1
|
Hao W, Zhang Q, Ma Y, Ding Y, Zhao C, Tian C. Mechanism and application of HDAC inhibitors in the treatment of hepatocellular carcinoma. J Mol Med (Berl) 2025:10.1007/s00109-025-02532-1. [PMID: 40131444 DOI: 10.1007/s00109-025-02532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/02/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Hepatoma is the sixth most malignant tumor in the world and the second leading cause of cancer death. Among the types of hepatoma, hepatocellular carcinoma (HCC) is the most important pathological type. For patients with early-stage HCC, the curative treatment is tumor resection. However, early diagnosis and treatment of HCC are difficult; the disease progresses rapidly, and the prognosis is poor. Due to the current limited treatment options for advanced HCC, the identification of new targeted agents is critical for the development of novel approaches to HCC treatment. Histone deacetylases (HDACs) is a protease that removes acetyl groups from histone lysine residues in proteins, and it plays an important role in the structural modification of chromosomes and the regulation of gene expression. Abnormally expressed HDACs can promote tumorigenesis by inducing biological processes such as cell proliferation, migration, and apoptosis inhibition. Since HDACs activity is upregulated in HCC, treatment regimens specifically inhibiting various HDACs have shown good efficacy. This article reviews the application of HDAC inhibitors in the treatment of HCC and explains their mechanisms of action. KEY MESSAGES: HDAC network and cellular effects of HDAC inhibitors. Role and mechanism of HDAC inhibitors in HCC. HDAC inhibitor combined with other ways to treat HCC. The side effects of HDACis in the treatment of HCC.
Collapse
Affiliation(s)
- Wei Hao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
- Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Qingchen Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
- Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Yuan Ma
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
- Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Yue Ding
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
- Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Chunling Zhao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China.
- Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, Shandong Second Medical University, Weifang, 261053, Shandong Province, China.
| | - Chunyan Tian
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
2
|
Algaissi A, Tabassum H, Khan E, Dwivedi S, Lohani M, Khamjan NA, Farasani A, Ahmad IZ. HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potential. J Biomol Struct Dyn 2025; 43:1-19. [PMID: 37948309 DOI: 10.1080/07391102.2023.2279283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
A wide variety of natural products have been widely used in chemoprevention therapy because they have antioxidant, anti-inflammatory, and anticancer activity. In the present study, we shed light on the 5th day germinated sprouts of N. sativa seeds and evaluated them against HDAC inhibition and antioxidant activity. The extract from the seed and sprout was extracted and characterised by LC-MS/MS, FTIR, and NMR to reveal its chemical composition, especially thymol (THY) and thymoquinone (TQ). Hepatocellular carcinoma (HCC) is a global health concern as it is a major lifestyle disease. Hence, incorporating herbal-based therapeutic compounds into everyday routines has become an attractive alternative for preventing hepatic diseases. Histone deacetylase (HDAC) inhibition (HDACi) is emerging as a promising therapeutic strategy for managing various carcinomas including HCC. Therefore, the 5th day of N. sativa can be used as a potential anticancer agent by inhibiting HDAC activity, as it is reported to have an important role in the management of oxidative stress. The bioactive compound of N. sativa, i.e. thymoquinone, also showed a good binding affinity with the HDAC protein (3MAX) with a stable interaction in an in silico study as compared to the standard drug (Trichostatin A) and thymol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Heena Tabassum
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Pune, Maharashtra, India
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Sonam Dwivedi
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohtashim Lohani
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhou X, Gu C, Xiao L, Hu L, Chen G, Zuo F, Shao H, Fei B. LINC01094 promotes gastric cancer through dual targeting of CDKN1A by directly binding RBMS2 and HDAC1. Biol Direct 2024; 19:137. [PMID: 39719596 DOI: 10.1186/s13062-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Accumulating studies have focused on long noncoding RNAs (lncRNAs) because of their regulatory effects on multiple cancers. However, the biological functions and molecular mechanisms of lncRNAs in gastric cancer (GC) remain to be elucidated in depth. METHODS Long intergenic nonprotein coding RNA 1094 (LINC01094), a differentially expressed lncRNA between GC tissues and adjacent normal tissues, was identified. Moreover, gain- and loss-of-function experiments in vitro and in vivo were carried out. To understand the mechanisms underlying the regulatory effects of LINC01094, we performed RNA pull-down assays, RNA immunoprecipitation assays, chromatin immunoprecipitation assays, luciferase reporter assays, etc. RESULTS: LINC01094 was markedly upregulated in GC tissues and cell lines, and LINC01094 upregulation was positively correlated with GC malignant behaviours in vitro and in vivo. Mechanistically, LINC01094 downregulated the expression of CDKN1A by interacting with RNA binding motif single stranded interacting protein 2 (RBMS2) and histone deacetylase 1 (HDAC1). Additionally, LINC01094 was confirmed to sponge miR-128-3p and participate in the LINC01094-miR-128-3p-RUNX family transcription factor 1 (RUNX1) feedback loop. Finally, Ro 5-3335, a validated RUNX1 inhibitor, was explored for anticancer drug development in GC. CONCLUSIONS The LINC01094-miR-128-3p-RUNX1 feedback loop downregulates CDKN1A and promotes GC cooperatively with RBMS2 and HDAC1. Furthermore, Ro 5-3335 may hold promising therapeutic potential in the treatment of GC. Hence, our study found an oncogenic lncRNA, LINC01094, which could be a promising target for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.
