1
|
Kuang W, Zhuge R, Song P, Yi L, Zhang S, Zhang Y, Wong YK, Chen R, Zhang J, Wang Y, Liu D, Gong Z, Wang P, Ouyang X, Wang J. Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3. MedComm (Beijing) 2025; 6:e70034. [PMID: 39811801 PMCID: PMC11731104 DOI: 10.1002/mco2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time. We demonstrated that EB ameliorates periodontal inflammation and alveolar bone resorption with a ligated periodontitis mouse model. In addition, the impact of EB on macrophages inflammation was examined in the Raw264.7 cell line. We identified ubiquitin-conjugating enzyme, UBE2D3, as the direct covalent binding protein targets of EB by using a chemoproteomic method based on activity-based protein profiling, biolayer interferometry method, and cellular thermal shift assay. Furthermore, the direct binding site of EB to UBE2D3 was identified using high-resolution mass spectrometry and confirmed by experiments. Taken together, EB ameliorates periodontitis by targeting UBE2D3 to suppress the ubiquitination degradation of IκBα, leading to inactivation of nuclear transcription factor-κB signaling pathway. And this was confirmed by siRNA-mediated gene knockdown in inflammatory macrophages. Our results suggested that EB may be a new kind of UBE2D3 inhibitor and may become a promising therapeutic agent for anti-periodontitis.
Collapse
Affiliation(s)
- Wenhua Kuang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruishen Zhuge
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Ping Song
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Letai Yi
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Inner Mongolia Medical UniversityHohhotChina
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yin Kwan Wong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruixing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanbo Wang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Zipeng Gong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Peili Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangying Ouyang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Jigang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Antiviral Drugs, School of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
2
|
Liu Y, Zhang Z, Ma C, Song J, Hu J, Liu Y. Transplanted MSCs promote alveolar bone repair via hypoxia-induced extracellular vesicle secretion. Oral Dis 2024; 30:5221-5231. [PMID: 38716779 PMCID: PMC11610711 DOI: 10.1111/odi.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 12/05/2024]
Abstract
OBJECT Mesenchymal stem cell (MSC) therapy is a potential strategy for promoting alveolar bone regeneration. This study evaluated the effects and mechanisms of transplanted MSCs on alveolar bone repair. METHODS Mouse alveolar bone defect model was treated using mouse bone marrow mesenchymal stem cell (BMSC) transplantation. The bone repair was evaluated by micro-CT and Masson staining. The conditioned medium of hypoxia-treated BMSCs was co-cultured with normal BMSCs in vitro to detect the regulatory effect of transplanted MSCs on the chemotactic and migratory functions of host cells. The mechanisms were investigated using Becn siRNA transfection and western blotting. RESULTS BMSC transplantation promoted bone defect regeneration. The hypoxic microenvironment induces BMSCs to release multiple extracellular vesicle (EV)-mediated regulatory proteins that promote the migration of host stem cells. Protein array analysis, western blotting, GFP-LC3 detection, and Becn siRNA transfection confirmed that autophagy activation in BMSCs plays a key role during this process. CONCLUSION The local hypoxic microenvironment induces transplanted MSCs to secrete a large number of EV-mediated regulatory proteins, thereby upregulating the migration function of the host stem cells and promoting alveolar bone defect regeneration. This process depends on the autophagy-related mechanism of the transplanted MSCs.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of StomatologyCapital Medical UniversityBeijingChina
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Zhiqing Zhang
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Chenlin Ma
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Juan Song
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Jia Hu
- Department of PeriodonticsQinghai Provincial People's HospitalQinghaiChina
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of StomatologyCapital Medical UniversityBeijingChina
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
4
|
Leypold T, Herbsthofer A, Craveiro RB, Wolf M, Beier JP, Ruhl T. Effects of cannabinoid receptor activation on Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells in vitro. J Periodontal Implant Sci 2024; 54:54.e21. [PMID: 39058353 DOI: 10.5051/jpis.2303680184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE Periodontitis is an inflammatory disease that results in the loss of periodontal tissue. The endocannabinoid system has anti-inflammatory properties and displays considerable potential for tissue regeneration. In this study, we aimed to explore whether the activation of this system can alleviate or reverse the inflammatory phenotype of human periodontal ligament stem cells (hPDLSCs) induced by exposure to the inflammagen lipopolysaccharide (LPS). METHODS We investigated the effects of activating specific cannabinoid receptors (CB1 and CB2) on the inflammatory phenotype of LPS-stimulated hPDLSCs. The exogenous ligands WIN55,212-2 and JWH-133 were employed to target the cannabinoid receptors. We conducted a thorough assessment of cell proliferation, metabolic activity, and adipogenic, osteogenic, and chondrogenic differentiation potential. Additionally, we measured cytokine release using enzyme-linked immunosorbent assays. RESULTS Exposure to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) caused an increase in cell proliferation while decreasing metabolic activity. While this exposure did not influence adipogenic or chondrogenic differentiation, it did result in reduced osteogenesis. Additionally, LPS induced the release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein 1. Immunolabeling revealed the presence of CB1 and CB2 on the cellular membrane, with these receptors playing distinct roles in hPDLSCs. The CB1 agonist WIN55,212-2 was found to increase metabolic activity and promote adipogenic differentiation, whereas the CB2 agonist JWH-133 promoted cell proliferation and osteogenic differentiation. When hPDLSCs were co-exposed to Pg-LPS and CB ligands, JWH-133 slightly ameliorated the inhibition of osteogenic differentiation and suppressed the release of inflammatory cytokines. CONCLUSIONS This study clarifies the effects of specific CB receptor activation on hPDLCs and the inflammatory phenotype. Stimulation of the endocannabinoid system through the manipulation of endogenous or the application of exogenous cannabinoids in vivo may represent a potent therapeutic option for combating periodontal inflammatory disorders.
