1
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
2
|
Guo M, Su F, Chen Y, Su B. Methyltransferase METTL3-mediated maturation of miR-4654 facilitates high glucose-induced apoptosis and oxidative stress in lens epithelial cells via decreasing SOD2. Chem Biol Drug Des 2024; 103:e14491. [PMID: 38404215 DOI: 10.1111/cbdd.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.
Collapse
Affiliation(s)
- Ming Guo
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University, (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University, (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Hospital, Yangtze University, (Jingzhou Central Hospital), Jingzhou, Hubei, China
| | - Bo Su
- Department of Pathology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Fei D, Yuan H, Zhao M, Zhao D. LncRNA FGD5-AS1 potentiates autophagy-associated doxorubicin resistance by regulating the miR-154-5p/WNT5A axis in osteosarcoma. Cell Biol Int 2022; 46:1937-1946. [PMID: 36041209 DOI: 10.1002/cbin.11889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Osteosarcoma is prevalent in children and adolescent. The oncogenic function of long-chain noncoding RNA (lncRNA) FGD5 antisense RNA 1 (FGD5-AS1) has been reported. However, the function of FGD5-AS1 in doxorubicin-resistance in osteosarcoma remains to be illucidated. Quantitative real-time PCR (qRT-PCR) and western blot analysis (WB) were used to measure the expression of FGD5-AS1, miR-154-5p, WNT5A and autophagy proteins. MTT assay was used to assess cell viability and transwell assay was performed to evaluate migration. A nude mouse xenograft model was developed to verify the function of FGD5-AS1 in vivo. FGD5-AS1 was upregulated in doxorubicin-resistant (DXR) osteosarcoma cells. Knockdown of FGD5-AS1 suppressed osteosarcoma cell proliferation, migration, and autophagy. FGD5-AS1 upregulated WNT5A expression via sponging miR-154-5p. Furthermore, FGD5-AS1 enhanced osteosarcoma cell chemotherapy resistance through upregulation of WNT5A by inhibiting miR-154-5p. Suppression of FGD5-AS1 significantly suppressed tumor growth in nude mice. FGD5-AS1 may promote chemoresistance through WNT5A-induced autophagy by sponging miR-154-5p in osteosarcoma cells.
Collapse
Affiliation(s)
- Dan Fei
- Department of Ultrasonographic, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongping Yuan
- Department of Nephrology, Jilin FAW General Hospital, Changchun, China
| | - Mingming Zhao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongxu Zhao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
5
|
The prediction and expression of miR-203a-p and miR-29b* against DNMT3B as well as TNFAIP3 in melanoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Chen S, Luo L, Chen H, He C. The Current State of Research Regarding the Role of Non-Coding RNAs in Cutaneous Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:13151-13158. [PMID: 33380805 PMCID: PMC7767711 DOI: 10.2147/ott.s271346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Skin cancers, including those of both both melanoma and non-melanoma subtypes, remain among the most common forms of human cancer. Non-melanoma skin cancers are typically further differentiated into the basal cell carcinoma and cutaneous squamous cell carcinoma (cSCC) categories. Current approaches to diagnosing and treating cSCC remain unsatisfactory, and the prognosis for patients with this disease is relatively poor. Recent advances in high-throughput sequencing have led to an increasingly robust understanding of the diversity of non-coding RNAs (ncRNAs) expressed in both physiological and pathological contexts. These ncRNAs include microRNAs, long ncRNAs, and circular RNAs, all of which have been found to play key functional roles and/or to have value as diagnostic biomarkers or therapeutic targets in a range of different disease contexts. The number of ncRNAs associated with cSCC continues to rise, and as such, there is clear value in comprehensively reviewing the functional roles of these molecules in this form of cancer in order to highlight future avenues for research and clinical development.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| | - Limin Luo
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Hongduo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| | - Chundi He
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
7
|
Huang C, Liu J, Pan X, Peng C, Xiong B, Feng M, Yang X. miR-454 promotes survival and induces oxaliplatin resistance in gastric carcinoma cells by targeting CYLD. Exp Ther Med 2020; 19:3604-3610. [PMID: 32346424 PMCID: PMC7185177 DOI: 10.3892/etm.2020.8655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-454 (miR-454), is involved in the progression of various types of cancers. The present study aimed to evaluate the effect of miR-454 on the progression of gastric cancer. SGC-7901 cells overexpressing or silencing miR454 were constructed via transfection and the survival rate of the cells was determined. The relationship between miR-454 and cylindromatosis (CYLD) was explored and the influence of miR-454 on oxaliplatin resistance was investigated in SGC-7901 cells. It was determined that overexpression of miR-454 increased the number of colonies and reduced apoptosis rate of SGC-7901 cells. The CYLD gene was identified as a direct target of miR-454. miR-454 overexpression downregulated the expression of CYLD, leading to an increase in SGC-7901 cell proliferation. Finally, miR-454 was also demonstrated to induce resistance to oxaliplatin in gastric cancer cells. In conclusion, the present in vitro findings suggested that miR-454 might be a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| | - Xuekai Pan
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| | - Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Hubei Cancer Clinical Study Center and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Wuhan Clinical Research Center for Peritoneal Carcinomatosis, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Wang J, Yan GP, Guo C, Li J. [Expression and significance of microRNA-125b in tongue squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:11-16. [PMID: 32037760 PMCID: PMC7184298 DOI: 10.7518/hxkq.2020.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The expression of microRNA-125b in tongue squamous cell carcinoma (TSCC) was detected and analyzed for its relationship with the clinicopathological features of TSCC. METHODS Real time fluorescence-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of microRNA-125b in 35 TSCC tissues and adjacent normal tissues from 35 TSCC cases. The relationship between the expression of microRNA-125b in TSCC tissues and the clinicopathological features of patients with TSCC was analyzed. In situ hybridization (ISH) was used to detect the expression level of microRNA-125b gene in the TSCC tissues and adjacent normal tissues. RESULTS RT-qPCR results showed that the relative expression levels of microRNA-125b in the TSCC issues was 2.32±0.69, and that of normal tissues was 0.87±0.32. The statistical results showed that the expression level of microRNA-125b was significantly higher in the TSCC tissues than in the normal tissues (P<0.001). The expression level of microRNA-125b in the TSCC tissues was not significantly correlated with age, gender, pathological grade, and lymph node metastasis but was positively correlated with TNM stage. Patients with high TNM stage had high microRNA-125b expression levels (P<0.05). The ISH results showed that the expression levels of microRNA-125b in the TSCC tissues were 0.010±0.003, and that of normal tissues was 0.004±0.001. The expression levels of microRNA-125b in the 35 TSCC tissues were significantly higher than those in the normal tissues (P<0.05). CONCLUSIONS MicroRNA-125b is highly expressed in TSCC and associated with TNM stage, suggesting that high microRNA-125b expression may be involved in the development of TSCC.
