenesis gene-expression profile. Furthermore, in an orthotopic ATRT xenograft model, continuous panobinostat treatment inhibits tumour growth, increases survival and drives neuronal differentiation as shown by the expression of the neuronal marker, TUJ1. Collectively, this preclinical study supports the therapeutic potential of panobinostat-mediated differentiation therapy for ATRT.
Collapse
|
10
|
Zhang M, Huang C, Zhang L, Huang L, Hu X. Phosphoinositide-3-Kinase/Akt-Endothelial Nitric Oxide Synthase Signaling Pathway Mediates the Neuroprotective Effect of Sevoflurane Postconditioning in a Rat Model of Hemorrhagic Shock and Resuscitation. World Neurosurg 2021; 157:e223-e231. [PMID: 34634505 DOI: 10.1016/j.wneu.2021.09.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although extensive reports have demonstrated the neuroprotection of sevoflurane postconditioning in cases of focal and global cerebral ischemia/reperfusion, the underlying mechanisms are not completely elucidated. This study investigated whether this effect is related to endothelial nitric oxide synthase (eNOS) and mediated by the phosphoinositide-3-kinase pathway in a rat model of hemorrhagic shock and resuscitation. METHODS Adult male Sprague Dawley rats were subjected to hemorrhagic shock for 60 minutes and then resuscitation for 30 minutes in experimental groups. Sevoflurane postconditioning was performed at the beginning of resuscitation to completion. At 24 hours after resuscitation, the brain infarct volume was evaluated by 2,3,5-triphenyltetrazolium chloride staining. The neuronal morphological changes and apoptosis were determined by hematoxylin and eosin staining and immunohistochemistry analysis, respectively. The activity of phosphorylated Akt and eNOS was evaluated by Western blot analysis. RESULTS Brain injuries such as the cerebral infarct volume and pathological neuronal changes as well as cell apoptosis were observed in the hippocampus after hemorrhagic shock and resuscitation. Postconditioning with 2.4% sevoflurane significantly attenuated brain injuries. Wortmannin prevented the improvements of neuronal characteristics elicited by sevoflurane postconditioning as well as the hyperactivity of eNOS and phosphorylated Akt. CONCLUSIONS Sevoflurane postconditioning could attenuate brain injury induced by hemorrhagic shock and resuscitation, and this neuroprotective effect may be partly by upregulation of eNOS through the phosphoinositide-3-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Muchun Zhang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chunxia Huang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Huang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xianwen Hu
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
12
|
Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches. CHILDREN-BASEL 2020; 7:children7100167. [PMID: 33020432 PMCID: PMC7600888 DOI: 10.3390/children7100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Headaches are common complaints in children. The International Classification of Headache Disorders, 3rd edition (beta version), defines more than 280 types of headaches. Primary headaches refer to independent conditions that cause pain and include migraine, tension-type headaches (TTH), and trigeminal autonomic cephalalgias (TACs). Several agents are involved in the pathogenesis of headaches. The factors associated with predisposition to atherosclerosis seem to be particularly important from the clinical point of view. The influence of obesity on the incidence of headaches has been well established. Moreover, idiopathic headaches, especially migraine, are thought to be one of the first signs of disorders in lipid metabolism and atherosclerosis. The risk of migraine increases with increasing obesity in children. Another factor that seems to be involved in both obesity and headaches is the adiponectin level. Recent data also suggest new potential risk factors for atherosclerosis and platelet aggregation such as brain-derived neurotrophic factor (BDNF), sCD40L (soluble CD40 ligand), serpin E1/PAI I (endothelial plasminogen activator inhibitor), and vascular endothelial growth factor (VEGF). However, their role is controversial because the results of clinical studies are often inconsistent. This review presents the current knowledge on the potential markers of atherosclerosis and platelet aggregation, which may be associated with primary headaches.
Collapse
|
13
|
Protective Effect of Dimethyl Fumarate on Memory Impairment After Cerebral Ischemia-Reperfusion Injury in Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.69310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
15
|
Sordyl J, Kopyta I, Sarecka-Hujar B, Francuz T, Matusik P, Małecka-Tendera E. Lipid levels and selected biomarkers of vascular changes in children with idiopathic headaches - a preliminary report. Arch Med Sci 2019; 15:120-125. [PMID: 30697261 PMCID: PMC6348343 DOI: 10.5114/aoms.2018.73983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/07/2018] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Elevated lipid concentrations were observed in adults with headaches. However, studies in children are scarce. Recent data suggest new potential risk factors for atherosclerosis, which may be associated with headaches. The aim of the study was to analyse the blood levels of lipids and new markers of atherosclerosis in children with idiopathic headaches. MATERIAL AND METHODS The study population comprised 65 children (39 with idiopathic headaches and 26 healthy children). Total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol and triacylglycerol (TG) levels were measured in every patient. Brain-derived neurotrophic factor (BDNF), soluble CD40 ligand (sCD40L), endothelial plasminogen activator inhibitor (serpin E1/PAI I) and vascular endothelial growth factor (VEGF) blood level measurements were performed in 34 children. RESULTS Children with headaches had higher BMI z-scores (0.2 vs. -1.14; p = 0.006). TC level was lower in patients with headaches (121.04 mg/dl vs. 146.87 mg/dl, p = 0.019). No differences in concentrations of TG, HDL or LDL were found. BDNF was significantly higher in the studied group (171.57 pg/ml vs. 64.04 pg/ml, p = 0.012). The VEGF was higher in boys with headaches than in girls (368.27 pg/ml vs. 142.86 pg/ml, p = 0.011). There were no differences in levels of VEGF, sCD40L or PAI-1 between groups. CONCLUSIONS Children with headaches have lower total cholesterol and higher BDNF levels than controls. No significant difference in levels of triacylglycerols, HDL cholesterol, LDL cholesterol, VEGF, sCD40L or PAI-1 was found between children with headaches and controls.