Collapse
Affiliation(s)
- Tim Leypold
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.
| | - Alix Herbsthofer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Dong JC, Liao Y, Zhou W, Sun MJ, Zhang HY, Li Y, Song ZC. Porphyromonas gingivalis LPS-stimulated BMSC-derived exosome promotes osteoclastogenesis via miR-151-3p/PAFAH1B1. Oral Dis 2024. [PMID: 38923332 DOI: 10.1111/odi.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Porphyromonas gingivalis-LPS regulated bone metabolism by triggering dysfunction of osteoblasts directly, and affecting activity of osteoclasts through intracellular communication. Exosome, as the mediator of intercellular communication, was important vesicle to regulate osteogenesis and osteoclastogenesis. This research was designed for investigating the mechanism of BMSCs-EXO in modulating osteoclastic activity under the P. gingivalis-LPS. MATERIALS AND METHODS The cytotoxicity and osteogenic effects of P. gingivalis-LPS on BMSCs was evaluated, and then osteoclastic activity of RAW264.7 co-cultured with exosomes was detected. Besides, Affymetrix miRNA array and luciferase reporter assay were used to identify the target exosomal miRNA signal pathway. RESULTS BMSCs' osteogenic differentiation and proliferation were decreased under 1 and 10 μg/mL P. gingivalis-LPS. Osteoclastic-related genes and proteins levels were promoted by P. gingivalis-LPS-stimulated BMSCs-EXO. Based on the miRNA microarray analysis, exosomal miR-151-3p was lessened in BMExo-LPS group, which facilitated osteoclastic differentiation through miR-151-3p/PAFAH1B1. CONCLUSIONS Porphyromonas gingivalis-LPS could regulated bone metabolism by inhibiting proliferation and osteogenesis of BMSCs directly. Also, P. gingivalis-LPS-stimulated BMSCs-EXO promoted osteoclastogenesis via activating miR-151-3p/PAFAH1B1 signal pathway.
Collapse
Affiliation(s)
- Jia-Chen Dong
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Jun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huan-Yu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Li
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong-Chen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
6
|
Zhang Y, Li Z, Guo B, Wang Q, Chen L, Zhu L, Zhang T, Wang R, Li W, Luo D, Liu Y. A Zinc Oxide Nanowire-Modified Mineralized Collagen Scaffold Promotes Infectious Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309230. [PMID: 38112271 DOI: 10.1002/smll.202309230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zixin Li
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Bowen Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Qibo Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Liyuan Chen
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Lisha Zhu
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting Zhang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ruoxi Wang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Weiran Li
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yan Liu
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
7
|
Gao X, Li S, Wang W, Zhang X, Yu X, Fan C, Li W, Yang C, Wang L, Ji Q. Caspase-3 and gasdermin E mediate macrophage pyroptosis in periodontitis. J Periodontal Res 2024; 59:140-150. [PMID: 37885312 DOI: 10.1111/jre.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is a chronic inflammatory disease linked to pyroptosis, an inflammatory cell death process. Macrophages are essential for maintaining microenvironment homeostasis, which is crucial for periodontal health. This study explores the mechanisms underlying the relationship between macrophage pyroptosis and periodontitis. METHODS Expression of the pyroptosis marker gasdermin E (GSDME) and the macrophage surface marker CD68 was examined by immunofluorescence double staining in healthy and periodontitis gingival tissues. In an in vitro pyroptosis model, RAW264.7 cells were irritated using Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) after treatment with either a nuclear factor kappa-B (NF-κB) agonist or inhibitor. The mRNA and protein levels of NF-κB, caspase-3, GSDME, and interleukin-1β (IL-1β) were evaluated through qRT-PCR, western blotting, and ELISA techniques. RESULTS GSDME and CD68 were heavily elevated in inflamed gingival tissues compared to healthy tissues and co-localized in the same region. Furthermore, exposure to P. gingivalis-LPS resulted in a significant upregulation of NF-κB, caspase-3, GSDME, and IL-1β at both the mRNA and protein levels in RAW264.7 cells. NF-κB agonist or inhibitor pretreatment enhanced or inhibited these effects. CONCLUSIONS GSDME-mediated macrophage pyroptosis is implicated in periodontitis. Based on in vitro experiments, P. gingivalis-LPS causes pyroptosis in RAW264.7 cells through the caspase-3/GSDME pathway. Furthermore, NF-κB regulates this pyroptotic pathway.
Collapse
Affiliation(s)
- Xiangru Gao
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Shuhan Li
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Wenxuan Wang
- Department of Stomatology, Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinbo Yu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun Fan
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Li
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caixiu Yang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lei Wang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuxia Ji
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Wu Q, Yan L, Wu X, Chen Y, Ye L, Lv Y, Su Y. Experimental periodontitis induced hypoadiponectinemia by IRE1α-mediated endoplasmic reticulum stress in adipocytes. BMC Oral Health 2023; 23:1032. [PMID: 38129878 PMCID: PMC10740306 DOI: 10.1186/s12903-023-03758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUD Hypoadiponectinemia is the important cause of insulin resistance. Recent studies have shown that periodontitis is associated with hypoadiponectinemia. The purpose of this study was to investigate the effect of periodontitis-induced endoplasmic reticulum stress (ERS) in visceral adipocytes on hypoadiponectinemia. METHODS Rat periodontitis models were established by local ligation with silk around the bilateral maxillary second molars. Porphyromonas gingivalis-lipopolysaccharid (P.g-LPS) was also used to stimulate the visceral adipocytes in vitro. The protein expression levels of glucose regulated protein 78 (GRP78), inositol-requiring protein 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and adiponectin were detected. IRE1α lentiviruses were transfected into visceral adipocytes in vitro, and an IRE1α inhibitor (KIRA6) was injected in epididymal adipose tissue of rats to detect and verify the effect of ERS on adiponectin expression in visceral adipocytes in vivo. RESULTS Hypoadiponectinemia was observed in periodontitis rat, and the expression levels of ERS key proteins GRP78 and the phosphorylation levels of IRE1α (p-IRE1α)/IRE1α in visceral adipocytes were increased, while the expression levels of adiponectin protein were decreased. After KIRA6 injection into epididymal adipose tissue of rats with periodontitis, adiponectin levels in visceral adipocytes increased, and serum adiponectin levels recovered to a certain extent. The protein expression levels of GRP78 and p-IRE1α/IRE1α were increased and adiponectin protein expression was decreased in P.g-LPS-induced visceral adipocytes. Overexpression of IRE1α further inhibited adiponectin expression in P.g-LPS-stimulated visceral adipocytes, and conversely, IRE1α inhibition restored adiponectin expression. CONCLUSIONS Our findings suggest that periodontitis induces ERS in visceral adipocytes leading to hypoadiponectinemia. IRE1α is a key protein regulating adiponectin expression in visceral adipocytes.
