1
|
Yardımcı-Lokmanoğlu BN, Demir N, Porsnok D, Sırtbaş-Işık G, Cengiz E, Serel-Arslan S, Mutlu A. Are sucking patterns and early spontaneous movements related to later developmental functioning outcomes? A cohort study. Eur J Pediatr 2024; 183:1435-1446. [PMID: 38217695 PMCID: PMC10951042 DOI: 10.1007/s00431-024-05422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Sucking patterns and early spontaneous movements have an important role in the determination of later developmental problems, but the relationship of the two together with long-term outcomes has not been investigated. The objectives of this study were to (i) examine the relationship between sucking patterns using the Neonatal Oral Motor Assessment Scale (NOMAS) and fidgety movements and other movement patterns using detailed General Movements Assessment (GMA), and (ii) investigate the relationship between these early assessment methods and developmental functioning outcomes at later ages. We analyzed the NOMAS from 34 weeks' postmenstrual age up to 10 weeks post-term and GMA between 9 and 20 weeks post-term age, and the Bayley Scales of Infant and Toddler Development-Third Edition (Bayley-III) was applied for the developmental functioning outcomes to 62 infants (61%, 62/102) between 12 and 42 months of age. Among 102 infants at-risk, 70 (69%) showed a normal sucking pattern, and 85 (83%) had fidgety movements. The median Motor Optimality Score-Revised (MOS-R), as determined by GMA, of all infants was 24. The NOMAS was related to the MOS-R and its subcategories (p < 0.05) in all infants at-risk. The NOMAS, MOS-R and its subcategories were also related to cognitive, language, and motor development at later ages according to Bayley-III (p < 0.05). Conclusion: This longitudinal study showed that the quality of sucking patterns, fidgety movements, and MOS-R were related to later developmental functioning, indicating that abnormal sucking patterns, aberrant fidgety movements, and lower MOS-R might predict developmental disorders. What is Known: • Sucking patterns and early spontaneous movements in which central pattern generators play an important role are related. • Sucking patterns and early spontaneous movements might be used separately to predict developmental outcomes. What is New: • Sucking patterns and early spontaneous movements, when used together, were related to later developmental functioning, including cognitive, language, and motor development in at-risk infants. • Predictive value of sucking patterns was lower for each developmental functioning outcome than early spontaneous movements.
Collapse
Affiliation(s)
- Bilge N Yardımcı-Lokmanoğlu
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Developmental and Early Physiotherapy Unit, Ankara, Türkiye.
| | - Numan Demir
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Swallowing Disorders Unit, Ankara, Türkiye
| | - Doğan Porsnok
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Developmental and Early Physiotherapy Unit, Ankara, Türkiye
| | - Gülsen Sırtbaş-Işık
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Developmental and Early Physiotherapy Unit, Ankara, Türkiye
| | - Emre Cengiz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Swallowing Disorders Unit, Ankara, Türkiye
| | - Selen Serel-Arslan
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Swallowing Disorders Unit, Ankara, Türkiye
| | - Akmer Mutlu
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Developmental and Early Physiotherapy Unit, Ankara, Türkiye
| |
Collapse
|
2
|
Mulc D, Smilović D, Krsnik Ž, Junaković-Munjas A, Kopić J, Kostović I, Šimić G, Vukšić M. Fetal development of the human amygdala. J Comp Neurol 2024; 532:e25580. [PMID: 38289194 DOI: 10.1002/cne.25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024]
Abstract
The intricate development of the human amygdala involves a complex interplay of diverse processes, varying in speed and duration. In humans, transient cytoarchitectural structures deliquesce, leading to the formation of functionally distinct nuclei as a result of multiple interdependent developmental events. This study compares the amygdala's cytoarchitectural development in conjunction with specific antibody reactivity for neuronal, glial, neuropil, and radial glial fibers, synaptic, extracellular matrix, and myelin components in 39 fetal human brains. We recognized that the early fetal period, as a continuation of the embryonic period, is still dominated by relatively uniform histogenetic processes. The typical appearance of ovoid cell clusters in the lateral nucleus during midfetal period is most likely associated with the cell migration and axonal growth processes in the developing human brain. Notably, synaptic markers are firstly detected in the corticomedial group of nuclei, while immunoreactivity for the panaxonal neurofilament marker SMI 312 is found dorsally. The late fetal period is characterized by a protracted migration process evidenced by the presence of doublecortin and SOX-2 immunoreactivity ventrally, in the prospective paralaminar nucleus, reinforced by vimentin immunoreactivity in the last remaining radial glial fibers. Nearing the term period, SMI 99 immunoreactivity indicates that perinatal myelination becomes prominent primarily along major axonal pathways, laying the foundation for more pronounced functional maturation. This study comprehensively elucidates the rate and sequence of maturational events in the amygdala, highlighting the key role of prenatal development in its behavioral, autonomic, and endocrine regulation, with subsequent implications for both normal functioning and psychiatric disorders.