Collapse
Affiliation(s)
- Joanna Sordyl
- Department of Paediatrics and Paediatric Endocrinology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Ilona Kopyta
- Department of Paediatric Neurology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Beata Sarecka-Hujar
- Department of Pharmaceutical Technology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Paweł Matusik
- Department of Paediatrics and Paediatric Endocrinology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Ewa Małecka-Tendera
- Department of Paediatrics and Paediatric Endocrinology, School of Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
16
|
Hill T, Polk JD. BDNF, endurance activity, and mechanisms underlying the evolution of hominin brains. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:47-62. [PMID: 30575024 DOI: 10.1002/ajpa.23762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As a complex, polygenic trait, brain size has likely been influenced by a range of direct and indirect selection pressures for both cognitive and non-cognitive functions and capabilities. It has been hypothesized that hominin brain expansion was, in part, a correlated response to selection acting on aerobic capacity (Raichlen & Polk, 2013). According to this hypothesis, selection for aerobic capacity increased the activity of various signaling molecules, including those involved in brain growth. One key molecule is brain-derived neurotrophic factor (BDNF), a protein that regulates neuronal development, survival, and plasticity in mammals. This review updates, partially tests, and expands Raichlen and Polk's (2013) hypothesis by evaluating evidence for BDNF as a mediator of brain size. DISCUSSION We contend that selection for endurance capabilities in a hot climate favored changes to muscle composition, mitochondrial dynamics and increased energy budget through pathways involving regulation of PGC-1α and MEF2 genes, both of which promote BDNF activity. In addition, the evolution of hairlessness and the skin's thermoregulatory response provide other molecular pathways that promote both BDNF activity and neurotransmitter synthesis. We discuss how these pathways contributed to the evolution of brain size and function in human evolution and propose avenues for future research. Our results support Raichlen and Polk's contention that selection for non-cognitive functions has direct mechanistic linkages to the evolution of brain size in hominins.
Collapse
Affiliation(s)
- Tyler Hill
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - John D Polk
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, Illinois
| |
Collapse
|
17
|
Kumar M, Bansal N. Ellagic acid prevents dementia through modulation of PI3-kinase-endothelial nitric oxide synthase signalling in streptozotocin-treated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:987-1001. [PMID: 29947909 DOI: 10.1007/s00210-018-1524-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Ellagic acid (EGA)-enriched dietary supplements are widely acclaimed, owing to its versatile bioactivities. Previously, we reported that chronic administration of EGA prevented the impairment of cognitive abilities in rats using the intracerebroventricular-administered streptozotocin (STZ-ICV) model of Alzheimer's disease. Impairment of phosphoinositide 3 (PI3)-kinase-regulated endothelial nitric oxide synthase (eNOS) activity by central administration of STZ in rodents instigates dementia. The aim of the present study was to delineate the role of PI3-kinase-eNOS activity in the prevention of STZ-ICV-induced memory dysfunctions by EGA. The Morris water maze and elevated plus maze tests were conducted, and brain oxidative stress markers (TBARS, GSH, SOD, CAT), nitrite, acetylcholinesterase (AChE), LDH, TNF-α and eNOS were quantified. Administration of EGA (35 mg/k, p.o.) for 4 weeks daily attenuated the STZ-ICV (3 mg/kg)-triggered increase of brain oxidative stress, nitrite and TNF-α levels; AChE and LDH activity; and decline of brain eNOS activity. The memory restoration by EGA in STZ-ICV-treated rats was conspicuously impaired by N(G)-nitro-L-arginine methyl ester (L-NAME) (20 mg/kg, 28 days) and wortmannin (5 μg/rat; ICV) treatments. Wortmannin (PI3-kinase inhibitor) and L-NAME groups manifested elevated brain oxidative stress, TNF-α content and AChE and LDH activity and diminished nitrite content. L-NAME (arginine-based competitive eNOS inhibitor) enhanced the eNOS expression (not activity) whereas wortmannin reduced the brain eNOS levels in EGA- and STZ-ICV-treated rats. However, the L-NAME group exhibited superior cognitive abilities in comparison to the wortmannin group. It can be concluded that EGA averted the memory deficits by precluding the STZ-ICV-induced loss of PI3-kinase-eNOS signalling in the brain of rats.