| | - Cheng Gu
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Linmei Xiao
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, Wuxi, 214000, Jiangsu Province, China
| | - Li Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang Province, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Guanhua Chen
- Department of Radiation Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, Jiangsu Province, China
| | - Fei Zuo
- Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu Province, China
| | - Hongan Shao
- Department of Thoracic Surgery, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing Second Hospital, Nanjing, 210003, Jiangsu Province, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.
| |
Collapse
|
4
|
Xie J, Liu R, Cai Y, Liu D. HDAC1: a promising target for cancer treatment: insights from a thorough analysis of tumor functions. Transl Cancer Res 2024; 13:5300-5315. [PMID: 39525004 PMCID: PMC11543092 DOI: 10.21037/tcr-24-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
Background Many significant findings from recent studies have revealed the significance of histone deacetylase 1 (HDAC1) in the development of tumors and its strong association with tumor prognosis; these studies have mainly focused on one single cancer such as in lung cancer, breast cancer, and hepatocellular carcinoma (HCC). To date, there has been no comprehensive analysis and pan-analysis conducted from the overall perspective of cancer across all types. Hence, we analyzed public databases, conducted tube formation assay, and immunohistochemistry (IHC) staining of HDAC1 on six kinds of clinical samples to explore the prognostic and oncogenic effects of HDAC1 on 33 tumors for the first time. There currently remains a lack of efficient testing methods, therapies, and diagnostic and prognostic markers of tumor formation and development in different tumors. Methods Our initial objective was to investigate the possible cancer-causing functions of HDAC1 in 33 different types of tumors by utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and many different online websites, such as Tumor IMmune Estimation Resource 2 (TIMER2), Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Genotype Tissue Expression (GTEx) database, Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset, and University of ALabama at Brimingham CANcer data analysis portal (UALCAN) tool, and so on. We even used small interfering RNA (siRNA) to knock down HDAC2 in HCC cell lines. IHC of HDAC1 was performed. Results HDAC1 exhibited high expression in numerous tumors, and strong correlations were observed between the messenger RNA (mRNA) levels of HDAC1 and the prognosis of individuals diagnosed with tumors. Human umbilical vein endothelial cells (HUVECs) tube formation and migration were significantly inhibited by conditioned media from HCC cells treated with siRNA of HDAC1. Several types of cancer have been found to exhibit elevated levels of phosphorylation at S421. Furthermore, as in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), and kidney renal papillary cell carcinoma (KIRP), HDAC1 expression was found to be correlated with inflammatory cell infiltration. Conclusions The levels of HDAC1 are expected to adapt to clinical adjuvant targeted therapy in most types of solid cancer.
Collapse
Affiliation(s)
- Jiaojiao Xie
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Emergency, Chongqing Western Hospital, Chongqing, China
| | - Rui Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Cai
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Dina Liu
- Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Cui Z, Zheng C, You Y, He S, Jiang S, Chen Y, Lin Y, Xiao Z. Comprehensive Analysis of the Prognostic Implications and Biological Function of HDACs in Liver Hepatocellular Carcinoma. Int J Med Sci 2024; 21:2807-2823. [PMID: 39512688 PMCID: PMC11539383 DOI: 10.7150/ijms.97169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Background: The prognostic significance and biological functions of the histone deacetylases (HDACs) gene family in liver hepatocellular carcinoma (LIHC) have not been fully investigated. Methods: Using Kaplan-Meier and Cox regression analysis, this study determined if HDAC genes were relevant for prognosis in LIHC. A regression model utilizing HDAC genes and the least absolute shrinkage and selection operator (LASSO) was created to foretell LIHC risk. A selective inhibitor of endogenous HDACs, CKD-581, was studied in vitro and in vivo to determine its effects on the development, invasion, migration, and proliferation of LIHC cell lines. Results: Six HDACs were identified as correlating with the prognosis of LIHC. Overall survival (OS) was found to be shorter in individuals with higher risk scores when compared to those with lower risk scores, according to survival study. Natural killer cell infiltration was higher in individuals with lower risk ratings, which was mainly explained by the type II interferon (IFN) response. Limiting the activity of endogenous HDACs caused LIHC cell death by preventing their migration, invasion, and proliferation. In vivo studies confirmed that blocking HDAC expression inhibited tumor growth in mice. Further mechanistic studies showed that inhibition of HDACs expression elevates the protein levels of P21 and P27, and reduces those of cyclins A2, B1, D1 and E1. Conclusions: The risk score prognostic model based on HDAC genes could provide a valuable prognostic biomarker for LIHC. CKD-581 prohibits LIHC progression via inhibiting the cell cycle signaling pathway. CKD-581 holds promise as a therapeutic agent for the clinical management of LIHC.