Collapse
Affiliation(s)
- Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Leilei Ye
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology and Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Liu Z, Li Q, Wang X, Wu Y, Zhang Z, Mao J, Gong S. Proanthocyanidin enhances the endogenous regeneration of alveolar bone by elevating the autophagy of PDLSCs. J Periodontal Res 2023; 58:1300-1314. [PMID: 37715945 DOI: 10.1111/jre.13186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.
Collapse
Affiliation(s)
- Zhuo Liu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qilin Li
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyao Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yaxin Wu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhixing Zhang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
10
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
11
|
Ding G, Mu-Guo S. Inhibition of Wnt11 impairs the osteogenesis and aggravates the inflammatory response of human mesenchymal stem cells under LPS-induced inflammatory condition. Biochem Biophys Res Commun 2023; 661:82-88. [PMID: 37087802 DOI: 10.1016/j.bbrc.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
In infectious bone defect, osteogenesis is very particularly important for treating. Currently, mesenchymal stem cells (MSCs) become a promising treatment protocol in clinical practice. In infectious environment, lipopolysaccharide (LPS) not only affects the osteogenic differentiation of MSCs, but also incurs inflammatory reaction from the host or cells and prompts the secretion of inflammatory cytokines. Wnt11 plays an important role of enhancing osteogenic ability of MSCs in treating bone infectious animal model in vivo. However, whether Wnt11 enhances the osteogenic capacity or influences the inflammatory reaction under inflammatory condition mediated by LPS in vitro remains unknown. In this study, we investigated the role of Wnt11 on the osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) and the effect on the inflammatory reaction induced by LPS. Effects of Wnt11 on the osteogenic capacity of BM-MSCs and on the inhibition of inflammatory reaction induced by LPS were evaluated by Wnt11 RNAi assay, Alizarin staining, quantitative RT-PCR test, ALP activity test and ELISA assays. The results showed inhibiting Wnt11 expression exacerbated the expression of osteogenic differentiation related genes and decreased the mineral deposits formation. Moreover, inhibiting Wnt11 expression also exacerbated the inflammatory factors release, indicating Wnt11 might play an important role of enhancing the osteogenic differentiation of BM-MSCs and inhibiting the inflammatory reaction induced by LPS.
Collapse
Affiliation(s)
- Gao Ding
- Department of Orthopaedics, Meizhou People's Hospital, Meizhou, Guangdong Province, China
| | - Song Mu-Guo
- Kunming Medical University, Kunming, 650032, China; Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China.
| |
Collapse
|
12
|
Jiang J, Zhang N, Song H, Yang Y, Li J, Hu X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health 2023; 23:137. [PMID: 36894905 PMCID: PMC9999511 DOI: 10.1186/s12903-023-02827-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the protective effect and mechanism of oridonin in an in vitro lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs) model of periodontitis. METHODS Primary hPDLSCs were isolated and cultured, and then the expression of surface antigens CD146, STRO-1 and CD45 of hPDLSCs was detected by flow cytometry. The mRNA expression level of Runx2, OPN, Col-1, GRP78, CHOP, ATF4 and ATF6 in the cells was tested by qRT-PCR. MTT was taken to determine the cytotoxicity of oridonin at different concentrations (0-4 μM) on hPDLSCs. Besides, ALP staining, alizarin red staining and Oil Red O staining were utilized to assess the osteogenic differentiation (ALP concentration, mineralized calcium nodule formation) and adipogenic differentiation abilities of the cells. The proinflammatory factors level in the cells was measured by ELISA. The protein expression level of NF-κB/NLRP3 pathway-related proteins and endoplasmic reticulum (ER) stress-related markers in the cells were detected by Western blot. RESULTS hPDLSCs with positive CD146 and STRO-1 expression and negative CD45 expression were successfully isolated in this study. 0.1-2 μM of oridonin had no significant cytotoxicity on the growth of hPDLSCs, while 2 μM of oridonin could not only greatly reduce the inhibitory effect of LPS on the proliferation and osteogenic differentiation of hPDLSCs cells, but also inhibit LPS-induced inflammation and ER stress in hPDLSCs cells. Moreover, further mechanism research showed that 2 μM of oridonin suppressed NF-κB/NLRP3 signaling pathway activity in LPS-induced hPDLSCs cells. CONCLUSIONS Oridonin promotes proliferation and osteogenic differentiation of LPS-induced hPDLSCs in an inflammatory environment, possibly by inhibiting ER stress and NF-κB/NLRP3 pathway. Oridonin may have a potential role in the repair and regeneration of hPDLSCs.