Collapse
Affiliation(s)
- Manish Kumar
- IKG Punjab Technical University, Kapurthala, Punjab, 144603, India
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, Bela, Ropar, 140111, India.
| |
Collapse
|
18
|
Wang BL, Jin H, Han XQ, Xia Y, Liu NF. Involvement of brain-derived neurotrophic factor in exercise‑induced cardioprotection of post-myocardial infarction rats. Int J Mol Med 2018; 42:2867-2880. [PMID: 30226568 DOI: 10.3892/ijmm.2018.3841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/23/2018] [Indexed: 11/06/2022] Open
Abstract
Exercise induces a number of benefits, including angiogenesis in post‑myocardial infarction (MI); however, the underlying mechanisms have not been fully clarified. Neurotrophic brain‑derived neurotrophic factor (BDNF) serves a protective role in certain adult cardiac diseases through its specific receptor, BDNF/NT‑3 growth factors receptor (TrkB). The present study explored the mechanisms by which exercise improves cardiac function, with a focus on the involvement of the BDNF/TrkB axis. MI rats were assigned to Sham, sedentary, exercise, exercise with K252a (a TrkB inhibitor), and exercise with NG‑nitro‑L‑arginine methyl ester (L‑NAME) groups. The exercise group was subjected to 8 weeks of treadmill running. The results demonstrated that the rats in the exercise group exhibited increased myocardial angiogenesis and improved cardiac function, which was attenuated by K252a. Exercise induced activation of the BDNF/TrkB axis in the ischaemic myocardium and increased serum BDNF levels were abated by exposure to L‑NAME. Improvements in angiogenesis and left ventricular function exhibited a positive association, with changes in serum BDNF. In the in vitro experiments, human umbilical vein endothelial cells were exposed to shear stress (SS) of 12 dyn/cm2 to mimic the effects of exercise training on vascular tissue. An increased tube‑forming capacity, and a nitric oxide (NO)‑dependent prolonged activation of the BDNF/TrkB‑full‑length axis over 12 h, but not the TrkB‑truncated axis, was observed. The SS‑related angiogenic response was attenuated by TrkB inhibition. Overall, these results demonstrate that exercise confers certain aspects of its cardioprotective effects through the activation of the BDNF/TrkB axis in an NO‑dependent manner, a process in which fluid‑induced SS may serve a crucial role.
Collapse
Affiliation(s)
- Bi-Lei Wang
- Department of Rehabilitation, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hong Jin
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xi-Qiong Han
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yang Xia
- Department of Rehabilitation, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nai-Feng Liu
- Department and Institute of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
19
|
NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels. J Neurosci 2018; 38:6247-6266. [PMID: 29891729 DOI: 10.1523/jneurosci.3017-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels.SIGNIFICANCE STATEMENT White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.
Collapse
|
20
|
Barakat W, Fahmy A, Askar M, El-Kannishy S. Effectiveness of arginase inhibitors against experimentally induced stroke. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:603-612. [PMID: 29600431 DOI: 10.1007/s00210-018-1489-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/22/2018] [Indexed: 01/28/2023]
Abstract
Stroke is a lethal disease, but it disables more than it kills. Stroke is the second leading cause of death and the most frequent cause of permanent disability in adults worldwide, with 90% of survivors having residual deficits. The pathophysiology of stroke is complex and involves a strong inflammatory response associated with oxidative stress and activation of several proteolytic enzymes. The current study was designed to investigate the effect of arginase inhibitors (L-citruline and L-ornithine) against ischemic stroke induced in rats by middle cerebral artery occlusion (MCAO). MCAO resulted in alteration in rat behavior, brain infarct, and edema associated with disruption of the blood-brain barrier (BBB). This was mediated through overexpression of arginase I and II, inducible NOS (iNOS), malondialdehyde (MDA), advanced glycation end products (AGEs), TNF-α, and IL-1β and downregulation of endothelial nitric oxide synthase (eNOS). Treatment with L-citruline and L-ornithine and the standard neuroprotective drug cerebrolysin ameliorated all the deleterious effects of stroke. These results indicate the possible use of arginase inhibitors in the treatment of stroke after suitable clinical trials are done.
Collapse
Affiliation(s)
- Waleed Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ahmad Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Askar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sherif El-Kannishy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia
- Analytical Toxicology - Emergency Hospital, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
21
|
Park SY, Choi YW, Park G. Nrf2-mediated neuroprotection against oxygen-glucose deprivation/reperfusion injury by emodin via AMPK-dependent inhibition of GSK-3β. J Pharm Pharmacol 2018; 70:525-535. [DOI: 10.1111/jphp.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023]
Abstract
Abstract
Objectives
Our study verified the neuroprotective properties of emodin against oxygen-glucose deprivation/reoxygenation (OGD/R) and demonstrated its mechanism.
Methods
Human neuronal SH-SY5Y cells were investigated by analysing cell viability, lactate dehydrogenase levels, expression of molecules related to apoptotic cell death, and using biochemical techniques, flow cytometry and Western blot assays.