Collapse
Affiliation(s)
- Jian Wang
- Dept. of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Guang-Peng Yan
- Dept. of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Chao Guo
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Shihezi University, Shihezi 832000, China
| | - Jun Li
- Dept. of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| |
Collapse
|
9
|
Li X, Zhou C, Zhang C, Xie X, Zhou Z, Zhou M, Chen L, Ding Z. MicroRNA-664 functions as an oncogene in cutaneous squamous cell carcinomas (cSCC) via suppressing interferon regulatory factor 2. J Dermatol Sci 2019; 94:330-338. [PMID: 31138473 DOI: 10.1016/j.jdermsci.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aberrant expression of microRNA-664 was involved in tumor growth and metastasis of various cancers. The specific role of miR-664 in cutaneous squamous cell carcinoma (cSCC) is yet to be elucidated. OBJECTIVE The present study aimed to investigate the molecular mechanisms underpinning of cSCC development and provide translational insights for future therapeutics. METHODS Human cSCC specimens were used to determine the miR-664 by in situhybridization and IRF2 by immunohistochemistry. To study the potential mechanisms in tumorigenesis, three cSCC cell lines including HSC-5, HSC-1 and A431 as well as BALB/C mouse tumor model was utilized. RESULTS We found that miR-664 was remarkably high in cSCC patient specimens and cSCC cell lines. Overexpression of miR-664 promotes tumorigenic behaviors such as increased cell proliferation, migration and invasion capacities in vitro and enhanced tumorigenicity in xenograft mouse model. Our data further identified IRF2 as a direct downstream target of miR-664. Knockdown of IRF2 reverses pro-tumorigenesis phenotype of miR-664; whereas IRF2 over-expression inhibits miR-664 tumorigenesis in cSCC. Together, it revealed miR-664 functions as an oncogene in cSCC via suppression of IRF2. CONCLUSION Our data demonstrates that aberrant expression of miR-664 plays a critical role in carcinogenesis of cSCC. The discovery of novel targets such as miR-664 and IRF2 will facilitate future development of therapeutic interventions.
Collapse
Affiliation(s)
- Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongxiong Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Liu L, Cheng Z, Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease. Pathol Res Pract 2018; 214:1873-1878. [DOI: 10.1016/j.prp.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
|
11
|
Liu L, Jiang H, Zhao J, Wen H. MiRNA-16 inhibited oral squamous carcinoma tumor growth in vitro and in vivo via suppressing Wnt/β-catenin signaling pathway. Onco Targets Ther 2018; 11:5111-5119. [PMID: 30197522 PMCID: PMC6112799 DOI: 10.2147/ott.s153888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Oral carcinoma, one of the most commonly diagnosed cancers, has a poor prognosis and low survival rate with treatment. In recent years, some studies reported the upregulation of miRNA-16 (miR-16) in the oral carcinoma, whereas some other studies confirmed the downregulation of miR-16. In the current study, we aimed to investigate the function of miR-16 in oral carcinoma. Materials and methods Cell proliferation assay was measured by MTT assay, quantitative real time polymerase chain reaction (qRT-PCR) was used to evaluate the expression of miR-16, and apoptosis was analyzed by flow cytometry. In addition, the expression of proteins was detected by Western blot. Moreover, xenograft tumor model was established to detect the effect of miR-16 in vivo. Results The results suggested that miR-16 was downregulated in the oral carcinoma tissues. Overexpression of miR-16 inhibited the growth and proliferation of oral squamous carcinoma cells (OSCCs) and induced apoptosis both in vitro and in vivo, which is due to the suppression of Wnt/β-catenin signaling pathway. Conclusion This study provides evidence that overexpression of miR-16 inhibits OSCC growth by regulating Wnt/β-catenin signaling. Our findings suggest that overexpression of miR-16 could be a potential approach for gene therapy of OSCC in future.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Stomatology, Stomatology of Mylike Plastic and Cosmetic Hospital of ChongQing, Chongqing, China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China,
| | - Han Jiang
- Department of Periodontics, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jin Zhao
- Department of Periodontics, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hao Wen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China,
| |
Collapse
|
12
|
Yao S, Liu Y, Yao Z, Zhao Y, Wang H, Xu Y, Zhang J, Li J, Yang S. MicroRNA-376a regulates cell proliferation and apoptosis by targeting forkhead box protein P2 in lymphoma. Oncol Lett 2018; 16:3169-3176. [PMID: 30127911 DOI: 10.3892/ol.2018.9012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/29/2017] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate microRNA-376a (miR-376a) expression in lymphoma, and to investigate the effect of miR-376a on cell proliferation and apoptosis at cytological and molecular levels. The expression of miR-376a in lymphoma issue and cells was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR), the expression of forkhead box protein P2 (FOXP2) was detected by RT-qPCR and western blot analysis, and the effect of miR-376a on cell proliferation and apoptosis were studied by an MTT assay and flow cytometry, respectively. Additionally, the expression levels of cyclin D2, cyclin A, cyclin B, apoptosis-associated proteins B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blot analysis. Furthermore, the target of miR-376a was predicted and clarified using a dual-luciferase reporter assay. The expression of miR-376a was downregulated and FOXP2 was upregulated in lymphoma tissues and cells. miR-376a overexpression inhibited lymphoma cell proliferation and induced apoptosis by regulating the expression levels of cyclin D2, cyclin A, Bax and Bcl-2. The dual-luciferase reporter assay demonstrated that FOXP2 was a target of miR-376a. miR-376a overexpression induced apoptosis by targeting FOXP2. Overexpression of miR-376a inhibited cell proliferation and induced apoptosis by targeting FOXP2 in lymphoma. Therefore, miR-376a and FOXP2 have the potential for use as biomarkers of lymphoma.