Collapse
Affiliation(s)
- Junhao Jiang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China.
| | - Nong Zhang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Haibo Song
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Ya Yang
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Juan Li
- Department of Stomatology, Shenzhen Longgang District Maternity & Child Healthcare Hospital(Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
13
|
Regulation of the Host Immune Microenvironment in Periodontitis and Periodontal Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043158. [PMID: 36834569 PMCID: PMC9967675 DOI: 10.3390/ijms24043158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The periodontal immune microenvironment is a delicate regulatory system that involves a variety of host immune cells including neutrophils, macrophages, T cells, dendritic cells and mesenchymal stem cells. The dysfunction or overactivation of any kind of local cells, and eventually the imbalance of the entire molecular regulatory network, leads to periodontal inflammation and tissue destruction. In this review, the basic characteristics of various host cells in the periodontal immune microenvironment and the regulatory network mechanism of host cells involved in the pathogenesis of periodontitis and periodontal bone remodeling are summarized, with emphasis on the immune regulatory network that regulates the periodontal microenvironment and maintains a dynamic balance. Future strategies for the clinical treatment of periodontitis and periodontal tissue regeneration need to develop new targeted synergistic drugs and/or novel technologies to clarify the regulatory mechanism of the local microenvironment. This review aims to provide clues and a theoretical basis for future research in this field.
Collapse
|
14
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
15
|
Wang K, Chen Z, Jin L, Zhao L, Meng L, Kong F, He C, Kong F, Zheng L, Liang F. LPS-pretreatment adipose-derived mesenchymal stromal cells promote wound healing in diabetic rats by improving angiogenesis. Injury 2022; 53:3920-3929. [PMID: 36357245 DOI: 10.1016/j.injury.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) play a key role in wound healing, and the advantages of pretreated MSCs in wound healing have previously been reported. In the present study, we investigated the impact of LPS pretreated human adipose-derived MSCs on skin wound healing in diabetic rats. We found that some improvements occurred through improving angiogenesis. Then, we scrutinized the impact of lipopolysaccharide (LPS) treatment on human adipose-derived MSCs in a high-glucose (HG) medium, as an in vitro diabetic model. In vivo findings revealed significant improvements in epithelialization and angiogenesis of diabetic wounds which received LPS pre-MSCs. Particularly, LPS pre-MSCs-treated diabetic wounds reached considerably higher percentages of wound closure. Also, the granulation tissue of these wounds had higher pronounced epithelialization and more vascularization compared with PBS-treated and MSCs-treated diabetic ones by CD31, VEGF, CD90, collagen 1, and collagen 3 immunostaining. Western-blots analyses indicated that LPS pre-MSCs led to the upregulation of vascular endothelial growth factor (VEGF) and DNMT1. In addition, significantly higher cell viability (proliferation/colonie), and elevated VEGF and DNMT1 protein expression were observed when MSCs were treated with LPS (10 ng/ml, 6 h) in HG culture media. Based on these findings, it is suggested that LPS pre-MSCs could promote wound repair and skin regeneration, in some major processes, via the improvement of cellular behaviors of MSCs in the diabetic microenvironment. The beneficial advantages of LPS treated with mesenchymal stem cells on wound healing may lead to establishing a novel approach as an alternative therapeutic procedure to cure chronic wounds in diabetic conditions.
Collapse
Affiliation(s)
- Kuixiang Wang
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Ziying Chen
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lili Zhao
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Libin Meng
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanting Kong
- Department of Oncology Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Chenxin He
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanlei Kong
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lingtao Zheng
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fang Liang
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China.
| |
Collapse
|
16
|
Shen H, Jiang W, Yu Y, Feng Y, Zhang T, Liu Y, Guo L, Zhou N, Huang X. microRNA-146a mediates distraction osteogenesis via bone mesenchymal stem cell inflammatory response. Acta Histochem 2022; 124:151913. [PMID: 35759812 DOI: 10.1016/j.acthis.2022.151913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
Distraction osteogenesis (DO) is a widely used surgical technique to repair bone defects, partly owing to its high efficiency in inducing osteogenesis; however, the process of osteogenesis is complex, and the precise mechanism is still unclear. Among the factors identified for an effective DO procedure, well-controlled inflammation is essential. We aimed to explore how microRNA(miR)-146a, a negative regulator of inflammation, influences osteogenesis in DO. First, we established canine right mandibular DO and bone fracture models to evaluate the expression level of miR-146a in response to these procedures. Second, bone marrow mesenchymal stem cells (BMSCs) were isolated from healthy puppies and cultured with lipopolysaccharide (LPS) to observe how inflammation affects osteogenesis. Finally, the osteogenesis activity of BMSCs transfected with lentiviral vector either overexpressing (miR-146a-up) or inhibited for miR-146a expression was evaluated. miR-146a-up-transfected BMSCs were injected locally into the distraction gaps of the DO model canines. On days 42 and 56 post-surgery, the bone volume/tissue volume and bone mineral density values were evaluated via using micro-computed tomography, and newly formed tissues were harvested and evaluated via histological staining. The expression of miR-146a in both the DO canine model and LPS-stimulated BMSCs increased. Overexpression of miR-146a enhanced cell proliferation, migration, and osteogenic differentiation. Additionally, the newly formed callus was improved in canine mandibles injected with miR-146a-up-transfected BMSCs. In summary, miR-146a regulates mandibular DO by improving osteogenesis, and can serve as a potential target to shorten the therapy period of DO.