Collapse
Affiliation(s)
- Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Chaoqiang Zheng
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yiqing You
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shijie He
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yingying Lin
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zhenzhou Xiao
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| |
Collapse
|
6
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
7
|
Qin Y, Liu Q, Wang S, Wang Q, Du Y, Yao J, Chen Y, Yang Q, Wu Y, Liu S, Zhao M, Wei G, Yang L. Santacruzamate A Alleviates Pain and Pain-Related Adverse Emotions through the Inhibition of Microglial Activation in the Anterior Cingulate Cortex. ACS Pharmacol Transl Sci 2024; 7:1002-1012. [PMID: 38633586 PMCID: PMC11019733 DOI: 10.1021/acsptsci.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 04/19/2024]
Abstract
Chronic pain is a complex disease. It seriously affects patients' quality of life and imposes a significant economic burden on society. Santacruzamate A (SCA) is a natural product isolated from marine cyanobacteria in Panama. In this study, we first demonstrated that SCA could alleviate chronic inflammatory pain, pain-related anxiety, and depression emotions induced by complete Freund's adjuvant in mice while inhibiting microglial activation in the anterior cingulate cortex. Moreover, SCA treatment attenuated lipopolysaccharide (LPS)-induced inflammatory response by downregulating interleukin 1β and 6 (IL-1β and IL-6) and tumor necrosis factor-α (TNF-α) levels in BV2 cells. Furthermore, we found that SCA could bind to soluble epoxide hydrolase (sEH) through molecular docking technology, and the thermal stability of sEH was enhanced after binding of SCA to the sEH protein. Meanwhile, we identified that SCA could reduce the sEH enzyme activity and inhibit sEH protein overexpression in the LPS stimulation model. The results indicated that SCA could alleviate the development of inflammation by inhibiting the enzyme activity and expression of sEH to further reduce chronic inflammatory pain. Our study suggested that SCA could be a potential drug for treating chronic inflammatory pain.
Collapse
Affiliation(s)
- Yan Qin
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Qingqing Liu
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Saiying Wang
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Qinhui Wang
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Yaya Du
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Jingyue Yao
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Yue Chen
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Qi Yang
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Yumei Wu
- Department
of Pharmacology, School of Pharmacy, Air
Force Medical University, Xi’an 710072, China
| | - Shuibing Liu
- Department
of Pharmacology, School of Pharmacy, Air
Force Medical University, Xi’an 710072, China
| | - Minggao Zhao
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Gaofei Wei
- Institute
of Medical Research, Northwestern Polytechnical
University, Xi’an 710072, China
| | - Le Yang
- Precision
Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| |
Collapse
|
8
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
9
|
Sha A, Chen H, Zhao X. Exploration of the mechanisms of improving learning and memory in the offspring of aging pregnant mice by supplementation with Paris polyphylla polysaccharide based on the P19-P53-P21 and Wnt/β-catenin signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116883. [PMID: 37422103 DOI: 10.1016/j.jep.2023.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE First recorded in "Sheng Nong's herbal classic", Paris polyphylla is used to treat diseases, such as convulsions, head shaking and tongue fiddling, and epilepsy. Studies have shown that the ability of three Liliaceae polysaccharides in improving learning and memory may be related to the P19-P53-P21 and Wnt/β-catenin signaling pathways. Moreover, a link between these two signaling pathways and the possible neuroprotective impact of Paris polyphylla polysaccharide has been proposed. AIM OF THE STUDY We explored the mechanisms of improving learning and memory in the offspring of pre-pregnant parental mice and D-galactose-induced aging pregnant mice by supplementation with P. polyphylla polysaccharide based on the P19-P53-P21 and Wnt/β-catenin signaling pathways. STUDY DESIGN AND METHODS After 3 weeks of supplementation of D-galactose-induced pre-pregnant parental mice with P. polyphylla polysaccharide component 1 (PPPm-1), the male and female parental mice mated in cages. The D-galactose-induced pregnant mice were continued to be supplemented with PPPm-1 for 18 days before delivery of the offspring. Behavioral experiments (Morris water maze and dark avoidance experiments) were conducted on the offspring mice born 48 days later to determine whether PPPm-1 had the effect of improving their learning and memory. Based on the P19/P53/P21 and Wnt/β-catenin signaling pathways, the mechanisms of PPPm-1 in improving learning and memory in offspring mice were further investigated. RESULTS Offspring mice administered low- or high-dose PPPm-1 exhibited