Collapse
Affiliation(s)
- Damir Mulc
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
- Psychiatric Hospital Vrapče, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Alisa Junaković-Munjas
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Luu P, Tucker DM. Continuity and change in neural plasticity through embryonic morphogenesis, fetal activity-dependent synaptogenesis, and infant memory consolidation. Dev Psychobiol 2023; 65:e22439. [PMID: 38010309 DOI: 10.1002/dev.22439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
There is an apparent continuity in human neural development that can be traced to venerable themes of vertebrate morphogenesis that have shaped the evolution of the reptilian telencephalon (including both primitive three-layered cortex and basal ganglia) and then the subsequent evolution of the mammalian six-layered neocortex. In this theoretical analysis, we propose that an evolutionary-developmental analysis of these general morphogenetic themes can help to explain the embryonic development of the dual divisions of the limbic system that control the dorsal and ventral networks of the human neocortex. These include the archicortical (dorsal limbic) Papez circuits regulated by the hippocampus that organize spatial, contextual memory, as well as the paleocortical (ventral limbic) circuits that organize object memory. We review evidence that these dorsal and ventral limbic divisions are controlled by the differential actions of brainstem lemnothalamic and midbrain collothalamic arousal control systems, respectively, thereby traversing the vertebrate subcortical neuraxis. These dual control systems are first seen shaping the phyletic morphogenesis of the archicortical and paleocortical foundations of the forebrain in embryogenesis. They then provide dual modes of activity-dependent synaptic organization in the active (lemnothalamic) and quiet (collothalamic) stages of fetal sleep. Finally, these regulatory systems mature to form the major systems of memory consolidation of postnatal development, including the rapid eye movement (lemnothalamic) consolidation of implicit memory and social attachment in the first year, and then-in a subsequent stage-the non-REM (collothalamic) consolidation of explicit memory that is integral to the autonomy and individuation of the second year of life.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
4
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
5
|
Kopić J, Junaković A, Salamon I, Rasin MR, Kostović I, Krsnik Ž. Early Regional Patterning in the Human Prefrontal Cortex Revealed by Laminar Dynamics of Deep Projection Neuron Markers. Cells 2023; 12:231. [PMID: 36672166 PMCID: PMC9856843 DOI: 10.3390/cells12020231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Early regional patterning and laminar position of cortical projection neurons is determined by activation and deactivation of transcriptional factors (TFs) and RNA binding proteins (RBPs) that regulate spatiotemporal framework of neurogenetic processes (proliferation, migration, aggregation, postmigratory differentiation, molecular identity acquisition, axonal growth, dendritic development, and synaptogenesis) within transient cellular compartments. Deep-layer projection neurons (DPN), subplate (SPN), and Cajal-Retzius neurons (CRN) are early-born cells involved in the establishment of basic laminar and regional cortical architecture; nonetheless, laminar dynamics of their molecular transcriptional markers remain underexplored. Here we aimed to analyze laminar dynamics of DPN markers, i.e., transcription factors TBR1, CTIP2, TLE4, SOX5, and RBP CELF1 on histological serial sections of the human frontal cortex between 7.5-15 postconceptional weeks (PCW) in reference to transient proliferative, migratory, and postmigratory compartments. The subtle signs of regional patterning were seen during the late preplate phase in the pattern of sublaminar organization of TBR1+/Reelin+ CRN and TBR1+ pioneering SPN. During the cortical plate (CP)-formation phase, TBR1+ neurons became radially aligned, forming continuity from a well-developed subventricular zone to CP showing clear lateral to medial regional gradients. The most prominent regional patterning was seen during the subplate formation phase (around 13 PCW) when a unique feature of the orbitobasal frontal cortex displays a "double plate" pattern. In other portions of the frontal cortex (lateral, dorsal, medial) deep portion of CP becomes loose and composed of TBR1+, CTIP2+, TLE4+, and CELF1+ neurons of layer six and later-born SPN, which later become constituents of the expanded SP (around 15 PCW). Overall, TFs and RBPs mark characteristic regional laminar dynamics of DPN, SPN, and CRN subpopulations during remarkably early fetal phases of the highly ordered association cortex development.