Collapse
Affiliation(s)
- Shuna Yao
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yanyan Liu
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Zhihua Yao
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yan Zhao
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Haiying Wang
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yuanlin Xu
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jiuyang Zhang
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jing Li
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Shujun Yang
- Section of Comprehensive Lymphoma, Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
13
|
Yao X, Cui X, Wu X, Xu P, Zhu W, Chen X, Zhao T. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-β1/Smad3 signaling pathway. Biochem Biophys Res Commun 2018; 495:713-720. [DOI: 10.1016/j.bbrc.2017.10.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 01/10/2023]
|
14
|
Zhou F, Li Y, Hao Z, Liu X, Chen L, Cao Y, Liang Z, Yuan F, Liu J, Wang J, Zheng Y, Dong D, Bian S, Yang B, Jiang C, Li Q. MicroRNA-300 inhibited glioblastoma progression through ROCK1. Oncotarget 2017; 7:36529-36538. [PMID: 27145462 PMCID: PMC5095018 DOI: 10.18632/oncotarget.9068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/06/2016] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma is a common type of brain aggressive tumors and has a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous and non-coding RNAs that play crucial roles in cell proliferation, survival and invasion. Deregulated expression of miR-300 has been studied in a lot of cancers. However, the role of miR-300 in glioblastoma is still unknown. In this study, we demonstrated that miR-300 expression was downregulated in glioblastoma tissues compared with the normal tissues. Lower expression level of miR-300 was observed in thirty cases (75 %, 30/40) of glioblastoma samples compared with the normal samples. Moreover, the overall survival of glioblastoma patients with lower miR-300 expression level was shorter than those with higher miR-300 expression level. In addition, miR-300 expression was also downregulated in glioblastoma cell lines. Overexpression of miR-300 inhibited cell proliferation, cell cycle and invasion in glioblastoma cell line U87 and U251. Moreover, we identified ROCK1 as a direct target of miR-300 in U87 and U251 cells. Overexpression of ROCK1 partially rescued the miR-300-mediated cell growth. ROCK1 expression levels in glioblastoma tissues were higher than that in normal tissues. ROCK1 expression levels were higher in thirty-one cases of glioblastoma samples than their normal samples. Furthermore, the expression level ROCK1 was inversely correlated with the expression level of miR-300. Importantly, overexpression of miR-300 suppressed glioblastoma progression in an established xenograft model. In conclusion, we revealed that miR-300 might act as a tumor suppressor gene through inhibiting ROCK1 in glioblastoma.
Collapse
Affiliation(s)
- Fucheng Zhou
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yang Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zhen Hao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Xuanxi Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Liang Chen
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yu Cao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zuobin Liang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Fei Yuan
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Jie Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Jianjiao Wang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Yongri Zheng
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Deli Dong
- Harbin Medical University, Harbin 150086, China
| | - Shan Bian
- Institute of Molecular Biology, Austrian Academy of Sciences, Vienna, Austria
| | | | - Chuanlu Jiang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Qingsong Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
15
|
Chen D, Liu D, Chen Z. Potential therapeutic implications of miRNAs in osteosarcoma chemotherapy. Tumour Biol 2017; 39:1010428317705762. [PMID: 28933259 DOI: 10.1177/1010428317705762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer in young adults and adolescents. Drug resistance is the main cause leading to therapeutical failure. The mechanisms of drug resistance of osteosarcoma have not been fully understood. Notably, recent researches associate microRNA with drug resistance in osteosarcoma cells, raising the awareness that targeting microRNAs may help in chemotherapy success. In this review, we summarize the mechanisms linking microRNAs to drug resistance and ongoing researches on microRNAs in drug response to osteosarcoma. In addition, the therapeutic potential of microRNAs in chemotherapy will also be discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Ding Liu
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, P.R. China
| |
Collapse
|
16
|
Yu X, Zheng H, Chan MTV, Wu WKK. MicroRNAs: new players in cataract. Am J Transl Res 2017; 9:3896-3903. [PMID: 28979668 PMCID: PMC5622237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 06/07/2023]
Abstract
Cataract is the most common cause of blindness worldwide. Multiple factors such as aging, eye injury, diabetes mellitus, ultraviolet exposure, drug use and other ocular diseases are etiologically linked to cataractogenesis. Due to a rapid increase in aging population, age-related cataract has become the leading cause of blindness. Therefore, it is urgent to understand the molecular mechanism underlying cataractogenesis. MicroRNAs (miRNAs) are a group of endogenous, small noncoding RNAs that regulate gene expression at the post-translational level through binding with the 3'-untranslated regions of target mRNAs. Studies have shown that miRNAs play important roles in multiple cellular functions, including apoptosis, cell proliferation, senescence and stress response. Deregulated expression of miRNAs is also linked to the pathogenesis of many diseases, including ocular diseases. In our review, we focus on miRNAs that are involved in cataract development and discuss their potential applications as novel diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
17
|
Yu X, Zheng H, Chan MTV, Wu WKK. Modulation of chemoresponsiveness to platinum-based agents by microRNAs in cancer. Am J Cancer Res 2017; 7:1769-1778. [PMID: 28979802 PMCID: PMC5622214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 06/07/2023] Open
Abstract
Ovarian cancer accounts for the highest mortality among all gynecologic cancers. Cytoreductive surgery followed by chemotherapy with a platinum-based agent (cisplatin or carboplatin) plus paclitaxel is the first-line option for treatment of epithelial ovarian cancer. However, primary or acquired resistance to platinum-based agents is a major clinical challenge. MicroRNAs are a group of small non-coding RNAs that regulate gene expression post-transcriptionally and may function as oncogenes or tumor-suppressor genes through extensive crosstalk with intracellular signaling pathways. Importantly, their dysregulation has been implicated in ovarian tumorigenesis. Pertinent to chemotherapy, increasing evidence has revealed that miRNAs can be directly linked to chemosensitivity to platinum-based agents in ovarian cancer. In this review, we summarize current evidence concerning the role of miRNAs in prediction and modulation of cellular responses to cisplatin and carboplatin in ovarian cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, 100042, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, 100042, China
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong
| | - William KK Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong
| |
Collapse
|
18
|
Inhibition of microRNA-214 promotes epithelial-mesenchymal transition process and induces interstitial cystitis in postmenopausal women by upregulating Mfn2. Exp Mol Med 2017; 49:e357. [PMID: 28729638 PMCID: PMC5565960 DOI: 10.1038/emm.2017.98] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Our study aims to investigate the roles that microRNA-214 (miR-214) plays in the epithelial mesenchymal transition (EMT) process and the development of interstitial cystitis (IC) in postmenopausal women by targeting Mitofusin 2 (Mfn2). IC bladder tissues and adjacent normal bladder tissues were collected from postmenopausal women. Immunohistochemistry (IHC) staining was conducted. The target relationship between miR-214 and Mfn2 was determined by a dual luciferase reporter gene assay. Adipose-derived mesenchymal stem cells (ADMSCs) were extracted from postmenopausal rats and assigned to the blank, mimics, miR-214 inhibitors, mimics negative control (NC), inhibitors NC, Mfn2 siRNA, miR-214 inhibitors and Mfn2 siRNA groups. Exosomes secreted by transfected ADMSCs were instilled into the bladders of postmenopausal rats. The expression of miR-214 and Mfn2 mRNA and EMT markers was assessed by qRT-PCR and western blotting. It was confirmed that Mfn2 was the target gene of miR-214 in IC. Compared with the normal bladder tissues, miR-214 decreased, but Mfn2 increased in IC bladder tissues. Compared with the blank group, the expression of miR-214 and the expression levels of N-cadherin, Fibronectin, Twist1, Snail and Vimentin mRNA and protein increased, whereas the expression levels of Mfn2, E-cadherin and ZO-1 mRNA and protein decreased in the miR-214 mimics and Mfn2 groups. The expression of MiR-214 and the expression levels of N-cadherin, Fibronectin, Twist1, Snail and Vimentin mRNA and protein decreased, whereas the expression levels of Mfn2, E-cadherin and ZO-1 mRNA and protein increased in the miR-214 inhibitors group. Our findings indicate that the inhibition of miR-214 promotes the EMT process and contributes to bladder wall fibrosis by up-regulating Mfn2, thus leading to the occurrence of IC in postmenopausal women.