Key findings
Emodin reduced OGD/R-lead to neurotoxicity in SH-SY5Y cells. OGD/R significantly increased levels of cleaved poly ADP ribose polymerase, cleaved caspase-3, cleaved caspase-9, p53, p21 and Bax protein. However, emodin treatment effectively inhibited these OGD/R-induced changes. Emodin treatment also increased HO-1 and NQO1 expression in a concentration- and time-dependent manner and caused antioxidant response element (ARE) transcription activity and nuclear Nrf2 accumulation. Emodin phosphorylated AMPK and GSK3β, and pretreatment of cells with an AMPK inhibitor suppressed emodin-induced nuclear Nrf2 accumulation and HO-1 and NQO1 expression. AMPK inhibitor treatment decreased GSK3β phosphorylation, suggesting that AMPK is upstream of GSK3β, Nrf2, HO-1 and NQO1. Emodin's neuroprotective effect was completely blocked by HO-1, NQO1 and Nrf2 knock-down and an AMPK inhibitor, indicating the action of AMPK/GSK3β/Nrf2/ARE in the neuroprotective effect of emodin subjected to OGD/R.
Conclusions
Emodin treatment protected against OGD/R-lead to neurotoxicity by potentiating Nrf2/ARE-regulated neuroprotection through the AMPK/GSK3β pathway, indicating that emodin may be useful for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan, Korea
| |
Collapse
|
22
|
Adams JA, Pastuszko P, Uryash A, Wilson D, Lopez Padrino JR, Nadkarni V, Pastuszko A. Whole Body Periodic Acceleration (pGz) as a non-invasive preconditioning strategy for pediatric cardiac surgery. Med Hypotheses 2017; 110:144-149. [PMID: 29317058 DOI: 10.1016/j.mehy.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023]
Abstract
We hypothesized that pGz has cardio and neuroprotective effects due to upregulation of pathways which include eNOS, anti-apoptotic, and anti-inflammatory pathways. We analyze protein expression of these pathways in the brain of neonatal piglets, as well as report on the myocardial function after Deep Hypothermic Circulatory Arrest (DHCA) and pGz preconditioning. Animal data affirms both a cardio and neuroprotective role for pGz. These findings suggest that pGz can be a simple, non-invasive cardio and neuroprotective strategy preconditioning strategy in children requiring surgical intervention.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States.
| | - Peter Pastuszko
- Pediatric Cardiovascular Surgery, Mount Sinai Health Systems, New York, NY, United States
| | - Arkady Uryash
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - David Wilson
- Department of Biochemistry & Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Jose R Lopez Padrino
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Vinay Nadkarni
- Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anna Pastuszko
- Department of Biochemistry & Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Fateeva VV, Vorobyova OV. [Nitric oxide: from the mechanism of action to pharmacological effects in cerebrovascular diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:131-135. [PMID: 29171501 DOI: 10.17116/jnevro2017117101131-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The article presents the data of studies of nitric oxide (NO) in the pathogenesis of cerebrovascular diseases. It is emphasized that endothelial dysfunction contributes to the formation of cerebrovascular diseases. Generalized data on preparations with endothelioprotective effect, as well as own data on the use of the preparation 'Divaza' in patients of middle and advanced age with chronic cerebrovascular disease are given.
Collapse
Affiliation(s)
- V V Fateeva
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - O V Vorobyova
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
24
|
Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017; 18:ijms18091914. [PMID: 28880206 PMCID: PMC5618563 DOI: 10.3390/ijms18091914] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/25/2022] Open
Abstract
Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues. While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin (Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually met, for others it is not, and both emerge as dangerous treatments.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| | - Michele Samaja
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| |
Collapse
|
25
|
Brain-Derived Neurotrophic Factor Attenuates Septic Myocardial Dysfunction via eNOS/NO Pathway in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1721434. [PMID: 28770018 PMCID: PMC5523440 DOI: 10.1155/2017/1721434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Abstract
Sepsis-induced myocardial dysfunction increases mortality in sepsis, yet the underlying mechanism is unclear. Brain-derived neurotrophic factor (BDNF) has been found to enhance cardiomyocyte function, but whether BDNF has a beneficial effect against septic myocardial dysfunction is unknown. Septic shock was induced by cecal ligation and puncture (CLP). BDNF was expressed in primary cardiomyocytes, and its expression was significantly reduced after sepsis. In rats with sepsis, a sharp decline in survival was observed after CLP, with significantly reduced cardiac BDNF expression, enhanced myocardial fibrosis, elevated oxidative stress, increased myocardial apoptosis, and decreased endothelial nitric oxide (NO) synthase (eNOS) and NO. Supplementation with recombined BDNF protein (rhBDNF) enhanced myocardial BDNF and increased survival rate with improved cardiac function, reduced oxidative stress, and myocardial apoptosis, which were associated with increased eNOS expression, NO production, and Trk-B, a BDNF receptor. Pretreatment with NOS inhibitor, N (omega)-nitro-L-arginine methyl ester, abolished the abovementioned BDNF cardioprotective effects without affecting BDNF and Trk-B. It is concluded that BDNF protects the heart against septic cardiac dysfunction by reducing oxidative stress and apoptosis via Trk-B, and it does so through activation of eNOS/NO pathway. These findings provide a new treatment strategy for sepsis-induced myocardial dysfunction.