stronger motor and memory abilities in behavioral experiments than the aging model of offspring mice. Enzyme-linked immunosorbent assay and real-time polymerase chain reaction revealed that the expressions of P19 and P21 mRNA and protein were inhibited in offspring mice administered low- and high-dose PPPm-1. However, P53 expression was inhibited in the low-dose PPPm-1 offspring group but promoted in the high-dose PPPm-1 offspring group. Additionally, PPPm-1 could effectively activate the Wnt/β-catenin signaling pathway, promote the expressions of Wnt/1, β-catenin, CyclinD1, and TCF-4 mRNA and protein, and inhibit GSK-3β mRNA and protein expression to improve the learning and memory abilities of offspring mice. CONCLUSION Thus, PPPm-1 improved the learning and memory abilities in the offspring of aging pregnant mice by acting on the P19-P53-P21 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, 404120, China; School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China.
| | - Hongrun Chen
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Xuewen Zhao
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
10
|
Wang S, Cui Z, Zhu J, Zhou P, Cao X, Li X, Ma Y, He Q. Colchicine inhibits the proliferation and promotes the apoptosis of papillary thyroid carcinoma cells likely due to the inhibitory effect on HDAC1. Biochem Biophys Res Commun 2023; 679:129-138. [PMID: 37690423 DOI: 10.1016/j.bbrc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Although the prognosis for papillary thyroid carcinoma (PTC) is generally good, a certain proportion of patients show recurrent or advanced disease, indicating the need for further development of targeted medications. The purpose of this study was to explore the interventional effects of colchicine on PTC and the potential mechanisms or targets. We obtained PTC-related targets from the database and colchicine targets by predicting them. We screened the common targets of colchicine and the PTC-related target histone deacetylase 1 (HDAC1) and verified through molecular docking that colchicine has a good affinity for HDAC1, i.e., colchicine may act on PTC by affecting HDAC1. We then used CCK-8, colony formation, mitochondrial membrane potential and apoptosis assays to confirm that colchicine could inhibit the proliferation and promote the apoptosis of PTC cells and verified by RT‒qPCR, Western blot, and cellular immunofluorescence assays that colchicine could inhibit the expression of HDAC1 in PTC cells. The cytotoxicity and inhibitory effect of colchicine on HDAC1 in PTC cells was stronger than that in normal thyroid cells. We then applied an HDAC1 inhibitor, pyroxamide, to verify that inhibition of HDAC1 inhibits proliferation and promotes apoptosis in PTC cells. Therefore, we conclude that colchicine can inhibit the proliferation and promote the apoptosis of PTC cells likely due to its inhibitory effect on HDAC1. This finding implies that colchicine may be helpful for therapeutic intervention in PTC and that HDAC1 may be a promising clinical therapeutic target.
Collapse
Affiliation(s)
- Shuai Wang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Zhonghao Cui
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, 250000, China
| | - Jian Zhu
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Peng Zhou
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Xianjiao Cao
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Xiaolei Li
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Yunhan Ma
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| |
Collapse
|
11
|
Sha Y, Pan M, Chen Y, Qiao L, Zhou H, Liu D, Zhang W, Wang K, Huang L, Tang N, Qiu J, Huang A, Xia J. PLEKHG5 is stabilized by HDAC2-related deacetylation and confers sorafenib resistance in hepatocellular carcinoma. Cell Death Discov 2023; 9:176. [PMID: 37248230 DOI: 10.1038/s41420-023-01469-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Sorafenib is the first FDA-approved first-line targeted drug for advanced HCC. However, resistance to sorafenib is frequently observed in clinical practice, and the molecular mechanism remains largely unknown. Here, we found that PLEKHG5 (pleckstrin homology and RhoGEF domain containing G5), a RhoGEF, was highly upregulated in sorafenib-resistant cells. PLEKHG5 overexpression activated Rac1/AKT/NF-κB signaling and reduced sensitivity to sorafenib in HCC cells, while knockdown of PLEKHG5 increased sorafenib sensitivity. The increased PLEKHG5 was related to its acetylation level and protein stability. Histone deacetylase 2 (HDAC2) was found to directly interact with PLEKHG5 to deacetylate its lysine sites within the PH domain and consequently maintain its stability. Moreover, knockout of HDAC2 (HDAC2 KO) or selective HDAC2 inhibition reduced PLEKHG5 protein levels and thereby enhanced the sensitivity of HCC to sorafenib in vitro and in vivo, while overexpression of PLEKHG5 in HDAC2 KO cells reduced the sensitivity to sorafenib. Our work showed a novel mechanism: HDAC2-mediated PLEKHG5 posttranslational modification maintains sorafenib resistance. This is a proof-of-concept study on targeting HDAC2 and PLEKHG5 in sorafenib-treated HCC patients as a new pharmaceutical intervention for advanced HCC.