Collapse
|
19
|
Liu GL, Yang HJ, Liu B, Liu T. Effects of MicroRNA-19b on the Proliferation, Apoptosis, and Migration of Wilms' Tumor Cells Via the PTEN/PI3K/AKT Signaling Pathway. J Cell Biochem 2017; 118:3424-3434. [PMID: 28322459 DOI: 10.1002/jcb.25999] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022]
Abstract
Wilms' tumor (WT) is a most common renal cancer that occurs among children, and microRNA-19b (miR-19b) usually participates in various human cancers. Importantly, the PTEN/PI3K/Akt signaling pathway plays a key role in cell apoptosis, growth and proliferation. Thus, our present study aims to investigate the effect of miR-19b on the PTEN/PI3K/Akt signaling pathway during WT cell proliferation, migration, and apoptosis. WT tissues and adjacent normal tissues from WT patients were collected. qRT-PCR was applied to detect miR-19b expression in both the WT tissues and the adjacent normal tissues, immunohistochemistry was applied to detect the protein expressions of PTEN, P13K, and p-Akt, SK-NEP-1 cells were divided into the blank, negative control (NC), miR-19b mimics and miR-19b inhibitors groups. MTT assay, propidium iodide (PI) staining, Annexin-V/PI double-staining, Transwell assay and Western blotting were performed to examine cell proliferation, cycle, apoptosis, migration, and invasion, and the protein expressions of PTEN, P13K, Akt, and p-Akt. Increased miR-19b expression, positive expression rates of P13K and Akt, decreased PTEN expression rate, a negative correlation between PTEN expression and tumor lymph node metastasis, and a positive correlation between the expression of P13K and Akt and the clinical stages were observed in the WT tissues. The miR-19b inhibitors group exhibited decreased cell proliferation, cell cycle progression, migration and invasion, and protein expressions of PI3K and p-Akt but increased PTEN protein expression compared with the blank and NC groups. Thus, inhibition of miR-19b suppresses the progression of WT by modulating the PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem. 118: 3424-3434, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge-Liang Liu
- Department of Urinary Surgery, the Affiliated Pingxiang Hospital, Southern Medical University, Pingxiang, 337000, P.R. China
| | - Han-Jie Yang
- Department of Urinary Surgery, the Affiliated Pingxiang Hospital, Southern Medical University, Pingxiang, 337000, P.R. China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Tian Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| |
Collapse
|
20
|
Bai Y, Lu C, Zhang G, Hou Y, Guo Y, Zhou H, Ma X, Zhao G. Overexpression of miR-519d in lung adenocarcinoma inhibits cell proliferation and invasion via the association of eIF4H. Tumour Biol 2017; 39:1010428317694566. [PMID: 28351305 DOI: 10.1177/1010428317694566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the deadliest types of cancer worldwide due to its high mortality rate. Adenocarcinoma constitutes 20%-30% of all lung cancers. In recent years, studies on the mechanisms of lung tumorigenesis and development have in part focused on the microRNAs for their crucial role in the progress of different cancers. As for our study, we demonstrated that miR-519d was differently downregulated and eIF4H was significantly overexpressed in lung adenocarcinoma via the detection of quantitative real-time polymerase chain reaction compared with the adjacent normal tissues. Furthermore, Cell Counting Kit-8 assay, colony formation assay, xenograft tumor experiment, Ki67 immunohistochemistry assay and transwell assay were performed to explain that the upregulated miR-519d could inhibit the proliferation and invasion of A549 and H1299 cells. To further advance our understanding of the mechanisms of miR-519d, we performed the bioinformatics analysis and the luciferase report assay. The results from these procedures revealed eIF4H to be one of the targets of miR-519d. Downregulated eIF4H was analogous to the overexpressed miR-519d obtained from miR-519d agomir and si-eIF4H transfection. In summary, it can be concluded that miR-519d targets eIF4H in lung adenocarcinoma to inhibit cell proliferation and invasion. This mechanism may offer new insights into the tumorigenesis and development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yong Bai
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunya Lu
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guojun Zhang
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Hou
- 2 Medical Laboratory Science, Zhengzhou University, Zhengzhou, China
| | - Yanjie Guo
- 3 School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Heqi Zhou
- 3 School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaojingnan Ma
- 4 School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guoqiang Zhao
- 4 School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Li Z, Shen J, Chan MTV, Wu WKK. MicroRNA-379 suppresses osteosarcoma progression by targeting PDK1. J Cell Mol Med 2017; 21:315-323. [PMID: 27781416 PMCID: PMC5264134 DOI: 10.1111/jcmm.12966] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour. Increasing evidence has demonstrated the pathogenic role of microRNA (miRNAs) dysregulation in tumour development. miR-379 was previously reported to function as an oncogenic or tumour-suppressing miRNA in a tissue-dependent manner. However, its function in osteosarcoma remains unknown. In this study, we found that the expression of miR-379 was downregulated in osteosarcoma tissues and cell lines. Further functional characterization revealed that miR-379 suppressed osteosarcoma cell proliferation and invasion in vitro and retarded the growth of osteosarcoma xenografts in vivo. Mechanistically, PDK1 was identified as the direct target of miR-379 in osteosarcoma, in which PDK1 expression was up-regulated and showed inverse correlation with miR-379. Enforced expression of PDK1 promoted osteosarcoma cell proliferation and rescued the anti-proliferative effect of miR-379. These data suggest that miR-379 could function as a tumour-suppressing miRNA via targeting PDK1 in osteosarcoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive CareState Key Laboratory of Digestive DiseaseLKS Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive CareState Key Laboratory of Digestive DiseaseLKS Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
22
|
miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma. Oncotarget 2016; 6:39225-34. [PMID: 26287602 PMCID: PMC4770768 DOI: 10.18632/oncotarget.4407] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 01/04/2023] Open
Abstract
Previous studies showed that miR-454 acted as an oncogene or tumor suppressor in cancer. However, its function in HCC remains unknown. In this study, we found that miR-454 expression was upregulated in HCC cell lines and tissues. Knockdown of miR-454 inhibited HCC cell proliferation and invasion and epithelial mesenchymal transition (EMT), whereas overexpression of miR-454 promoted HCC cell proliferation and invasion and EMT. Furthermore, we identified the CHD5 as a direct target of miR-454. CHD5 was downregulated in HCC tissues and cell lines and the expression level of CHD5 was inversely correlated with the expression of miR-454 in HCC tissues. In addition, knockdown of miR-454 inhibited the growth of HepG2-engrafted tumors in vivo. Taken together, these results indicated that miR-454 functioned as an oncogene in HCC.