Collapse
Affiliation(s)
- Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Alisa Junaković
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- School of Graduate Studies, Rutgers University, New Brunswick, NJ 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Thill B. The fetal pain paradox. FRONTIERS IN PAIN RESEARCH 2023; 4:1128530. [PMID: 37025166 PMCID: PMC10072285 DOI: 10.3389/fpain.2023.1128530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Controversy exists as to when conscious pain perception in the fetus may begin. According to the hypothesis of cortical necessity, thalamocortical connections, which do not form until after 24-28 weeks gestation, are necessary for conscious pain perception. However, anesthesiologists and neonatologists treat age-matched neonates as both conscious and pain-capable due to observable and measurable behavioral, hormonal, and physiologic indicators of pain. In preterm infants, these multimodal indicators of pain are uncontroversial, and their presence, despite occurring prior to functional thalamocortical connections, has guided the use of analgesics in neonatology and fetal surgery for decades. However, some medical groups state that below 24 weeks gestation, there is no pain capacity. Thus, a paradox exists in the disparate acknowledgment of pain capability in overlapping patient populations. Brain networks vary by age. During the first and second trimesters, the cortical subplate, a unique structure that is present only during fetal and early neonatal development, forms the first cortical network. In the third trimester, the cortical plate assumes this function. According to the subplate modulation hypothesis, a network of connections to the subplate and subcortical structures is sufficient to facilitate conscious pain perception in the fetus and the preterm neonate prior to 24 weeks gestation. Therefore, similar to other fetal and neonatal systems that have a transitional phase (i.e., circulatory system), there is now strong evidence for transitional developmental phases of fetal and neonatal pain circuitry.
Collapse
|
7
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
8
|
Akiyama S, Madan N, Graham G, Samura O, Kitano R, Yun HJ, Craig A, Nakamura T, Hozawa A, Grant E, Im K, Tarui T. Regional brain development in fetuses with Dandy-Walker malformation: A volumetric fetal brain magnetic resonance imaging study. PLoS One 2022; 17:e0263535. [PMID: 35202430 PMCID: PMC8870580 DOI: 10.1371/journal.pone.0263535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Dandy-Walker malformation (DWM) is a common prenatally diagnosed cerebellar malformation, characterized by cystic dilatation of the fourth ventricle, upward rotation of the hypoplastic vermis, and posterior fossa enlargement with torcular elevation. DWM is associated with a broad spectrum of neurodevelopmental abnormalities such as cognitive, motor, and behavioral impairments, which cannot be explained solely by cerebellar malformations. Notably, the pathogenesis of these symptoms remains poorly understood. This study investigated whether fetal structural developmental abnormalities in DWM extended beyond the posterior fossa to the cerebrum even in fetuses without apparent cerebral anomalies. Post-acquisition volumetric fetal magnetic resonance imaging (MRI) analysis was performed in 12 fetuses with DWM and 14 control fetuses. Growth trajectories of the volumes of the cortical plate, subcortical parenchyma, cerebellar hemispheres, and vermis between 18 and 33 weeks of gestation were compared. The median (interquartile range) gestational ages at the time of MRI were 22.4 (19.4-24.0) and 23.9 (20.6-29.2) weeks in the DWM and control groups, respectively (p = 0.269). Eight of the 12 fetuses with DWM presented with associated cerebral anomalies, including hydrocephalus (n = 3), cerebral ventriculomegaly (n = 3), and complete (n = 2) and partial (n = 2) agenesis of the corpus callosum (ACC); 7 presented with extracerebral abnormalities. Chromosomal abnormalities were detected by microarray analysis in 4 of 11 fetuses with DWM, using amniocentesis. Volumetric analysis revealed that the cortical plate was significantly larger in fetuses with DWM than in controls (p = 0.040). Even without ACC, the subcortical parenchyma, whole cerebrum, cerebellar hemispheres, and whole brain were significantly larger in fetuses with DWM (n = 8) than in controls (p = 0.004, 0.025, 0.033, and 0.026, respectively). In conclusion, volumetric fetal MRI analysis demonstrated that the development of DWM extends throughout the brain during the fetal period, even without apparent cerebral anomalies.