Collapse
|
26
|
Caviedes A, Varas-Godoy M, Lafourcade C, Sandoval S, Bravo-Alegria J, Kaehne T, Massmann A, Figueroa JP, Nualart F, Wyneken U. Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures. Front Cell Neurosci 2017; 11:180. [PMID: 28725180 PMCID: PMC5495831 DOI: 10.3389/fncel.2017.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implicated in synaptic plasticity and is enriched in the dendrites of CA1 hippocampal neurons. Using high resolution microscopy and co-distribution analysis of eNOS with synaptic and raft proteins, we now show for the first time in primary cortical and hippocampal neuronal cultures, virtually devoid of endothelial cells, that eNOS is present in neurons and is localized in dendritic spines. Moreover, eNOS is present in a postsynaptic density-enriched biochemical fraction isolated from these neuronal cultures. In addition, qPCR analysis reveals that both the nNOS as well as the eNOS transcripts are present in neuronal cultures. Moreover, eNOS inhibition in cortical cells has a negative impact on cell survival after excitotoxic stimulation with N-methyl-D-aspartate (NMDA). Consistent with previous results that indicated nitric oxide production in response to the neurotrophin BDNF, we could detect eNOS in immunoprecipitates of the BDNF receptor TrkB while nNOS could not be detected. Taken together, our results show that eNOS is located at excitatory synapses where it could represent a source for NO production and thus, the contribution of eNOS-derived nitric oxide to the regulation of neuronal survival and function deserves further investigations.
Collapse
Affiliation(s)
- Ariel Caviedes
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Manuel Varas-Godoy
- Laboratorio Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Carlos Lafourcade
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Soledad Sandoval
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Javiera Bravo-Alegria
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Angela Massmann
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-SalemNC, United States
| | - Jorge P Figueroa
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-SalemNC, United States
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO BIO, Laboratorio de Neurobiología y Células Madres, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los AndesSantiago, Chile
| |
Collapse
|
27
|
LY333531, a PKCβ inhibitor, attenuates glomerular endothelial cell apoptosis in the early stage of mouse diabetic nephropathy via down-regulating swiprosin-1. Acta Pharmacol Sin 2017; 38:1009-1023. [PMID: 28414198 DOI: 10.1038/aps.2016.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
Glomerular endothelial cell (GEC) injury plays an important role in the early stage of diabetic nephropathy (DN). Previous studies show that a PKCβ inhibitor is effective for treating DN. In the current study we further explored the effects and molecular mechanisms of PKCβ inhibitors on GEC apoptosis in DN in streptozotocin-induced diabetic mice in vivo and high glucose- or PMA-treated human renal glomerular endothelial cells (HRGECs) in vitro. In the diabetic mice, hyperglycemia caused aggravated nephropathy and GEC apoptosis accompanied by significantly increased expression of swiprosin-1, a potentally pro-apoptotic protein. Administration of LY333531 (1 mg·kg-1·d-1 for 8 weeks) significantly attenuated both GEC apoptosis and swiprosin-1 upregulation in the diabetic mice. Similar results were observed in high glucose- or PMA-treated HRGECs in vitro. The pro-apoptotic role of swiprosin-1 was further examined using HRGECs treated with lentivirus mediating RNA interference or over-expression and swiprosin-1-knockout mice. Over-expression of swiprosin-1 in HRGECs resulted in increases in apoptosis and in caspase-9, caspase-3 and Bax expression. In contrast, knockdown of swiprosin-1 attenuated high glucose- or PMA-induced HRGECs apoptosis. Furthermore, over-expression of swiprosin-1 promoted interaction between swiprosin-1 and caspase-9 and increased the formation of apoptosomes. In diabetic swiprosin-1-/- mice, the kidney/body weight, urinary albumin, glomerular hypertrophy, mitochondrial apoptotic-associated proteins and GEC apoptosis were significantly attenuated as compared with those in diabetic swiprosin-1+/+ mice. These results demonstrate that swiprosin-1 is up-regulated by PKCβ in the early stage of DN, and that PKCβ facilitates GEC apoptosis through the mitochondrial-dependent pathway.
Collapse
|
28
|
Effect of short-term exercise training on brain-derived neurotrophic factor signaling in spontaneously hypertensive rats. J Hypertens 2017; 35:279-290. [DOI: 10.1097/hjh.0000000000001164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Li M, Wang Y, Wang W, Zou C, Wang X, Chen Q. Recombinant human brain-derived neurotrophic factor prevents neuronal apoptosis in a novel in vitro model of subarachnoid hemorrhage. Neuropsychiatr Dis Treat 2017; 13:1013-1021. [PMID: 28435271 PMCID: PMC5388253 DOI: 10.2147/ndt.s128442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with high mortality and morbidity. An animal model for SAH was established by directly injecting a hemolysate into the subarachnoid space of rats or mice. However, the in vitro applications of the hemolysate SAH model have not been reported, and the mechanisms remain unclear. In this study, we established an in vitro SAH model by treating cortical pyramidal neurons with hemolysate. Using this model, we assessed the effects of recombinant human brain-derived neurotrophic factor (rhBDNF) on hemolysate-induced cell death and related mechanisms. Cortical neurons were treated with 10 ng/mL or 100 ng/mL rhBDNF prior to application of hemolysate. Hemolysate treatment markedly increased cell loss, triggered apoptosis, and promoted the expression of caspase-8, caspase-9, and cleaved caspase-3. rhBDNF significantly inhibited hemolysate-induced cell loss, neuronal apoptosis, and expression of caspase-8, caspase-9, and cleaved caspase-3. Our data revealed a previously unrecognized protective activity of rhBDNF against hemolysate-induced cell death, potentially via regulation of caspase-9-, caspase-8-, and cleaved caspase-3-related apoptosis. This study implicates that hemolysate-induced cortical neuron death represents an important in vitro model of SAH.