Collapse
|
23
|
Dong C, Du Q, Wang Z, Wang Y, Wu S, Wang A. MicroRNA-665 suppressed the invasion and metastasis of osteosarcoma by directly inhibiting RAB23. Am J Transl Res 2016; 8:4975-4981. [PMID: 27904698 PMCID: PMC5126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are small, short and noncoding RNAs that regulate gene expression posttranscriptionally. Increasing evidences have demonstrated that deregulated expression of miRNAs is found in osteosarcoma. In this study, we demonstrated that miR-665 was downregulated in osteosarcoma tissues compared to non-tumorous tissues. The overall survival (OS) of osteosarcoma patients with low miR-665 expression was lower than that of these patients with high miR-665 expression. Ectopic expression of miR-665 suppressed the osteosarcoma cell proliferation, EMT and invasion. We identified Rab23 as a direct target gene of miR-665. Rab23 was downregulated in osteosarcoma tissues and cell lines. The expression of miR-665 was inversely associated with the expression of Rab23 in the osteosarcoma tissues. These results suggested that miR-665 acted as a tumor suppressor gene in the development of osteosarcoma.
Collapse
Affiliation(s)
- Chenhui Dong
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Third Military Medical UniversityChongqing 400042, China
- The Center of Orthopaedic Surgery of PLA, The General Hospital of Lanzhou Military CommandGansu, China
| | - Quanyin Du
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Third Military Medical UniversityChongqing 400042, China
| | - Zimin Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Third Military Medical UniversityChongqing 400042, China
| | - Yu Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Third Military Medical UniversityChongqing 400042, China
| | - Siyu Wu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Third Military Medical UniversityChongqing 400042, China
| | - Aimin Wang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Third Military Medical UniversityChongqing 400042, China
| |
Collapse
|
24
|
Guan A, Wang H, Li X, Xie H, Wang R, Zhu Y, Li R. MiR-330-3p inhibits gastric cancer progression through targeting MSI1. Am J Transl Res 2016; 8:4802-4811. [PMID: 27904681 PMCID: PMC5126323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Increasing evidences demonstrated that microRNAs (miRNAs) play critical roles in the human tumor development and progression. In our study, we found that miR-330-3p expression was downregulated in gastric cancer cell lines and tissues. Ectopic expression of miR-330-3p suppressed the gastric cancer cell proliferation, colony formation and migration. Overexpression of miR-330-3p promoted E-cadherin expression and inhibited the expression of N-cadherin, vimentin and snail. We identified Musashi-1 (MSI1) as a direct target gene of miR-330-3p in gastric cancer cell. In addition, MSI1 was upregulated in gastric cancer cell lines and tissues and the MSI1 expression was inversely correlated with miR-330-3p expression in gastric cancer tissues. MiR-330-3p expression was increased in gastric cancer cells after treated with histone deacetylase inhibitor trichostatin A (TSA) and DNA methylation inhibitor 5-aza-CdR (AZA). These indicated that downregulated expression of miR-330-3p was partly mediated by gene promoter region hypermethylation. These results suggested that miR-330-3p acted as a tumor suppressor gene in GC.
Collapse
Affiliation(s)
- Aoran Guan
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Xun Li
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Hui Xie
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Ruotian Wang
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Yankun Zhu
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Ruhong Li
- Department of General Surgery, The Affiliated Yan an Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| |
Collapse
|
25
|
Li Z, Shen J, Chan MTV, Wu WKK. The role of microRNAs in intrahepatic cholangiocarcinoma. J Cell Mol Med 2016; 21:177-184. [PMID: 27619971 PMCID: PMC5192883 DOI: 10.1111/jcmm.12951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy with poor prognosis. Despite improvements in its diagnosis and therapy, the prognosis for ICC patients remains poor. An improved understanding of ICC pathogenesis and consequential identification of novel therapeutic targets would improve the prognosis of ICC patients. MicroRNAs (miRNAs) are a class of highly conserved, endogenous, small non‐coding RNA molecules of 18–23 nucleotides in length, which regulate gene expression through complementary base‐pairing with target messenger RNAs and subsequent gene silencing. Several studies have shown deregulated expression of miRNAs in ICC cell lines and tissues, in which these miRNAs play important roles in ICC apoptosis, cell proliferation, invasion, migration and metastasis. In this review, we illustrate the potential role of miRNA in the pathogenesis of ICC and explore the possibilities of using miRNAs as prognostic and diagnostic markers, as well as therapeutic targets in ICC.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Daase, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Li S, Zhao W, Xu Q, Yu Y, Yin C. MicroRNA-765 regulates neural stem cell proliferation and differentiation by modulating Hes1 expression. Am J Transl Res 2016; 8:3115-3123. [PMID: 27508032 PMCID: PMC4969448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/23/2016] [Indexed: 06/06/2023]
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing and undifferentiated cells that have the ability to differentiate to both glial and neuronal lineages. miRNAs act a key role in regulating neuronal fate and self-renewal of NSCs. In this study, we found that ectopic expression of miR-765 promoted NSCs proliferation. Moreover, miR-765 overexpression increased the ki-67 and β-tubulin-III expression inNSCs. Overexpression of miR-765 inhibited the expression of GFAP in NSCs. Furthermore, Hes1 was identified as a direct target gene of miR-765 in NSCs. Overexpression of Hes1 decreased miR-765-induced proliferation of NSCs and inhibited NSCs differentiation to neurons in miR-765-treated NSCs. These results demonstrated that miR-765 acted a crucial role in NSCs differentiation and proliferation by inhibiting Hes1 expression.