Collapse
Affiliation(s)
- Shizuko Akiyama
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Neel Madan
- Radiology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - George Graham
- Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Osamu Samura
- Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Rie Kitano
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Alexa Craig
- Pediatric Neurology, Maine Medical Center, Portland, Oregan, United States of America
| | - Tomohiro Nakamura
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kiho Im
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Pediatric Neurology, Tufts Children’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Hadders-Algra M. Early Diagnostics and Early Intervention in Neurodevelopmental Disorders-Age-Dependent Challenges and Opportunities. J Clin Med 2021; 10:861. [PMID: 33669727 PMCID: PMC7922888 DOI: 10.3390/jcm10040861] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022] Open
Abstract
This review discusses early diagnostics and early intervention in developmental disorders in the light of brain development. The best instruments for early detection of cerebral palsy (CP) with or without intellectual disability are neonatal magnetic resonance imaging, general movements assessment at 2-4 months and from 2-4 months onwards, the Hammersmith Infant Neurological Examination and Standardized Infant NeuroDevelopmental Assessment. Early detection of autism spectrum disorders (ASD) is difficult; its first signs emerge at the end of the first year. Prediction with the Modified Checklist for Autism in Toddlers and Infant Toddler Checklist is possible to some extent and improves during the second year, especially in children at familial risk of ASD. Thus, prediction improves substantially when transient brain structures have been replaced by permanent circuitries. At around 3 months the cortical subplate has dissolved in primary motor and sensory cortices; around 12 months the cortical subplate in prefrontal and parieto-temporal cortices and cerebellar external granular layer have disappeared. This review stresses that families are pivotal in early intervention. It summarizes evidence on the effectiveness of early intervention in medically fragile neonates, infants at low to moderate risk, infants with or at high risk of CP and with or at high risk of ASD.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Department of Paediatrics-Section Developmental Neurology, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
10
|
Adult Upper Cortical Layer Specific Transcription Factor CUX2 Is Expressed in Transient Subplate and Marginal Zone Neurons of the Developing Human Brain. Cells 2021; 10:cells10020415. [PMID: 33671178 PMCID: PMC7922267 DOI: 10.3390/cells10020415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cut-Like Homeobox 2 (Cux2) is a transcription factor involved in dendrite and spine development, and synapse formation of projection neurons placed in mouse upper neocortical layers. Therefore, Cux2 is often used as an upper layer marker in the mouse brain. However, expression of its orthologue CUX2 remains unexplored in the human fetal neocortex. Here, we show that CUX2 protein is expressed in transient compartments of developing neocortical anlage during the main fetal phases of neocortical laminar development in human brain. During the early fetal phase when neurons of the upper cortical layers are still radially migrating to reach their final place in the cortical anlage, CUX2 was expressed in the marginal zone (MZ), deep cortical plate, and pre-subplate. During midgestation, CUX2 was still expressed in the migrating upper cortical neurons as well as in the subplate (SP) and MZ neurons. At the term age, CUX2 was expressed in the gyral white matter along with its expected expression in the upper layer neurons. In sum, CUX2 was expressed in migratory neurons of prospective superficial layers and in the diverse subpopulation of transient postmigratory SP and MZ neurons. Therefore, our findings indicate that CUX2 is a novel marker of distinct transient, but critical histogenetic events during corticogenesis. Given the Cux2 functions reported in animal models, our data further suggest that the expression of CUX2 in postmigratory SP and MZ neurons is associated with their unique dendritic and synaptogenesis characteristics.