Collapse
Affiliation(s)
- Yu Sha
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Mingang Pan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yunmeng Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Liangjun Qiao
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hengyu Zhou
- College of Nursing, Chongqing Medical University, Chongqing, 400016, China
| | - Dina Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Zobdeh F, Eremenko II, Akan MA, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. The Epigenetics of Migraine. Int J Mol Sci 2023; 24:ijms24119127. [PMID: 37298078 DOI: 10.3390/ijms24119127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a complex neurological disorder and a major cause of disability. A wide range of different drug classes such as triptans, antidepressants, anticonvulsants, analgesics, and beta-blockers are used in acute and preventive migraine therapy. Despite a considerable progress in the development of novel and targeted therapeutic interventions during recent years, e.g., drugs that inhibit the calcitonin gene-related peptide (CGRP) pathway, therapy success rates are still unsatisfactory. The diversity of drug classes used in migraine therapy partly reflects the limited perception of migraine pathophysiology. Genetics seems to explain only to a minor extent the susceptibility and pathophysiological aspects of migraine. While the role of genetics in migraine has been extensively studied in the past, the interest in studying the role of gene regulatory mechanisms in migraine pathophysiology is recently evolving. A better understanding of the causes and consequences of migraine-associated epigenetic changes could help to better understand migraine risk, pathogenesis, development, course, diagnosis, and prognosis. Additionally, it could be a promising avenue to discover new therapeutic targets for migraine treatment and monitoring. In this review, we summarize the state of the art regarding epigenetic findings in relation to migraine pathogenesis and potential therapeutic targets, with a focus on DNA methylation, histone acetylation, and microRNA-dependent regulation. Several genes and their methylation patterns such as CALCA (migraine symptoms and age of migraine onset), RAMP1, NPTX2, and SH2D5 (migraine chronification) and microRNA molecules such as miR-34a-5p and miR-382-5p (treatment response) seem especially worthy of further study regarding their role in migraine pathogenesis, course, and therapy. Additionally, changes in genes including COMT, GIT2, ZNF234, and SOCS1 have been linked to migraine progression to medication overuse headache (MOH), and several microRNA molecules such as let-7a-5p, let-7b-5p, let-7f-5p, miR-155, miR-126, let-7g, hsa-miR-34a-5p, hsa-miR-375, miR-181a, let-7b, miR-22, and miR-155-5p have been implicated with migraine pathophysiology. Epigenetic changes could be a potential tool for a better understanding of migraine pathophysiology and the identification of new therapeutic possibilities. However, further studies with larger sample sizes are needed to verify these early findings and to be able to establish epigenetic targets as disease predictors or therapeutic targets.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Ivan I Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | - Mikail A Akan
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | | | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
13
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Chen J, Chen X, Li T, Wang L, Lin G. Identification of chromatin organization-related gene signature for hepatocellular carcinoma prognosis and predicting immunotherapy response. Int Immunopharmacol 2022; 109:108866. [PMID: 35691273 DOI: 10.1016/j.intimp.2022.108866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chromatin organization is associated with tumorigenesis; however, information on its role in hepatocellular carcinoma (HCC) is limited. Moreover, although immune checkpoint inhibitors (ICIs) have proven effective against HCC, the optimal index remains unknown. In this study, we aimed to construct a chromatin organization-related gene signature (CORGS) for prognosis and predicting response to ICIs in HCC. METHODS HCC-related data were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Construction (ICGC). Chromatin organization-related genes (CORGs) were retrieved from Gene Set Enrichment Analysis. Differentially expressed genes (DEGs) and prognostic genes were then applied to select candidate genes using advanced statistical methods, including learning vector quantization, random forest, and lasso regression. Subsequently, the CORGS was established based on chromatin organization-related hub genes using multivariate Cox regression analysis, evaluated with Kaplan-Meier survival curves, and verified in 64 samples of HCC patients from Fujian Provincial Hospital (FPH) via quantitative PCR. Subsequently, functional enrichment analysis, tumor somatic mutation analysis, and tumor immune analysis were performed to evaluate the potential value of the CORGS. RESULTS Three hundred and thirty-nine CORGs were identified as DEGs, and 186 were associated with HCC prognosis (all P < 0.05). Four intersection genes were selected to establish the CORGS using TCGA cohort, which was found to serve as an independent risk factor for HCC patients. CORGS was then validated in an ICGC cohort. In addition, CORGS reliability was verified in 64 samples from HCC patients and 26 adjacent non-tumorous tissues, collected from the FPH. The CORGS was also associated with tumor immune microenvironment characteristics and ICI response. Moreover, data from "IMvigor 210" revealed that more patients in the low CORGS group responded to atezolizumab compared to high CORGS patients (P < 0.05). Finally, a nomogram of tumor characteristics and the CORGS was established, exhibiting superior discrimination and calibration compared to the current staging system and published models. CONCLUSIONS CORGS may serve as an effective predictive biomarker for HCC as well as a potential index of the tumor immune microenvironment and ICI response.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xingte Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Ting Li
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Lei Wang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.