Collapse
Affiliation(s)
- Huijuan Shen
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Weidong Jiang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yangyang Yu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yuan Feng
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Tao Zhang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yan Liu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Lina Guo
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Nuo Zhou
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| | - Xuanping Huang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| |
Collapse
|
17
|
Wang H, Qiao X, Zhang C, Hou J, Qi S. Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370 / transferrin receptor axis. Bioengineered 2022; 13:13070-13081. [PMID: 35611986 PMCID: PMC9276003 DOI: 10.1080/21655979.2022.2076508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was designed to explore the role of lncRNA LINC00616 in the regulation of periodontitis. Cellular functions were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. The content of reactive oxygen species, Fe2+, glutathione, and malondialdehyde were measured to determine ferroptosis in Porphyromonas gingivalis lipopolysaccharide (LPS-PG) treated periodontal ligament stem cells (PDLSCs), as well as expression of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11, and acyl-CoA synthetase long-chain family member 4 proteins mRNA and miRNA levels were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Western blot analysis was performed to assess protein expression. Targeting relationships were predicted using StarBase and TargetScan and verified by a dual luciferase reporter assay. The lncRNA LINC00616 was upregulated in periodontitis ligament tissues of patients with periodontitis and in PDLSCs treated with LPS-PG. Inhibition of LINC00616 promoted cell viability and suppressed ferroptosis of PDLSCs. miR-370 was verified to be a target of LINC00616, and suppressed miR-370 reversed the effects of LINC00616 knockdown on cell viability and ferroptosis in PDLSCs. Additionally, miR-370 targeting the transferrin receptor protein and upregulated transferrin receptor (TFRC) abolished the effects of overexpressed miR-370 on cell viability and ferroptosis of PDLSCs. LINC00616 acted as a competitive endogenous RNA (ceRNA) to promote ferroptosis of PDLSCs via the miR-370/TFRC axis. Therefore, LINC00616 knockdown may be a promising therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, Hebei, China
| | - Xiaotong Qiao
- Department of Oral Medicine, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Zhang
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, Hebei, China
| | - Jingyi Hou
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Suqing Qi
- Department of Orthodontics, Eye Hospital of Hebei, Xingtai, Hebei, China
| |
Collapse
|
18
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Chen M, Lin X, Zhang L, Hu X. Effects of nuclear factor-κB signaling pathway on periodontal ligament stem cells under lipopolysaccharide-induced inflammation. Bioengineered 2022; 13:7951-7961. [PMID: 35297308 PMCID: PMC9208442 DOI: 10.1080/21655979.2022.2051690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. This study focused on the effect of nuclear factor kappa B (NF-κB) signaling pathway on proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) after LPS induction and its mechanism. We first isolated hPDLSCs from human tooth root samples in vitro. Then, flow cytometry detected positive expression of cell surface antigens CD146 and STRO-1 and negative expression of CD45, suggesting the hPDLSCs were successfully isolated. LPS significantly induced increased apoptosis and diminished proliferation of hPDLSCs. The NF-κB pathway agonist phorbol 12-myristate 13-acetate (PMA) or p65 overexpression inhibited the proliferation of LPS-treated hPDLSCs and promoted apoptosis. PMA also promoted LPS-induced up-regulation of the expression of inflammatory factors TNF-α and IL-6 and down-regulation of the expression of anti-inflammatory factor IL-10. Additionally, LPS was confirmed to lead to a reduction of alkaline phosphatase (ALP) activity, calcium nodules, and expression of osteogenic markers Runt-related transcription factor 2 (Runx2) and osteopontin. This reduction could be promoted by PMA. Western blotting further indicated that PMA could promote LPS-induced decrease of expression of p65 (cytoplasm), and total cellular proteins IKKα and IKKβ in hPDLSCs, while protein expression of p-IκBα (cytoplasm) and p65 (nucleus), and p-IκBα/IκBα ratio was elevated. By contrast, inhibition of the NF-κB pathway (PDTC) or small-interfering RNA targeting NF-κB/p65 (p65 siRNA) showed the opposite results. In conclusion, activation of NF-κB signaling in LPS-induced inflammatory environment can inhibit the proliferation and osteogenic differentiation of hPDLSCs. This study provides a theory foundation for the clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Mingyue Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaobo Lin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaoli Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
20
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wawrzyk A, Łobacz M, Adamczuk A, Sofińska-Chmiel W, Wilczyński S, Rahnama M. The Use of a Diode Laser for Removal of Microorganisms from the Surfaces of Zirconia and Porcelain Applied to Superstructure Dental Implants. Microorganisms 2021; 9:2359. [PMID: 34835484 PMCID: PMC8625943 DOI: 10.3390/microorganisms9112359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper was to study the effectiveness of a diode laser (LD) for removal of microorganisms isolated from porcelain and zirconia crown surfaces used in implantoprosthetics in order to minimize infections around dental implants. In order to optimize biocidal efficacy of the process (at the same time, avoiding increasing the surface roughness during decontamination) the effects of diode laser doses were investigated. The irradiation was performed with a diode laser at the wavelength of λ = 810 nm in three variants with a different number of repetitions (1 × 15 s, 2 × 15 s, 3 × 15 s). The quantitative microbial contamination of the surface of teeth, porcelain and zirconia crowns assessment was made using the culture-dependent method. The identification of microorganisms took place using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and next-generation sequencing (NGS) methods. The studies of the surface morphology and roughness were carried out by means of the optical profilometry, scanning electron microscopy (SEM) and optical microscopy with the C1 confocal attachment. The most important conclusion from the research is the fact that the laser operation, regardless of the exposure time, effectively eliminates the microorganisms from the surfaces used for dental implant rebuilding and does not have a destructive effect on the tested material.
Collapse
Affiliation(s)
- Anna Wawrzyk
- Silesian Park of Medical Technology Kardio-Med Silesia in Zabrze, M. Curie Skłodowskiej 10C Str., 41-800 Zabrze, Poland;
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, Chodźki 6 Str., 20-093 Lublin, Poland;
| | - Agnieszka Adamczuk
- Institute of Agrophysics PAS, Doświadczalna 4 Str., 20-290 Lublin, Poland;
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Skłodowska University, Maria Curie Skłodowska Sq. 2, 20-031 Lublin, Poland;
| | - Sławomir Wilczyński
- Departament of Basic Medical Science, Faculty of Farmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Str. 3, 41-200 Sosnowiec, Poland;
| | - Mansur Rahnama
- Chair and Department of Oral Surgery, Medical University of Lublin, Chodźki 6 Str., 20-093 Lublin, Poland;
| |
Collapse
|
22
|
Yu J, Chen S, Lei S, Li F, Wang Y, Shu X, Xu W, Tang X. The Effects of Porphyromonas gingivalis on Inflammatory and Immune Responses and Osteogenesis of Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:1191-1201. [PMID: 34628938 DOI: 10.1089/scd.2021.0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used in tissue regeneration, not only because of their multilineage differentiation ability, but also because of their immunomodulatory function, which allows them to play a role in the inflammatory milieu, especially in periodontitis. Porphyromonas gingivalis (P. gingivalis) is an important pathogen associated with the progression of periodontitis. Heterogeneous MSC sources show differences in their inflammatory-immune responsiveness and osteogenesis capabilities when exposed to P. gingivalis and its virulence factors. This article reviews the promoted inflammatory and immune responses of periodontal ligament stem cells, which are potential pitfalls in bone regeneration. MSCs from other sources showed contradictory inflammatory and immune reactions in the few studies on this topic. We also summarize the mechanisms involved in the inflammatory, immune responses and osteogenic potential of MSCs exposed to P. gingivalis and its virulence factors to inform an improved utilization of MSCs in regenerative therapies for periodontitis.