Collapse
|
11
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Prodromidou K, Vlachos IS, Gaitanou M, Kouroupi G, Hatzigeorgiou AG, Matsas R. MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. eLife 2020; 9:e50561. [PMID: 32459171 PMCID: PMC7295570 DOI: 10.7554/elife.50561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical CenterBostonUnited States
- DIANA-Lab, Hellenic Pasteur InstituteAthensGreece
- Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | | | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
13
|
Pogledic I, Schwartz E, Mitter C, Baltzer P, Milos RI, Gruber GM, Brugger PC, Hainfellner J, Bettelheim D, Langs G, Kasprian G, Prayer D. The Subplate Layers: The Superficial and Deep Subplate Can be Discriminated on 3 Tesla Human Fetal Postmortem MRI. Cereb Cortex 2020; 30:5038-5048. [PMID: 32377685 DOI: 10.1093/cercor/bhaa099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
The subplate (SP) is a transient structure of the human fetal brain that becomes the most prominent layer of the developing pallium during the late second trimester. It is important in the formation of thalamocortical and cortico-cortical connections. The SP is vulnerable in perinatal brain injury and may play a role in complex neurodevelopmental disorders, such as schizophrenia and autism. Nine postmortem fetal human brains (19-24 GW) were imaged on a 3 Tesla MR scanner and the T2-w images in the frontal and temporal lobes were compared, in each case, with the histological slices of the same brain. The brains were confirmed to be without any brain pathology. The purpose of this study was to demonstrate that the superficial SP (sSP) and deep SP (dSP) can be discriminated on postmortem MR images. More specifically, we aimed to clarify that the observable, thin, hyperintense layer below the cortical plate in the upper SP portion on T2-weighted MR images has an anatomical correspondence to the histologically established sSP. Therefore, the distinction between the sSP and dSP layers, using clinically available MR imaging methodology, is possible in postmortem MRI and can help in the imaging interpretation of the fetal cerebral layers.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Pascal Baltzer
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ruxandra-Iulia Milos
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerlinde Maria Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Dieter Bettelheim
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Padilla N, Lagercrantz H. Making of the mind. Acta Paediatr 2020; 109:883-892. [PMID: 31922622 DOI: 10.1111/apa.15167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022]
Abstract
The essence of the mind is consciousness. It emerged early during evolution and ontogeny appears to follow the same process as phylogeny. Consciousness comes from multiple sources, including visual, auditory, sensorimotor and proprioceptive senses. These gradually combine during development to build a unified consciousness, due to the constant interactions between the brain, body, and environment. In the human the emergence of consciousness depends on the activation of the cortex by thalamocortical connections around 24 weeks after conception. Then, the human foetus can be potentially conscious, as it is aware of its body and reacts to touch, smell and sound and shows social expressions in response to external stimuli. However, it is mainly asleep and probably not aware of itself and its environment. In contrast, the newborn infant is awake after its first breaths of air and can be aware of its own self and others, express emotions and share feelings. The development of consciousness is a progressive, stepwise, structural and functional evolution of multiple intricate components. The infant fulfils some of the more basic criteria for consciousness. However, there are some important missing pieces at this stage, as it cannot remember the past and anticipate the future.
Collapse
Affiliation(s)
- Nelly Padilla
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
| | - Hugo Lagercrantz
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
| |
Collapse
|
15
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
16
|
Vontell R, Supramaniam VG, Davidson A, Thornton C, Marnerides A, Holder-Espinasse M, Lillis S, Yau S, Jansson M, Hagberg HE, Rutherford MA. Post-mortem Characterisation of a Case With an ACTG1 Variant, Agenesis of the Corpus Callosum and Neuronal Heterotopia. Front Physiol 2019; 10:623. [PMID: 31231230 PMCID: PMC6558385 DOI: 10.3389/fphys.2019.00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/02/2019] [Indexed: 01/02/2023] Open
Abstract
Cytoplasmic Actin Gamma 1 (ACTG1) gene variant are autosomal dominant and can cause CNS anomalies (Baraitser Winter Malformation Syndrome; BWMS). ACTG1 anomalies in offspring include agenesis of the corpus callosum (ACC) and neuronal heterotopia which are ectopic nodules of nerve cells that failed to migrate appropriately. Subcortical and periventricular neuronal heterotopia have been described previously in association with ACC. In this case report, we investigated a neonatal brain with an ACTG1 gene variant and a phenotype of ACC, and neuronal heterotopia (ACC-H) which was diagnosed on antenatal MR imaging and was consistent with band heterotopia seen on post-mortem brain images. Histologically clusters of neurons were seen in both the subcortical and periventricular white matter (PVWM) brain region that coincided with impaired abnormalities in glial formation. Immunohistochemistry was performed on paraffin-embedded brain tissue blocks from this case with ACTG1 variant and an age-matched control. Using tissue sections from the frontal lobe, we examined the distribution of neuronal cells (HuC/HuD, calretinin, and parvalbumin), growth cone (drebrin), and synaptic proteins (synaptophysin and SNAP-25). Additionally, we investigated how the ACTG1 variant altered astroglia (nestin, GFAP, vimentin); oligodendroglia (OLIG2) and microglia (Iba-1) in the corpus callosum, cortex, caudal ganglionic eminence, and PVWM. As predicted in the ACTG1 variant case, we found a lack of midline radial glia and glutamatergic fibers. We also found disturbances in the cortical region, in glial cells and a lack of extracellular matrix components in the ACTG1 variant. The caudal ganglionic eminence and the PVWM regions in the ACTG1 variant lacked several cellular components that were identified in a control case. Within the neuronal heterotopia, we found evidence of glutamatergic and GABAergic neurons with apparent synaptic connections. The data presented from this case study with BWMS with variants in the ACTG1 gene provides insight as to the composition of neuronal heterotopia, and how disturbances of important migratory signals may dramatically affect ongoing brain development.