| | - Guishan Lin
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
15
|
Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules 2022; 27:molecules27154814. [PMID: 35956762 PMCID: PMC9369884 DOI: 10.3390/molecules27154814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules’ origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.
Collapse
|
16
|
Sun L, Zhang J, Wen K, Huang S, Li D, Xu Y, Wu J. The Prognostic Value of Lysine Acetylation Regulators in Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:840412. [PMID: 35355509 PMCID: PMC8959434 DOI: 10.3389/fmolb.2022.840412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a tumor with high morbidity and mortality worldwide. lysine acetylation regulators (LARs) dynamically regulate Lysine acetylation modification which plays an important regulatory role in cancer. Therefore, we aimed to explore the potential clinical prognostic value of LARs in HCC. Methods: Differentially expressed LARs in normal liver and HCC tissues were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. To identify genes with prognostic value and establish the risk characteristics of LARs, consensus clustering was employed. We used univariate Cox regression survival analysis and LASSO Cox regression based on LARs to determine the independent prognostic signature of HCC. CIBERSORT and Gene Set Enrichment Analysis (GSEA) were used to estimate immune infiltration and functional enrichment analysis respectively. The expression of LAR was detected by Real-time quantitative polymerase chain reaction (RT-qPCR). statistical analyses were conducted using SPSS and R software. Results: In this study, the 33 LARs expression data and corresponding clinical information of HCC were obtained using TCGA and ICGC datasets. We found majority of the LARs were differentially expressed. Consensus cluster analysis was carried out based on the TCGA cohort, and three HCC subtypes (cluster 1, 2, and 3) were obtained. The LA3 subgroup had the worst clinical outcomes. Nine key LARs were identified to affect prognosis. The results showed that LARs signature has a strong independent prognostic value in HCC patients, whether in the training datasets or in the testing datasets. GSEA results showed that various tumor-related processes and pathways were abundant in the high-risk groups. RT-qPCR results showed that HAT1, HDAC1, HDAC2, HDAC4, and HDAC11 were highly expressed in HCC cells. Conclusion: Our results suggest that LARs play critical roles in HCC and are helpful for individual prognosis monitoring and clinical decision-making of HCC.
Collapse
Affiliation(s)
- Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
17
|
Li YR, Fu M, Song YQ, Li SL, Ge XY. Long noncoding RNA MRPL23-AS1 suppresses anoikis in salivary adenoid cystic carcinoma in vitro. Oral Dis 2022; 29:1588-1601. [PMID: 35175670 DOI: 10.1111/odi.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
Distant lung metastasis is the main factor that affects the survival rate of patients with salivary adenoid cystic carcinoma (SACC). Anoikis resistance is a feature of tumor cells that easily metastasize. The long non-coding RNA (lncRNA) MRPL23 antisense RNA 1 (MPRL23-AS1) is related to lung metastasis in SACC, but its role in anoikis resistance is unknown.After altering MPRL23-AS1 expression in SACC cells, anoikis resistance was detected by calcein AM/PI staining and annexin V/PI flow cytometry. The apoptosis marker activated caspase-3 and the bcl-2/bax ratio were detected by Western blotting. The relationship between MPRL23-AS1 and the promoter of the potential downstream target gene p19INK4D was identified by chromatin immunoprecipitation (ChIP)-PCR assay. p19INK4D expression in patient tissues was determined using qRT-PCR and immunohistochemistry.The functional experiments showed that MPRL23-AS1 could promote anoikis resistance in vitro. MRPL23-AS1 recruited the EZH2 to the promoter region of p19INK4D, inhibited p19INK4D expression, and promoted tumor cell anoikis resistance. p19INK4D overexpression did not affect anoikis in attached cells; however, it attenuated the anoikis resistance effect of MPRL23-AS1 in suspension cells. p19INK4D expression was significantly lower in SACC tissues than in normal tissues.The novel MRPL23-AS1/p19INK4D axis may be a potential SACC biomarker or therapeutic target.