Collapse
Affiliation(s)
- Jingjun Yu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuangshuang Chen
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuang Lei
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiufang Shu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanlin Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
23
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
24
|
Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol 2021; 110:565-576. [PMID: 34043832 DOI: 10.1002/jlb.4mr0421-750r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is characterized by the periodontium's pathologic destruction due to the host's overwhelmed inflammation to the dental plaque. The bacterial infections and subsequent host immune responses have shaped a distinct microenvironment, which generally affects resident periodontal ligament stem cells (PDLSCs). Interestingly, recent studies have revealed that impaired PDLSCs may also contribute to the disturbance of periodontal homeostasis. The putative vicious circle underlying the interesting "positive feedback" of PDLSCs in the periodontitis niche remains a hot research topic, whereas the inseparable interactions between resident PDLSCs and the periodontitis niche are still not fully understood. This review provides a microscopic view on the periodontitis progression, especially the quick but delicate immune responses to oral dysbacterial infections. We also summarize the interesting crosstalk of the resident PDLSCs with their surrounding periodontitis niche and potential mechanisms. Particularly, the microenvironment reduces the osteogenic properties of resident PDLSCs, which are closely related to their reparative activity. Reciprocally, these impaired PDLSCs may disrupt the microenvironment by aggravating the host immune responses, promoting aberrant angiogenesis, and facilitating the osteoclastic activity. We further recommend that more in-depth studies are required to elucidate the interactions of PDLSCs with the periodontal microenvironment and provide novel interventions for periodontitis.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Deng
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hao
- Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Semaphorin3B Promotes Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in a High-Glucose Microenvironment. Stem Cells Int 2021; 2021:6637176. [PMID: 33727932 PMCID: PMC7935575 DOI: 10.1155/2021/6637176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) play an essential role in osteogenesis and bone metabolism and have already been recognized as one of the most popular seed cells for bone tissue engineering for bone diseases. However, high-glucose (HG) conditions in type 2 diabetes mellitus (T2DM) exert deleterious effects on BMSC proliferation and osteogenic differentiation. Semaphorin 3B (Sema3B) increases osteoblast differentiation in bone metabolism. Here, we determined the role of Sema3B in the proliferation and osteogenic differentiation of BMSCs in the HG microenvironment. The HG microenvironment decreased Sema3B expression in BMSCs. Moreover, HG inhibited BMSC proliferation. Furthermore, HG inhibited osteogenic differentiation in BMSCs by decreasing the expression of bone formation markers, alkaline phosphatase (ALP) activity, and mineralization. However, the administration of recombinant Sema3B reversed all of these effects. Moreover, our study found that Sema3B could activate the Akt pathway in BMSCs. Sema3B rescues defects in BMSC proliferation and osteogenic differentiation in the HG microenvironment by activating the Akt pathway. These effects were significantly reduced by treatment with an Akt inhibitor. Together, these findings demonstrate that Sema3B promotes the proliferation and osteogenic differentiation of BMSCs via the Akt pathway under HG conditions. Our study provides new insights into the potential ability of Sema3B to ameliorate BMSC proliferation and osteogenic differentiation in an HG microenvironment.
Collapse
|
26
|
Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, Fawzy El-Sayed KM. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int 2020; 2020:1327405. [PMID: 32184830 PMCID: PMC7060886 DOI: 10.1155/2020/1327405] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Oral mesenchymal stem/progenitor cells (MSCs) are renowned in the field of tissue engineering/regeneration for their multilineage differentiation potential and easy acquisition. These cells encompass the periodontal ligament stem/progenitor cells (PDLSCs), the dental pulp stem/progenitor cells (DPSCs), the stem/progenitor cells from human exfoliated deciduous teeth (SHED), the gingival mesenchymal stem/progenitor cells (GMSCs), the stem/progenitor cells from the apical papilla (SCAP), the dental follicle stem/progenitor cells (DFSCs), the bone marrow mesenchymal stem/progenitor cells (BM-MSCs) from the alveolar bone proper, and the human periapical cyst-mesenchymal stem cells (hPCy-MSCs). Apart from their remarkable regenerative potential, oral MSCs possess the capacity to interact with an inflammatory microenvironment. Although inflammation might affect the properties of oral MSCs, they could inversely exert a multitude of immunological actions to the local inflammatory microenvironment. The present review discusses the current understanding about the immunomodulatory role of oral MSCs both in periodontitis and systemic diseases, their "double-edged sword" uniqueness in inflammatory regulation, their affection of the immune system, and the underlying mechanisms, involving oral MSC-derived extracellular vesicles.