Collapse
Affiliation(s)
- Regina Vontell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Veena G. Supramaniam
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Alice Davidson
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Andreas Marnerides
- Department of Cellular Pathology, Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, United Kingdom
| | - Muriel Holder-Espinasse
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Suzanne Lillis
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Shu Yau
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Mattias Jansson
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Henrik E. Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Perinatal Center, Department of Physiology and Neuroscience – Department of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mary A. Rutherford
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
17
|
Serati M, Delvecchio G, Orsenigo G, Mandolini GM, Lazzaretti M, Scola E, Triulzi F, Brambilla P. The Role of the Subplate in Schizophrenia and Autism: A Systematic Review. Neuroscience 2019; 408:58-67. [PMID: 30930130 DOI: 10.1016/j.neuroscience.2019.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The subplate (SP) represents a transitory cytoarchitectural fetal compartment containing most subcortical and cortico-cortical afferents, and has a fundamental role in the structural development of the healthy adult brain. There is evidence that schizophrenia and autism may be determined by developmental defects in the cortex or cortical circuitry during the earliest stages of pregnancy. This article provides an overview on fetal SP development, considering its role in schizophrenia and autism, as supported by a systematic review of the main databases. The SP has been described as a cortical amplifier with a role in the coordination of cortical activity, and sensitive growth and migration windows have crucial consequences with respect to cognitive functioning. Although there are not enough studies to draw final conclusions, improved knowledge of the SP's role in schizophrenia and autism spectrum disorders may help to elucidate and possibly prevent the onset of these two severe disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Mental Health, ASST Rhodense, Rho, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA
| |
Collapse
|
18
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Hrabač P, Bosak A, Vukšić M, Judaš M, Kostović I, Krsnik Ž. The Zagreb Collection of human brains: entering the virtual world. Croat Med J 2019. [PMID: 30610769 PMCID: PMC6330769 DOI: 10.3325/10.3325/cmj.2018.59.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Pero Hrabač
- Pero Hrabač, Department of Medical Statistics, Epidemiology, and Medical Informatics, "Andrija Štampar" School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia,
| | | | | | | | | | | |
Collapse
|
20
|
Scher MS. Fetal neurology: Principles and practice with a life-course perspective. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:1-29. [PMID: 31324306 DOI: 10.1016/b978-0-444-64029-1.00001-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical service, educational, and research components of a fetal/neonatal neurology program are anchored by the disciplines of developmental origins of health and disease and life-course science as programmatic principles. Prenatal participation provides perspectives on maternal, fetal, and placental contributions to health or disease for fetal and subsequent neonatal neurology consultations. This program also provides an early-life diagnostic perspective for neurologic specialties concerned with brain health and disease throughout childhood and adulthood. Animal models and birth cohort studies have demonstrated how the science of epigenetics helps to understand gene-environment interactions to better predict brain health or disease. Fetal neurology consultations provide important diagnostic contributions during critical or sensitive periods of brain development when future neurotherapeutic interventions will maximize adaptive neuroplasticity. Age-specific normative neuroinformatics databases that employ computer-based strategies to integrate clinical/demographic, neuroimaging, neurophysiologic, and genetic datasets will more accurately identify either symptomatic patients or those at risk for brain disorders who would benefit from preventive, rescue, or reparative treatment choices throughout the life span.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
21
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
22
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018. [PMID: 30394011 PMCID: PMC6240825 DOI: 10.3325/cmj.2018.59.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. Methods We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. Results Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long “dormant” period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. Conclusion Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
23
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
24
|
Luhmann HJ, Kirischuk S, Kilb W. The Superior Function of the Subplate in Early Neocortical Development. Front Neuroanat 2018; 12:97. [PMID: 30487739 PMCID: PMC6246655 DOI: 10.3389/fnana.2018.00097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the cerebral cortex. Therefore SPNs are robustly activated at pre- and perinatal stages by the sensory periphery. Although SPNs play pivotal roles in early neocortical activity, development and plasticity, they mostly disappear by programmed cell death during further maturation. On the one hand, SPNs may be selectively vulnerable to hypoxia-ischemia contributing to brain damage, on the other hand there is some evidence that enhanced survival rates or alterations in SPN distribution may contribute to the etiology of neurological or psychiatric disorders. This review aims to give a comprehensive and up-to-date overview on the many functions of SPNs during early physiological and pathophysiological development of the cerebral cortex.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