Collapse
Affiliation(s)
- Yin-Ran Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Min Fu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Ye-Qing Song
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material
| | - Sheng-Lin Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry of Health & NMPA Key Laboratory for Dental Material.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| |
Collapse
|
18
|
Wang J, Li Y, Zhang C, Chen X, Zhu L, Luo T. Characterization of diagnostic and prognostic significance of cell cycle-linked genes in hepatocellular carcinoma. Transl Cancer Res 2022; 10:4636-4651. [PMID: 35116320 PMCID: PMC8799204 DOI: 10.21037/tcr-21-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
Background The high degree of heterogeneity of hepatocellular carcinoma (HCC) imposes a significant challenge to predict the prognosis. Currently, increasing evidence has indicated that cell cycle-linked genes are strongly linked to occurrence and progress of HCC. Herein, we purposed to create a prediction model on the basis of cell cycle-linked genes. Methods The transcriptome along with clinicopathological data abstracted from The Cancer Genome Atlas (TCGA) were used as a training cohort. Lasso regression analysis was employed to create a prediction model in TCGA cohort. The data of samples obtained from the International Cancer Genome Consortium (ICGC) data resource were applied in the verification of the model. A series of bioinformatics analyzed the relationship of the risk signature with overall survival (OS), biological function, and clinicopathological features. Results Six cell cycle-linked genes (PLK1, CDC20, HSP90AA1, CHEK1, HDAC1, and NDC80) were chosen to create the prognostic model, demonstrating a good prognostic capacity. Further analyses indicated that the model could independently assess the OS of HCC patients. A single-sample gene set enrichment analysis (ssGSEA) indicated that the risk signature was remarkably linked to immune status. Additionally, there was a remarkable association of the risk signature with TP53 mutation frequency, as well as immune checkpoint molecule expression levels. Conclusions We created a prediction model using six cell cycle-linked genes to predict HCC prognosis. The six genes are expected to be novel markers for HCC diagnosis, as well as treatment.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linzhong Zhu
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Du L, Wang D, Wei X, Liu C, Xiao Z, Qian W, Song Y, Hou X. MS275 as Class I HDAC inhibitor displayed therapeutic potential on malignant ascites by iTRAQ-based quantitative proteomic analysis. BMC Gastroenterol 2022; 22:29. [PMID: 35062876 PMCID: PMC8783488 DOI: 10.1186/s12876-022-02101-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Malignant ascites is a manifestation of end stage events in a variety of cancers and is associated with significant morbidity. Epigenetic modulators play a key role in cancer initiation and progression, among which histone deacetylases (HDACs) are considered as one of the most important regulators for various cancer development, such as liver cancer, ovarian cancer, and pancreatic cancer et al. Thus, in this paper, we sought to explore the therapeutic effect of HDAC inhibitor on malignant ascites.
Methods
In this report, we tested the therapeutic effect of different isoform selective HDAC inhibitors (Class I HDACI MS275, Class IIa HDACI MC1568, pan-HDAC inhibitors SAHA) on malignant ascites in vitro and in vivo. We further used proteome analysis to find the potential mechanisms for malignant ascites therapy.
Results
Among the different isoform-selective HDAC inhibitors, the class I selective HDACI, MS275, exhibited preferential inhibition on various ascites cells. MS275 could induce cell cycle arrest in G0/G1 phase and promote apoptosis on ascites cells. Through proteome analysis, we found MS275 could downregulate proteins related to cell cycle progression, such as CDK4, CDC20, CCND1; MS275 could upregulate pro-apoptosis proteins such as PAPR1, LMNB2 and AIFM1; in addition, MS275 could change the expression of tumorigenic proteins related to the specific malignant ascites bearing tumors, such as TSP1 and CDK4 for bladder cancer. We then confirmed that abemaciclib (CDK4/6 selective inhibitor) could inhibit the proliferation of ascites cells, and the combination of abemaciclib and MS275 had synergistic anti-tumor effect. Finally, we found that MS275 could in vivo inhibit malignant ascites progression (ascites volume: 2.9 ± 1.0 mL vs 7.5 ± 1.2 mL, p < 0.01), tumor growth, and prolong 66% of the life-span when compared with the untreated group.