Collapse
Affiliation(s)
- Siou Li
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Qing Xu
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Yang Yu
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| | - Changhao Yin
- Department of Neurology, Hongqi Hospital, Mudanjiang Medical University Aimin District, Mudanjiang, Heilongjiang, China 157011
| |
Collapse
|
27
|
Abstract
Ankylosing spondylitis (AS) is a common and genetically heterozygous inflammatory rheumatic disease characterized by new bone formation, ankylosis and inflammation of hip, sacroiliac joints and spine. Until now, there is no method for early diagnosis of AS and the effective treatment available for AS patients remain largely undefined.We searched articles indexed in PubMed (MEDLINE) database using Medical Subject Heading (MeSH) or Title/Abstract words ("microRNA" and "ankylosing spondylitis") from inception up to November 2015.Genetic polymorphisms of miRNAs and their targets might alter the risk of AS development whereas certain miRNAs exhibit correlation with inflammatory index.Let-7i and miR-124 were upregulated whereas miR-130a was downregulated in circulating immune cells of AS patients. These deregulated miRNAs could modulate key immune cell functions, such as cytokine response and T-cell survival.miRNA deregulation is key to AS pathogenesis. However, clinical utilization of miRNAs for management of AS patients requires further support from future translational studies.
Collapse
Affiliation(s)
- Zheng Li
- From the Department of Orthopedics Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (ZL, JS); State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences and Department of Medicine & Therapeutics (SHW, WKKW); and Department of Anaesthesia and Intensive Care (MTVC), The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
28
|
Yu X, Li Z, Shen J, Chan MTV, Wu WKK. Role of microRNAs in primary central nervous system lymphomas. Cell Prolif 2016; 49:147-53. [PMID: 26990358 DOI: 10.1111/cpr.12243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSL) are extranodal non-Hodgkin lymphomas arising exclusively inside the CNS, and account for about 3% of primary intracranial tumours. This tumour lacks systemic manifestations and prognosis of patients with PCNSL remains poor despite recent advancement of chemoradiotherapy. MicroRNAs are small non-coding RNAs that post-transcriptionally downregulate gene expression by binding to target mRNAs, inducing their degradation or translational repression. MicroRNAs play significant roles in almost all malignancy-related biological processes, including cell proliferation, differentiation, apoptosis and metabolism. Many deregulated miRNAs has been identified in PCNSL but their biological significance remains to be fully elucidated. In this review, we summarize current evidence regarding the pathogenic role of PCNSL-associated microRNAs and their potential applications for diagnosis and prognostication of this deadly disease.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
29
|
miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol 2016; 37:9001-7. [DOI: 10.1007/s13277-015-4578-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
|
30
|
The role of microRNAs in the adrenocortical carcinomas. Tumour Biol 2015; 37:1515-9. [DOI: 10.1007/s13277-015-4630-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 02/04/2023] Open
|
31
|
Yu X, Li Z. New insights into MicroRNAs involves in drug resistance in diffuse large B cell lymphoma. Am J Transl Res 2015; 7:2536-2542. [PMID: 26885255 PMCID: PMC4731655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) accounts for nearly 40% of non-Hodgkin's lymphoma cases. The combined chemotherapy of rituximab, cyclophosphamide, Adriamycin, vincristine, and prednisone (R-CHOP) is considered as the standard therapy for DLBCL; however, nearly half of the patients become refractory to the R-CHOP regimen. Early identification of drug resistance and therapeutic failures are crucial for the identification of high-risk patients. MicroRNAs (miRNAs) are a group of small and non-coding RNAs negatively regulating gene expression through binding to their target mRNAs. Recent studies demonstrated that miRNAs are involved in chemotherapeutic drug resistance in tumor. In our review, we summarize the current evidence on the role of miRNAs in the prediction and modulation of cellular response to rituximab, cyclophosphamide, Adriamycin, vincristine, and prednisone in DLBCL.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| |
Collapse
|
32
|
Xin Y, Li Z, Chan MT, Wu WKK. Circulating epigenetic biomarkers in melanoma. Tumour Biol 2015; 37:1487-92. [DOI: 10.1007/s13277-015-4599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
|
33
|
Yu X, Li Z, Chan MTV, Wu WKK. The roles of microRNAs in Wilms' tumors. Tumour Biol 2015; 37:1445-50. [PMID: 26634744 DOI: 10.1007/s13277-015-4514-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Wilms' tumor is the most common renal tumor in children in which diffusely anaplastic or unfavorable histology foreshadows poor prognosis. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Accumulating evidence shows that microRNA dysregulation takes part in the pathogenesis of many renal diseases, such as chronic kidney diseases, polycystic kidney disease, renal fibrosis, and renal cancers. In Wilms' tumor, dysregulation of some key oncogenic or tumor-suppressing microRNAs, such as miR-17~92 cluster, miR-185, miR-204, and miR-483, has been documented. In this review, we will summarize current evidence on the role of dysregulated microRNAs in the development of Wilms' tumor.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100042, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Serum microRNAs as potential noninvasive biomarkers for glioma. Tumour Biol 2015; 37:1407-10. [PMID: 26628296 DOI: 10.1007/s13277-015-4515-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022] Open
Abstract
Gliomas are derived from astroglial precursors or astrocytes, accounting for 40 % central nervous system tumors. MicroRNAs (miRNAs) are a class of endogenous, small (19- to 23-nucleotides) non-coding RNAs involved in cancer progression. Recent studies show that circulating miRNAs are associated with the clinicopathological features and prognosis of gliomas. Serum miRNAs may serve as novel biomarkers for gliomas diagnosis. This review explores the possibilities of using serum miRNAs as prognostic, diagnostic markers, and therapeutic targets in gliomas.