25
|
Abstract
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Collapse
|
26
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018; 59:189-202. [PMID: 30394011 PMCID: PMC6240825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/31/2018] [Indexed: 10/05/2023] Open
Abstract
AIM To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. METHODS We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. RESULTS Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long "dormant" period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. CONCLUSION Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
27
|
Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018; 92:276-290. [PMID: 29935204 DOI: 10.1016/j.neubiorev.2018.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
This review summarizes early human brain development on the basis of neuroanatomical data and functional connectomics. It indicates that the most significant changes in the brain occur during the second half of gestation and the first three months post-term, in particular in the cortical subplate and cerebellum. As the transient subplate pairs a high rate of intricate developmental changes and interactions with clear functional activity, two phases of development are distinguished: a) the transient cortical subplate phase, ending at 3 months post-term when the permanent circuitries in the primary motor, somatosensory and visual cortices have replaced the subplate; and subsequently, b) the phase in which the permanent circuitries dominate. In the association areas the subplate dissolves in the remainder of the first postnatal year. During both phases developmental changes are paralleled by continuous reconfigurations in network activity. The reviewed literature also suggests that disruption of subplate development may play a pivotal role in developmental disorders, such as cerebral palsy, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
28
|
Hadders-Algra M. Early human motor development: From variation to the ability to vary and adapt. Neurosci Biobehav Rev 2018; 90:411-427. [PMID: 29752957 DOI: 10.1016/j.neubiorev.2018.05.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
This review summarizes early human motor development. From early fetal age motor behavior is based on spontaneous neural activity: activity of networks in the brainstem and spinal cord that is modulated by supraspinal activity. The supraspinal activity, first primarily brought about by the cortical subplate, later by the cortical plate, induces movement variation. Initially, movement variation especially serves exploration; its associated afferent information is primarily used to sculpt the developing nervous system, and less to adapt motor behavior. In the next phase, beginning at function-specific ages, movement variation starts to serve adaptation. In sucking and swallowing, this phase emerges shortly before term age. In speech, gross and fine motor development, it emerges from 3 to 4 months post-term onwards, i.e., when developmental focus in the primary sensory and motor cortices has shifted to the permanent cortical circuitries. With increasing age and increasing trial-and-error exploration, the infant improves its ability to use adaptive and efficicient forms of upright gross motor behavior, manual activities and vocalizations belonging to the native language.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Groningen, The Netherlands.
| |
Collapse
|
29
|
Hadders-Algra M. Neural substrate and clinical significance of general movements: an update. Dev Med Child Neurol 2018; 60:39-46. [PMID: 28832987 DOI: 10.1111/dmcn.13540] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED General movements are present from early fetal life to 3 to 5 months corrected age. Atypical general movements, especially in the last, so-called fidgety general movement phase, are predictive of cerebral palsy (CP). This review updates knowledge on the neural substrate and clinical significance of typical and atypical general movements. Typical general movements are primarily characterized by complexity and variation. Presumably these core characteristics are initially induced by modulating activity of the cortical subplate. When the subplate gradually dissolves between 3 months before term and 3 months corrected age the cortical plate takes over. This coincides with the fidgety general movement phase. Conceivably, fidgety activity reflects 'sparsification', i.e. fragmentation of cortical network activity. The quintessential feature of atypical general movements is reduced complexity and variation. This is attributed to impaired integrity of extensive cortical-subcortical networks, in which the subplate and periventricular white matter play a prominent role. The most serious forms of network impairment are associated with absent fidgety movements. WHAT THIS PAPER ADDS The emergence of fidgety movements reflects a developmental transition from widespread to fragmented cortical network activity. Atypical general movements characterized by reduced complexity and variation are attributed to impaired integrity of extensive cortical-subcortical networks.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Department of Paediatrics - Developmental Neurology, Groningen, the Netherlands
| |
Collapse
|
30
|