Collapse
Affiliation(s)
- Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuefei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Changlin Zou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Banoujaafar H, Monnier A, Pernet N, Quirié A, Garnier P, Prigent-Tessier A, Marie C. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. Eur J Neurosci 2016; 44:2226-35. [PMID: 27306299 DOI: 10.1111/ejn.13301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production.
Collapse
Affiliation(s)
- Hayat Banoujaafar
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Alice Monnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,Department of Rehabilitation, University Hospital, Dijon, France
| | - Nicolas Pernet
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Aurore Quirié
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Philippe Garnier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France.,IUT de Dijon, Département de Génie Biologique, Université de Bourgogne, Dijon, France
| | - Anne Prigent-Tessier
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| | - Christine Marie
- Unité INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, University of Bourgogne Franche Comté, F-21000, Dijon, France
| |
Collapse
|
31
|
Zheng SL, Li ZY, Song J, Liu JM, Miao CY. Metrnl: a secreted protein with new emerging functions. Acta Pharmacol Sin 2016; 37:571-9. [PMID: 27063217 PMCID: PMC4857552 DOI: 10.1038/aps.2016.9] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
Secreted proteins play critical roles in physiological and pathological processes and can be used as biomarkers and therapies for aging and disease. Metrnl is a novel secreted protein homologous to the neurotrophin Metrn. But this protein, unlike Metrn that is mainly expressed in the brain, shows a relatively wider distribution in the body with high levels of expression in white adipose tissue and barrier tissues. This protein plays important roles in neural development, white adipose browning and insulin sensitization. Based on its expression and distinct functions, this protein is also called Cometin, Subfatin and Interleukin 39, which refer to its neurotrophic effect, adipokine function and the possible action as a cytokine, respectively. The spectrum of Metrnl functions remains to be determined, and the mechanisms of Metrnl action need to be elucidated. In this review, we focus on the discovery, structural characteristics, expression pattern and physiological functions of Metrnl, which will assist in developing this protein as a new therapeutic target or agent.
Collapse
Affiliation(s)
- Si-li Zheng
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Zhi-yong Li
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | - Jian-min Liu
- Stroke Center & Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chao-yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100069, China
- E-mail
| |
Collapse
|
32
|
Atochin DN, Schepetkin IA, Khlebnikov AI, Seledtsov VI, Swanson H, Quinn MT, Huang PL. A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci Lett 2016; 618:45-49. [PMID: 26923672 DOI: 10.1016/j.neulet.2016.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/08/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30min) with subsequent reperfusion (48h). Mice were treated with IQ-1S (25mg/kg) suspended in 10% solutol or with vehicle alone 30min before and 24h after middle cerebral artery (MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30min of MCAO provoked by a filament and during the first 30min of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48h of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Dmitriy N Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, 149 East 13th Street, Charlestown, MA 02129, USA; RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Igor A Schepetkin
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk 634050, Russia; Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA
| | - Andrei I Khlebnikov
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia; Department of Chemistry, Altai State Technical University, Barnaul 656038, Russia
| | | | - Helen Swanson
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, 149 East 13th Street, Charlestown, MA 02129, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA
| | - Paul L Huang
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, 149 East 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
33
|
Ruan L, Wang B, ZhuGe Q, Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 2015; 1623:166-73. [PMID: 25736182 PMCID: PMC4552615 DOI: 10.1016/j.brainres.2015.02.042] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 01/19/2023]
Abstract
Stroke is a leading cause of mortality and severe long-term disability worldwide. Development of effective treatment or new therapeutic strategies for ischemic stroke patients is therefore crucial. Ischemic stroke promotes neurogenesis by several growth factors including FGF-2, IGF-1, BDNF, VEGF and chemokines including SDF-1, MCP-1. Stroke-induced angiogenesis is similarly regulated by many factors most notably, eNOS and CSE, VEGF/VEGFR2, and Ang-1/Tie2. Important findings in the last decade have revealed that neurogenesis is not the stand-alone consideration in the fight for full functional recovery from stroke. Angiogenesis has been also shown to be critical in improving post-stroke neurological functional recovery. More than that, recent evidence has shown a highly possible interplay or dependence between stroke-induced neurogenesis and angiogenesis. Moving forward, elucidating the underlying mechanisms of this coupling between stroke-induced neurogenesis and angiogenesis will be of great importance, which will provide the basis for neurorestorative therapy. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Linhui Ruan
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Institute of Aging and Alzheimer׳s Disease Research, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Qichuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Institute of Aging and Alzheimer׳s Disease Research, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.