Collapse
Affiliation(s)
- Li-li Zhou
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Wei Liu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Yan-min Wu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei-lian Sun
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - C. E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - K. M. Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11435, Egypt
| |
Collapse
|
27
|
Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem Cell Res Ther 2020; 11:61. [PMID: 32059742 PMCID: PMC7023757 DOI: 10.1186/s13287-020-1569-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives The homeostasis of oral pathogenic bacteria and probiotics plays a crucial role in maintaining the well-being and healthy status of human host. Our previous study confirmed that imbalanced oral microbiota could impair mesenchymal stem cell (MSC) proliferation capacity and delay wound healing. However, the effects of balanced oral pathogenic bacteria and probiotics on MSCs and wound healing are far from clear. Here, the balance of pathogenic bacteria Porphyromonas gingivalis and probiotics Lactobacillus reuteri extracts was used to investigate whether balanced oral microbiota modulate the physiological functions of MSCs and promote wound healing. Methods The effects of balanced pathogenic bacteria P. gingivalis and probiotics L. reuteri extracts on gingival MSCs (GMSCs) were tested using the migration, alkaline phosphatase activity, alizarin red staining, cell counting kit-8, real-time PCR, and western blot assays. To investigate the role of balanced pathogenic bacteria P. gingivalis and probiotics L. reuteri extracts in the wound of mice, the wounds were established in the mucosa of palate and were inoculated with bacteria every 2 days. Results We found that the balance between pathogenic bacteria and probiotics enhanced the migration, osteogenic differentiation, and cell proliferation of MSCs. Additionally, local inoculation of the mixture of L. reuteri and P. gingivalis promoted the process of wound healing in mice. Mechanistically, we found that LPS in P. gingivalis could activate NLRP3 inflammasome and inhibit function of MSCs, thereby accelerating MSC dysfunction and delaying wound healing. Furthermore, we also found that reuterin was the effective ingredient in L. reuteri which maintained the balance of pathogenic bacteria and probiotics by neutralizing LPS in P. gingivalis, thus inhibiting inflammation and promoting wound healing. Conclusions This study revealed that the homeostasis of oral microbiomes played an indispensable role in maintaining oral heath, provided hopeful methods for the prevention and treatment of oral diseases, and had some referential value for other systemic diseases caused by dysfunction of microbiota and MSCs.
Collapse
|
28
|
Preconditioning of Rat Bone Marrow-Derived Mesenchymal Stromal Cells with Toll-Like Receptor Agonists. Stem Cells Int 2019; 2019:7692973. [PMID: 31531025 PMCID: PMC6721436 DOI: 10.1155/2019/7692973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.
Collapse
|
29
|
Kusuyama J, Nakamura T, Ohnishi T, Albertson BG, Ebe Y, Eiraku N, Noguchi K, Matsuguchi T. Low‐intensity pulsed ultrasound promotes bone morphogenic protein 9‐induced osteogenesis and suppresses inhibitory effects of inflammatory cytokines on cellular responses via Rho‐associated kinase 1 in human periodontal ligament fibroblasts. J Cell Biochem 2019; 120:14657-14669. [DOI: 10.1002/jcb.28727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine Harvard Medical School Boston Massachusetts
| | - Toshiaki Nakamura
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Brent G. Albertson
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine Harvard Medical School Boston Massachusetts
| | - Yukari Ebe
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Division of Clinical Engineering, Department of Dental Hygiene Kagoshima University Hospital Kagoshima Japan
| | - Nahoko Eiraku
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine Harvard Medical School Boston Massachusetts
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| |
Collapse
|
30
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Xing Y, Zhang Y, Jia L, Xu X. Lipopolysaccharide from Escherichia coli stimulates osteogenic differentiation of human periodontal ligament stem cells through Wnt/β-catenin-induced TAZ elevation. Mol Oral Microbiol 2018; 34. [PMID: 30387555 DOI: 10.1111/omi.12249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of dental tissue-derived mesenchymal stem cells (MSCs), can be clinically applied in periodontal tissue regeneration to treat periodontitis, which is initiated and sustained by bacteria. Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, is a pertinent deleterious factor in the oral microenvironment. The aim of this study was to investigate the effect of LPS on the proliferation and osteogenic differentiation of PDLSCs, as well as the mechanisms involved. Proliferation and osteogenic differentiation of PDLSCs were detected under the stimulation of Escherichia coli-derived LPS. The data showed that E. coli-derived LPS did not affect the proliferation, viability, and cell cycle of PDLSCs. Furthermore, it promoted osteogenic differentiation with the activation of TAZ. Lentivirus-mediated depletion of TAZ (transcriptional activator with a PDZ motif) was used to determine the role of TAZ on LPS-induced enhancement of osteogenesis. PDLSCs cultured in osteogenic media with or without LPS and DKK1 (Wnt/β-catenin pathway inhibitor) were used to determine the regulatory effect of Wnt signaling. We found that TAZ depletion offset LPS-induced enhancement of osteogenesis. Moreover, treatment with DKK1 offset LPS-induced TAZ elevation and osteogenic promotion. In conclusion, E. coli-derived LPS promoted osteogenic differentiation of PDLSCs by fortifying TAZ activity. The elevation and activation of TAZ were mostly mediated by the Wnt/β-catenin pathway. PDLSC-governed alveolar bone tissue regeneration was not necessarily reduced under bacterial conditions and could be modulated by Wnt and TAZ.
Collapse
Affiliation(s)
- Yixiao Xing
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Linglu Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Su Y, Chen C, Guo L, Du J, Li X, Liu Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018; 36:551-561. [PMID: 29266799 DOI: 10.1002/stem.2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. This study used a common clinical antibiotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release lipopolysaccharide (LPS) that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/telomerase reverse transcriptase pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice. Stem Cells 2018;36:551-561.
Collapse
Affiliation(s)
- Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
33
|
Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Arboleda-Toro D, González Á. Bone marrow–derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response. Med Mycol 2017; 56:884-895. [DOI: 10.1093/mmy/myx128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
- Microbiology School, Universidad de Antioquia, Medellin Colombia
| | - Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| | | | - Ángel González
- Microbiology School, Universidad de Antioquia, Medellin Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
34
|
Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Salazar-Peláez LM, Rojas M, González Á. Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis 2017; 11:e0006006. [PMID: 29040281 PMCID: PMC5659794 DOI: 10.1371/journal.pntd.0006006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling. This is the first study that evaluates the effect of BMMSCs therapy for lung fibrosis induced by the fungal pathogen Paracoccidioides brasiliensis, the causative agent of paracoccidioidomycosis, one of the most important systemic endemic mycosis diagnosed in South America and Central America. Our findings showed an impaired anti-fibrotic effect of BMMSCs transplantation. This effect could be triggered by either the chronic inflammatory microenvironment induced by P. brasiliensis or by a direct interaction between BMMSCs and the fungus, resulting in an exacerbation of the pulmonary fibrosis. In fact, the pro-fibrotic effect exerted by BMMSCs was toned-down by the usage of the antifungal ITC.