Collapse
|
35
|
Gao Y, Xue Q, Wang D, Du M, Zhang Y, Gao S. miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1. Am J Transl Res 2015; 7:2519-2526. [PMID: 26807196 PMCID: PMC4697728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
microRNAs (miRNAs) are endogenously expressed, conserved and small noncoding RNA that regulate gene expression by the post-transcriptional level. In this study, we aim to examine the role of miR-873 in lung adenocarcinoma. We found that the expression of miR-873 was upregulated in four lung adenocarcinoma cell lines and tissues. In addition, the expression levels of SRCIN1 were inversely correlated with the expression levels of miR-873 in lung adenocarcinoma tissues. Furthermore, SRCIN1 was confirmed asthe direct target of miR-873 by luciferase reporter assay and Western blotting. Overexpression of miR-873 promoted the proliferation and migration of lung adenocarcinoma cells, while SRCIN1 upregulation inhibited their proliferation and migration. Restoration of SRCIN1 could significantly reverse the proliferation and migration promotion imposed by miR-873. In summary, this study reveals for the first time that miR-873 increase the lung adenocarcinoma cell proliferation and migration through directly inhibiting SRCIN1 expression.
Collapse
Affiliation(s)
- Yushun Gao
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Qi Xue
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Dali Wang
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Minjun Du
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Yanjiao Zhang
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100021, China
| |
Collapse
|
36
|
Shi C, Zhang Z. miR-761 inhibits tumor progression by targeting MSI1 in ovarian carcinoma. Tumour Biol 2015; 37:5437-43. [PMID: 26563371 DOI: 10.1007/s13277-015-4377-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022] Open
Abstract
Increasing evidences have revealed that microRNAs regulate various biological processes. However, the roles of miR-761 have not been investigated in ovarian cancer. Here, we found that miR-761 expression was significantly lower in ovarian cancer tissues than in their paired noncancerous tissues. Further study revealed that miR-761 overexpression inhibited the ovarian cancer cell proliferation and invasion. Mechanistically, we demonstrated that the oncogenic properties of miR-761 in ovarian cancer were mediated in part by regulating MSI1 expression. miR-761 and MSI1 are inversely expressed in ovarian cancer tissues. In conclusion, we demonstrated that miR-761 repressed ovarian cancer proliferation and invasion by targeting MSI1.
Collapse
Affiliation(s)
- Can Shi
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
37
|
Xie B, Zhang C, Kang K, Jiang S. miR-599 Inhibits Vascular Smooth Muscle Cells Proliferation and Migration by Targeting TGFB2. PLoS One 2015; 10:e0141512. [PMID: 26551255 PMCID: PMC4638351 DOI: 10.1371/journal.pone.0141512] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of cardiovascular diseases including coronary heart disease, restenosis and atherosclerosis. MicroRNAs are a class of small, non-coding and endogenous RNAs that play critical roles in VSMCs function. In this study, we showed that PDGF-bb, as a stimulant, promoted VSMCs proliferation and suppressed the expression of miR-599. Moreover, overexpression of miR-599 inhibited VSMCs proliferation and also suppressed the PCNA and ki-67 expression. In addition, we demonstrated that ectopic expression of miR-599 repressed the VSMCs migration. We also showed that miR-599 inhibited type I collagen, type V collagen and proteoglycan expression. Furthermore, we identified TGFb2 as a direct target gene of miR-599 in VSMCs. Overexpression of TGFb2 reversed miR-599-induced inhibition of VSMCs proliferation and type I collagen, type V collagen and proteoglycan expression. In conclusion, our findings suggest miR-599 plays a crucial role in controlling VSMCs proliferation and matrix gene expression by regulating TGFb2 expression.
Collapse
Affiliation(s)
- Baodong Xie
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunfeng Zhang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Kang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shulin Jiang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 2015; 20:3-9. [PMID: 26508273 PMCID: PMC4717857 DOI: 10.1111/jcmm.12649] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that negatively regulate gene expressions at posttranscriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC‐associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Yu X, Li Z. MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J Cell Mol Med 2015; 20:10-6. [PMID: 26498914 PMCID: PMC4717854 DOI: 10.1111/jcmm.12650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common type of oral squamous cell carcinomas and is well known for its high rate of lymph nodal metastasis. Despite the identification of many molecular mechanisms in TSCC, the number of deaths associated with TSCC increased during the past 5 years. MicroRNAs (miRNAs) are a family of small non-coding RNA molecules, which regulate gene expression by either translational inhibition or mRNA degradation. miRNAs have been proven to be key regulators of various biological and pathological processes including cell proliferation, development and tumourigenesis. Increasing evidence has demonstrated that the deregulated miRNAs are implicated in the diagnosis and treatment of TSCC. In this review, we summarized the expressions and roles of miRNAs in TSCC and comment on the potential roles of miRNAs in diagnosis, prognosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Yu X, Li Z, Chan MTV, Wu WKK. microRNA deregulation in keloids: an opportunity for clinical intervention? Cell Prolif 2015; 48:626-30. [PMID: 26486103 DOI: 10.1111/cpr.12225] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/08/2015] [Indexed: 12/12/2022] Open
Abstract
Keloids are defined as benign dermal scars invading adjacent healthy tissue, characterized by aberrant fibroblast dynamics and overproduction of extracellular matrix. However, the aetiology and molecular mechanism of keloid production remain poorly understood. Recent discoveries have shed new light on the involvement of a class of non-coding RNAs known as microRNAs (miRNA), in keloid formation. A number of miRNAs have differential expression in keloid tissues and keloid-derived fibroblasts. These miRNAs have been characterized as novel regulators of cellular processes pertinent to wound healing, including extracellular matrix deposition and fibroblast proliferation. Delineating the functional significance of miRNA deregulation may help us better understand pathogenesis of keloids, and promote development of miRNA-directed therapeutics against this condition.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
41
|
Wang G, Zhang Y, Zhao X, Meng C, Ma L, Kong Y. MicroRNA-411 inhibited matrix metalloproteinase 13 expression in human chondrocytes. Am J Transl Res 2015; 7:2000-2006. [PMID: 26692943 PMCID: PMC4656776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Osteoarthritis (OA) is the most common joint degenerative disease affecting the joint structure, leading to loss of joint function and tissue destruction. Recent studies have demonstrated that miRNAs are involved in many pathological conditions, including OA. The study was to investigate the role of miR-411 in the pathogenesis of OA. The expression of miR-411 was downregulated in OA cartilage compared with in normal cartilage. Conversely, the expression of MMP-13 was upregulated in OA cartilage compared with in normal cartilage. IL-1β treatment repressed miR-411 expression in chondrocytes. Moreover, we identified MMP-13 as a direct target gene of miR-411 in chondrocytes and overexpression of miR-411 inhibited the MMP-13 expression. Furthermore, overexpression of miR-411 increased the expression of type II collagen and type IV collagen expression in chondrocytes. MiR-411 is a crucial regulator of MMP-13 in chondrocytes and may response to the development of OA.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Yuanmin Zhang