| |
Collapse
|
34
|
Nichols M, Zhang J, Polster BM, Elustondo PA, Thirumaran A, Pavlov EV, Robertson GS. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience 2015; 308:75-94. [PMID: 26363153 DOI: 10.1016/j.neuroscience.2015.09.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
Abstract
In view of evidence that increased consumption of epicatechin (E) and quercetin (Q) may reduce the risk of stroke, we have measured the effects of combining E and Q on mitochondrial function and neuronal survival following oxygen-glucose deprivation (OGD). Relative to mouse cortical neuron cultures pretreated (24h) with either E or Q (0.1-10μM), E+Q synergistically attenuated OGD-induced neuronal cell death. E, Q and E+Q (0.3μM) increased spare respiratory capacity but only E+Q (0.3μM) preserved this crucial parameter of neuronal mitochondrial function after OGD. These improvements were accompanied by corresponding increases in cyclic AMP response element binding protein (CREB) phosphorylation and the expression of CREB-target genes that promote neuronal survival (Bcl-2) and mitochondrial biogenesis (PGC-1α). Consistent with these findings, E+Q (0.1 and 1.0μM) elevated mitochondrial gene expression (MT-ND2 and MT-ATP6) to a greater extent than E or Q after OGD. Q (0.3-3.0μM), but not E (3.0μM), elevated cytosolic calcium (Ca(2+)) spikes and the mitochondrial membrane potential. Conversely, E and E+Q (0.1 and 0.3μM), but not Q (0.1 and 0.3μM), activated protein kinase B (Akt). Nitric oxide synthase (NOS) inhibition with L-N(G)-nitroarginine methyl ester (1.0μM) blocked neuroprotection by E (0.3μM) or Q (1.0μM). Oral administration of E+Q (75mg/kg; once daily for 5days) reduced hypoxic-ischemic brain injury. These findings suggest E and Q activate Akt- and Ca(2+)-mediated signaling pathways that converge on NOS and CREB resulting in synergistic improvements in neuronal mitochondrial performance which confer profound protection against ischemic injury.
Collapse
Affiliation(s)
- M Nichols
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - J Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - B M Polster
- Department of Anesthesiology, Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - P A Elustondo
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - A Thirumaran
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - E V Pavlov
- Department of Basic Sciences, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA.
| | - G S Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th Floor Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, Nova Scotia B3H 2E2, Canada.
| |
Collapse
|
35
|
Karagyaur M, Dyikanov D, Makarevich P, Semina E, Stambolsky D, Plekhanova O, Kalinina N, Tkachuk V. Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration. Biomed Pharmacother 2015; 74:63-70. [DOI: 10.1016/j.biopha.2015.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/09/2015] [Indexed: 01/09/2023] Open
|
36
|
Huang JJ, Shi YQ, Li RL, Hu A, Lu ZY, Weng L, Wang SQ, Han YP, Zhang L, Li B, Hao CN, Duan JL. Angiogenesis effect of therapeutic ultrasound on HUVECs through activation of the PI3K-Akt-eNOS signal pathway. Am J Transl Res 2015; 7:1106-1115. [PMID: 26279754 PMCID: PMC4532743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Therapeutic angiogenic effects of low-intensity ultrasound have been reported in endothelial cells and animal models of hind limb ischemia. It has been shown that the proliferation, migration, and tube formation of endothelial cells play critical roles in angiogenesis. The purpose of this study was to determine the underlying mechanism of low-intensity continuous therapeutic ultrasound on angiogenesis in endothelial cells. In the present study, human umbilical vein endothelial cells (HUVECs) were simulated of low-intensity therapeutic ultrasound (TUS, 1 MHz, 0.3 W/cm(2), 9 minute per day) for 3 days, and we observed migration, tube formation, and expression of endothelial nitric oxide synthase (eNOS) and serine/threonine kinase (Akt) in HUVECs. Specific inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) were added to the culture medium and TUS-induced changes in the pathways that mediate angiogenesis were investigated. After exposure to TUS, HUVECs tube formation and migration were significantly promoted, which was blocked by the eNOS inhibitor Immunofluorescence assay and Western blotting analysis demonstrated that eNOS expression in the HUVECs was significantly increased after TUS exhibition. Proteins of phosphorylated eNOS and Akt were both up-regulated after TUS stimulation. However, the specific inhibitor of PI3K not only significantly decreased the expression of p-Akt, but also down-regulated the p-eNOS. This suggested that the PI3K/Akt signal pathway might participate in modulating the activity of eNOS. In short, TUS therapy promotes angiogenesis through activation of the PI3K-Akt-eNOS signal cascade in HUVECs.