Collapse
Affiliation(s)
- Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, Unites States of America
| | | | - Mauricio Rojas
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Ángel González
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
35
|
Zhou L, Dörfer CE, Chen L, Fawzy El-Sayed KM. Porphyromonas gingivalislipopolysaccharides affect gingival stem/progenitor cells attributes through NF-κB, but not Wnt/β-catenin, pathway. J Clin Periodontol 2017; 44:1112-1122. [DOI: 10.1111/jcpe.12777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lili Zhou
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Christof E. Dörfer
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
| | - Lili Chen
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Karim M. Fawzy El-Sayed
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Oral Medicine and Periodontology Department; Faculty of Oral and Dental Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
36
|
Elevated TRAF4 expression impaired LPS-induced autophagy in mesenchymal stem cells from ankylosing spondylitis patients. Exp Mol Med 2017; 49:e343. [PMID: 28604663 PMCID: PMC5519014 DOI: 10.1038/emm.2017.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Ankylosing spondylitis (AS) is a type of autoimmune disease that predominantly affects the spine and sacroiliac joints. However, the pathogenesis of AS remains unclear. Some evidence indicates that infection with bacteria, especially Gram-negative bacteria, may have an important role in the onset and progression of AS. Recently, many studies have demonstrated that mesenchymal stem cells (MSCs) dysfunction may contribute to the pathogenesis of many rheumatic diseases. We previously demonstrated that MSCs from AS patients exhibited markedly enhanced osteogenic differentiation capacity in vitro under non-inflammatory conditions. However, the properties of MSCs from AS patients in an inflammatory environment have never been explored. Lipopolysaccharide (LPS), a proinflammatory substance derived from the outer membrane of Gram-negative bacteria, can alter the status and function of MSCs. However, whether MSCs from AS patients exhibit abnormal responses to LPS stimulation has not been reported. Autophagy is a lysosome-mediated catabolic process that participates in many physiological and pathological processes. The link between autophagy and AS remains largely unknown. The level of autophagy in ASMSCs after LPS stimulation remains to be addressed. In this study, we demonstrated that although the basal level of autophagy did not differ between MSCs from healthy donors (HDMSCs) and ASMSCs, LPS-induced autophagy was weaker in ASMSCs than in HDMSCs. Specifically, increased TRAF4 expression in ASMSCs impaired LPS-induced autophagy, potentially by inhibiting the phosphorylation of Beclin-1. These data may provide further insight into ASMSC dysfunction and the precise mechanism underlying the pathogenesis of AS.
Collapse
|
37
|
Li M, Zhang C, Jin L, Matsuo K, Yang Y. Porphyromonas gingivalis lipopolysaccharide regulates ephrin/Eph signalling in human periodontal ligament fibroblasts. J Periodontal Res 2017; 52:913-921. [PMID: 28590061 PMCID: PMC5600103 DOI: 10.1111/jre.12463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
Objective EphrinA2‐EphA2 and ephrinB2‐EphB4 critically engage in bidirectional signalling to modulate alveolar bone remodelling. The present study aimed to investigate the effects of lipopolysaccharides (LPS) derived from Porphyromonas gingivalis on ephrin/Eph signalling in periodontal ligament fibroblasts (PDLFs). Material and Methods The primary cultured PDLFs were incubated in the absence (as a control) or presence of P. gingivalisLPS at 0.001‐10 μg/mL for 24 hours. The PDLFs were then stimulated with P. gingivalisLPS at the optimal concentration (0.1 μg/mL) for different periods (6‐48 hours). The expression of ephrinA2, ephrinB2, EphA2 and EphB4 was assessed by quantitative reverse‐transcription real‐time polymerase chain reaction and western blotting. The osteoblastic markers alkaline phosphatase, osteocalcin and Runt‐related transcription factor 2 (Runx2), and the osteoclastogenesis‐related factors receptor activator of nuclear factor kappa‐B ligand (RANKL) and osteoprotegerin were also evaluated. Results The ephrinA2 and EphA2 expression was upregulated and EphB4 expression was downregulated by stimulation of P. gingivalisLPS. EphrinA2 mRNA expression in the PDLFs was significantly upregulated from 12 to 48 hours (P<.05), whereas EphA2 exhibited no change for the first 24 hours, after which there was a significant increase at 48 hours (P<.05). EphB4 exhibited lower mRNA expression at 12 and 24 hours than did the control (P<.05), but the change was insignificant at 48 hours. In contrast, the expression of ephrinB2 remained unchanged. The expressions of ephrinA2, EphA2, ephrinB2 and EphB4 at the protein level showed a similar pattern to that at the mRNA level. The expression of Runx2 and osteocalcin significantly decreased, whereas that of RANKL/osteoprotegerin increased. Conclusion The present study suggest that P. gingivalisLPS would contribute to a dysregulation of bone remodelling, whereby ephrinA2/EphA2 expression is stimulated and EphB4 expression is inhibited.
Collapse
Affiliation(s)
- M Li
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - C Zhang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - L Jin
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - K Matsuo
- Keio University School of Medicine, Tokyo, Japan
| | - Y Yang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS One 2016; 11:e0149876. [PMID: 26930594 PMCID: PMC4773221 DOI: 10.1371/journal.pone.0149876] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/06/2016] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.
Collapse
|
39
|
Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol Lett 2015; 168:208-14. [DOI: 10.1016/j.imlet.2015.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
|