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Xiaowei Zhao
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Chunyang Meng
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Longfei Ma
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| | - Ying Kong
- Department of Orthopaedics, Affiliated Hospital of Jining Medical University Jining 272029, China
| |
Collapse
|
42
|
The role of miRNAs in the pheochromocytomas. Tumour Biol 2015; 37:4235-9. [DOI: 10.1007/s13277-015-4199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
|
43
|
Shi X, Yan C, Liu B, Yang C, Nie X, Wang X, Zheng J, Wang Y, Zhu Y. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression. PLoS One 2015; 10:e0138973. [PMID: 26431046 PMCID: PMC4591969 DOI: 10.1371/journal.pone.0138973] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaodong Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Chunhua Yan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Baoquan Liu
- Department of anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Chunxiao Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xuedan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Jiaolin Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, 150081, PR China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
44
|
Chen B, Pan W, Lin X, Hu Z, Jin Y, Chen H, Ma G, Qiu Y, Chang L, Hua C, Zou Y, Gao Y, Ying H, Lv D. MicroRNA-346 functions as an oncogene in cutaneous squamous cell carcinoma. Tumour Biol 2015; 37:2765-71. [PMID: 26408183 DOI: 10.1007/s13277-015-4046-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is an epidermal keratinocyte-derived skin tumor, which is the second most common skin cancer in the general population. Recently, studies showed that microRNAs (miRNAs) played an important role in the development of cancer. In our study, we showed that the expression of SRCIN1 was lower in cSCC tissues than in the matched normal tissues. Moreover, there was significant inversed correlation between miR-346 and SRCIN1 in cSCC tissues. The luciferase reporter assay data showed that miR-346 can target the SRCIN1 message via the 3'-untranslated region (UTR) of SRCIN1. Overexpression of miR-346 inhibited the messenger RNA (mRNA) and protein expression of SRCIN1 in the A431 cells. In addition, ectopic expression of miR-346 promoted the A431 cell proliferation and migration. Meanwhile, SRCIN1 overexpression inhibited the A431 cell proliferation and migration. Rescue experiment has showed that SRCIN1 overexpression reduced the miR-346-induced A431 cell proliferation and migration. Herein, this study may provide miR-346 as a new therapeutic target for cSCC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China. .,Department of Plastic and Reconstructive Surgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Wenyan Pan
- Department of Neurosurgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhenzhen Hu
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbo Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hui Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Gang Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yajing Qiu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lei Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yun Zou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yang Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hanru Ying
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dongze Lv
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
45
|
miR-203 Acts as a Tumor Suppressor Gene in Osteosarcoma by Regulating RAB22A. PLoS One 2015; 10:e0132225. [PMID: 26382657 PMCID: PMC4575138 DOI: 10.1371/journal.pone.0132225] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNAs), small noncoding RNAs of 19–25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT). Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis.
Collapse
|
46
|
Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget 2015; 6:23297-305. [PMID: 26079642 PMCID: PMC4695119 DOI: 10.18632/oncotarget.4195] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs, miRs) is a class of small non-coding RNAs, which posttranscriptionally regulate gene expression. Deregulated miRs are frequently obseved in patients with laryngeal cancer. In addition, numerous studies have showed miRs play significant roles in the pathogenesis of laryngeal cancer through regulating tumor cell proliferation, metastasis, invasion and apoptosis. miR can play either an oncogenic or tumor suppressive role in laryngeal cancer. In our review, we summarize the recent researches on laryngeal cancer-associated miRs, focusing on their role in the pathogenesis of laryngeal cancer. As changes in the levels of specific miRs in tissues or serum associate with diagnosis and prognosis of patients, we will also discuss the potential use of miRs in laryngeal cancer diagnosis and prognosis. Furthermore, supplementation of oncomiRs or inhibition of tumor suppressive miRs in vivo may be future therapeutic strategy for laryngeal cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Sun L, Wang Q, Gao X, Shi D, Mi S, Han Q. MicroRNA-454 functions as an oncogene by regulating PTEN in uveal melanoma. FEBS Lett 2015; 589:2791-6. [PMID: 26296312 DOI: 10.1016/j.febslet.2015.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression by targeted repression of transcription and translation, and are involved in carcinogenesis. In this study, we demonstrated that the expression of miR-454 was up-regulated in uveal melanoma tissues compared to normal tissues. Ectopic expression of miR-454 resulted in significant promotion of cell proliferation, colony formation, invasion and induction of cell cycle in uveal melanoma cells. Furthermore, we identified PTEN as a direct target of miR-454. Our data revealed that ectopic expression of PTEN restored the effects of miR-454 on cell proliferation and invasion in uveal melanoma cells. These findings support an oncogene role of miR-454 in development of uveal melanoma.
Collapse
Affiliation(s)
- Lei Sun
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan 250022, Shandong, China
| | - Xiangchun Gao
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Dejing Shi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shuyong Mi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qing Han
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
48
|
Yu X, Li Z. Epigenetic deregulations in chordoma. Cell Prolif 2015; 48:497-502. [PMID: 26256106 DOI: 10.1111/cpr.12204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
Chordoma is a rare type of malignant bone tumour arising from remnant notochord and prognosis of patients with it remains poor as its molecular and genetic mechanisms are not well understood. Increasing evidence has demonstrated that epigenetic mechanisms (DNA methylation, histone modification and nucleosome remodelling), play a crucial role in the pathogenesis of many diseases. Aberrant epigenetic patterns are present in patients with chordoma, indicating a potential role for epigenetic mechanisms inthis malignancy. Furthermore, epigenetic alterations may provide novel biomarkers for diagnosis and prognosis as well as therapeutic targets for treatment. In this review, we discuss relevant epigenetic findings associated with chordoma, and their potential application for diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| |
Collapse
|