Collapse
Affiliation(s)
- Jing-Juan Huang
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| | - Yi-Qin Shi
- Department of Vascular Surgery, Ren Ji Hospital, Shanghai Jiaotong University School of MedicineDongfang Road 1630, Shanghai 200127, China
| | - Rui-Lin Li
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| | - An Hu
- Department of Otolaryngology, Gong li HospitalMiaopu Road 219, Shanghai 200135, China
| | - Zhao-Yang Lu
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| | - Liang Weng
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| | - Shen-Qi Wang
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| | - Yi-Peng Han
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| | - Lan Zhang
- Department of Vascular Surgery, Ren Ji Hospital, Shanghai Jiaotong University School of MedicineDongfang Road 1630, Shanghai 200127, China
| | - Bao Li
- Department of Cardiology, Shanxi Cardiovascular HospitalYifen Street 18, Taiyuan 030024, China
| | - Chang-Ning Hao
- Department of Vascular Surgery, Ren Ji Hospital, Shanghai Jiaotong University School of MedicineDongfang Road 1630, Shanghai 200127, China
| | - Jun-Li Duan
- Department of Gerontology, XinHua Hospital, Shanghai Jiaotong University School of MedicineKongjiang Road 1665, Shanghai 200092, China
| |
Collapse
|
37
|
Fang M, Feng C, Zhao YX, Liu XY. Camk2b protects neurons from homocysteine-induced apoptosis with the involvement of HIF-1α signal pathway. Int J Clin Exp Med 2014; 7:1659-1668. [PMID: 25126162 PMCID: PMC4132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
In our previous study using iTRAQ technique we found that the level of calmodulin-dependent protein kinase 2b (Camk2b) was lower in rats with hyperhomocysteinemia. We presumed that Camk2b might be involved in homocysteine-induced apoptosis and tried to explore its role in this study through the transfection with Camk2b gene. Results showed that neurons of HHcy group had lower activity measured by MTT, higher percentage of apoptotic neurons, lower expression levels of Camk2b mRNA and protein than those in normal group. Neurons with overexpression of Camk2b (Camk2b group) had lower percentage of apoptosis and higher activity than those in control group. After exposure to 2-Methoxyestradiol, the activity of neurons with overexpression of Camk2b was suppressed with more apoptotic cells observed. The expressions of BCL2, eNOS, EP300 and EPO were all elevated at both mRNA and protein levels in neurons of CamK2b group compared with other three groups. Thus, Camk2b protects neurons from Homocysteine-induced apoptosis with the involvement of HIF-1α signal pathway.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai, China
| | - Chao Feng
- The Fourth Affiliated Hospital Zhejiang University School of MedicineYiwu, China
| | - Yan-Xin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai, China
| | - Xue-Yuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai, China
| |
Collapse
|
38
|
Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M, Touil-Boukoffa C. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res 2014; 34:839-47. [PMID: 24831467 DOI: 10.1089/jir.2013.0085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease leading to a progressive and irreversible loss of mental functions. It is characterized by 3 stages according to the evolution and the severity of the symptoms. This disease is associated with an immune disorder, which appears with significant rise in the inflammatory cytokines and increased production of free radicals such as nitric oxide (NO). Our study aims to investigate interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) involvement in NO production, in vivo and ex vivo, in peripheral blood mononuclear cells from Algerian patients (n=25), according to the different stages of the disease (mild Alzheimer's, moderate Alzheimer's, and severe Alzheimer's) in comparison to mild cognitive impairment (MCI) patients. Interestingly, we observed that in vivo IFN-γ and TNF-α levels assessed in patients with AD in mild and severe stages, respectively, are higher than those observed in patients with moderate stage and MCI. Our in vivo and ex vivo results show that NO production is related to the increased levels of IFN-γ and TNF-α, in mild and severe stages of AD. Remarkably, significant IFN-γ level is only detected in mild stage of AD. Our study suggests that NO production is IFN-γ dependent both in MCI and mild Alzheimer's patients. Further, high levels of NO are associated with an elevation of TNF-α levels in severe stage of AD. Collectively, our data indicate that the proinflammatory cytokine production seems, in part, to be involved in neurological deleterious effects observed during the development of AD through NO pathway.
Collapse
Affiliation(s)
- Mourad Belkhelfa
- 1 Team: Cytokines and NO-Synthases, Laboratory of Cellular and Molecular Biology, Faculty of Biological Science , USTHB, Algiers, Algeria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Adams JA, Uryash A, Bassuk J, Sackner MA, Kurlansky P. Biological basis of neuroprotection and neurotherapeutic effects of Whole Body Periodic Acceleration (pGz). Med Hypotheses 2014; 82:681-7. [PMID: 24661939 DOI: 10.1016/j.mehy.2014.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
Exercise is a well known neuroprotective and neurotherapeutic strategy in animal models and humans with brain injury and cognitive dysfunction. In part, exercise induced beneficial effects relate to endothelial derived nitric oxide (eNO) production and induction of the neurotrophins; Brain Derived Neurotrophic Factor (BDNF) and Glial Derived Neurotrophic Factor (GDNF). Whole Body Periodic Acceleration (WBPA (pGz), is the motion of the supine body headward to footward in a sinusoidal fashion, at frequencies of 100-160 cycles/min, inducing pulsatile shear stress to the vascular endothelium. WBPA (pGz) increases eNO in the cardiovascular system in animal models and humans. We hypothesized that WBPA (pGz) has neuroprotective and neurotherapeutic effects due to enhancement of biological pathways that include eNOS, BDNF and GDNF. We discuss protein expression analysis of these in brain of rodents. Animal and observational human data affirm a neuroprotective and neurotherapeutic role for WBPA (pGz). These findings suggest that WBPA (pGz) in addition to its well known beneficial cardiovascular effects can be a simple non-invasive neuroprotective and neurotherapeutic strategy with far reaching health benefits.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States.
| | - Arkady Uryash
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jorge Bassuk
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Clinical Professor of Medicine, University of Miami School of Medicine, Miami, FL, United States
| | - Paul Kurlansky
- Columbia University College of Physicians and Surgeons, NY, United States
| |
Collapse
|