Vasung L, Raguz M, Kostovic I, Takahashi E. Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology. Front Neurosci 2017; 11:348. [PMID: 28744187 PMCID: PMC5504538 DOI: 10.3389/fnins.2017.00348] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we aimed to identify major fiber pathways and their spatiotemporal relationships within transient fetal zones in the human fetal brain by comparing postmortem high-angular resolution diffusion MR imaging (HARDI) in combination with deterministic streamline tractography and histology. Diffusion weighted imaging was performed on postmortem human fetal brains [N = 9, age = 18–34 post-conceptual weeks (PCW)] that were grossly normal with no pathologic abnormalities. After HARDI was performed, the fibers were reconstructed using Q-ball algorithm and deterministic streamline tractography. The position of major fiber pathways within transient fetal zones was identified both on diffusion weighted images and on histological sections. Our major findings include: (1) the development of massive projection fibers by 18 PCW, as compared to most association fibers (with the exception of limbic fibers) which have only begun to emerge, (2) the characteristic laminar distribution and sagittal plane geometry of reconstructed fibers throughout development, (3) the protracted prenatal development shown of the corpus collosum and its' associated fibers, as well as the association fibers, and (4) the predomination of radial coherence in the telencephalon (i.e., majority of streamlines in the telencephalic wall were radially oriented) during early prenatal period (24 PCW). In conclusion, correlation between histology and HARDI (in combination with Q-ball reconstruction and deterministic streamline tractography) allowed us to detect sequential development of fiber systems (projection, callosal, and association), their spatial relations with transient fetal zones, and their geometric properties.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| | - Marina Raguz
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Ivica Kostovic
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Emi Takahashi
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
31
|
Routier L, Mahmoudzadeh M, Panzani M, Azizollahi H, Goudjil S, Kongolo G, Wallois F. Plasticity of neonatal neuronal networks in very premature infants: Source localization of temporal theta activity, the first endogenous neural biomarker, in temporoparietal areas. Hum Brain Mapp 2017; 38:2345-2358. [PMID: 28112458 DOI: 10.1002/hbm.23521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/01/2023] Open
Abstract
Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific signature of the early development of temporal networks, as it is observed at the turning point between non-sensory driven spontaneous local processing and cortical network functioning. The role in development and the precise location of TTA-SW remain unknown. Previous studies have demonstrated that preterms from 28 weeks of gestational age (wGA) are able to discriminate phonemes and voice, supporting the idea of a prior genetic structural or activity-dependent fingerprint that would prepare the auditory network to compute auditory information at the onset of thalamocortical connectivity. They recorded TTA-SW in 26-32 wGA preterms. The rate of TTA-SW in response to click stimuli was evaluated using low-density EEG in 30 preterms. The sources of TTA-SW were localized by high-density EEG using different tissues conductivities, head models and mathematical models. They observed that TTA-SW is not sensory driven. Regardless of age, conductivities, head models and mathematical models, sources of TTA-SW were located adjacent to auditory and temporal junction areas. These sources become situated closer to the surface during development. TTA-SW corresponds to spontaneous transient endogenous activities independent of sensory information at this period which might participate in the implementation of auditory, language, memory, attention and or social cognition convergent and does not simply represent a general interaction between the subplate and the cortical plate. Hum Brain Mapp 38:2345-2358, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L Routier
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,Pediatric Nervous System Investigation Unit, Amiens University Hospital, Amiens, France
| | - M Mahmoudzadeh
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France
| | - M Panzani
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France
| | - H Azizollahi
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France
| | - S Goudjil
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,NICU Amiens University Hospital, Amiens, France
| | - G Kongolo
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,NICU Amiens University Hospital, Amiens, France
| | - F Wallois
- Inserm U 1105, University of Picardie Instead of Picardy, Amiens University Hospital, Amiens, France.,Pediatric Nervous System Investigation Unit, Amiens University Hospital, Amiens, France
| |
Collapse
|
32
|
Harkin LF, Lindsay SJ, Xu Y, Alzu'bi A, Ferrara A, Gullon EA, James OG, Clowry GJ. Neurexins 1-3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. Cereb Cortex 2017; 27:216-232. [PMID: 28013231 PMCID: PMC5654756 DOI: 10.1093/cercor/bhw394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes; mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles in development including axon guidance, and intercellular communication between proliferating cells and/or migrating neurons.
Collapse
Affiliation(s)
- Lauren F Harkin
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: Wellcome Trust, Sanger Institute, Cambridge, CB10 1SA, UK
| | - Ayman Alzu'bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Alexandra Ferrara
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily A Gullon
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
| | - Owen G James
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Parkway Drive, Newcastle upon Tyne NE1 3BZ, UK
- Present address: MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
33
|
Richter Z, Janszky J, Sétáló G, Horváth R, Horváth Z, Dóczi T, Seress L, Ábrahám H. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy. Neuroscience 2016; 333:140-50. [DOI: 10.1016/j.neuroscience.2016.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022]
|