Conclusion
This present research revealed that the class I selective HDAC inhibitor, MS275, could effectively inhibit malignant ascites development and tumor growth via multiple pathways. These results indicated that HDACI could have great potential for clinical therapy of malignant ascites.
Collapse
|
20
|
Zhou X, Wang L, Zhang Z, Liu J, Qu Q, Zu Y, Shi D. Fluorometholone inhibits high glucose-induced cellular senescence in human retinal endothelial cells. Hum Exp Toxicol 2022; 41:9603271221076107. [PMID: 35264022 DOI: 10.1177/09603271221076107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetic retinopathy (DR) is a common diabetic complication that severely impacts the life quality of diabetic patients. Recently, cellular senescence in human retinal endothelial cells (HRECs) induced by high glucose has been linked to the pathogenesis of DR. Fluorometholone (FML) is a glucocorticoid drug applied in the treatment of inflammatory and allergic disorders of the eye. The objective of the present study is to investigate the protective function of FML on high glucose-induced cellular senescence in HRECs. The in vitro injury model was established by stimulating HRECs with 30 mm glucose. After evaluating the cytotoxicity of FML in HRECs, 0.05% and 0.1% FML were used as the optimal concentration in the entire experiment. It was found that the excessive released inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) in HRECs induced by high glucose were significantly suppressed by FML, accompanied by the inhibitory effects on the expression levels of vascular endothelial growth factor (VEGF) and tissue factor (TF). Declined telomerase activity and enhanced senescence-associated β-galactosidase (SA-β-gal) activity were found in high glucose-challenged HRECs, which were dramatically alleviated by FML, accompanied by the inactivation of the p53/p21 and retinoblastoma (Rb) signaling. Interestingly, FML ameliorated high glucose-induced dephosphorylation of Akt. Lastly, the protective effects of FML against high glucose-induced cellular senescence in HRECs were abolished by the co-treatment of the PI3K/Akt signaling inhibitor LY294002, suggesting the involvement of this pathway. Taken together, these data revealed that FML-inhibited high glucose-induced cellular senescence mediated by Akt in HERCs, suggesting a novel molecular mechanism of FML.
Collapse
Affiliation(s)
- Xuemei Zhou
- Department of Ophthalmology, Ringgoldid: 117842Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Lifeng Wang
- Department of Cardiology, Ringgoldid: 194024The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongwei Zhang
- Department of Ophthalmology, Ringgoldid: 117842Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Jing Liu
- Department of Ophthalmology, Ringgoldid: 117842Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Qun Qu
- Department of Ophthalmology, Ringgoldid: 117842Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yuanyuan Zu
- Department of Ophthalmology, Ringgoldid: 117842Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Dejing Shi
- Department of Ophthalmology, Ringgoldid: 194024The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Romito I, Porru M, Braghini MR, Pompili L, Panera N, Crudele A, Gnani D, De Stefanis C, Scarsella M, Pomella S, Levi Mortera S, de Billy E, Conti AL, Marzano V, Putignani L, Vinciguerra M, Balsano C, Pastore A, Rota R, Tartaglia M, Leonetti C, Alisi A. Focal adhesion kinase inhibitor TAE226 combined with Sorafenib slows down hepatocellular carcinoma by multiple epigenetic effects. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:364. [PMID: 34784956 PMCID: PMC8597092 DOI: 10.1186/s13046-021-02154-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC. Methods The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. Results TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation. Conclusions Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02154-8.
Collapse
Affiliation(s)
- Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146, Rome, Italy
| | - Manuela Porru
- Unit of Oncogenomic and Epigenetic, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146, Rome, Italy
| | - Luca Pompili
- Unit of Oncogenomic and Epigenetic, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146, Rome, Italy
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146, Rome, Italy
| | - Daniela Gnani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Marco Scarsella
- Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Unit of Human Microbiome, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Valeria Marzano
- Unit of Human Microbiome, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Unit of Microbiomics, Microbiology and Immunological Diagnostics, Department of Diagnostics and Laboratory Medicine Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, 9002, Varna, Bulgaria
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences MESVA, University of L'Aquila, L'Aquila, Italy.,Francesco Balsano Foundation, Rome, Italy
| | - Anna Pastore
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Leonetti
- Unit of Oncogenomic and Epigenetic, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
22
|
Aitken TJ, Crabtree JE, Jensen DM, Hess KH, Leininger BR, Tessem JS. Decreased proliferation of aged rat beta cells corresponds with enhanced expression of the cell cycle inhibitor p27 KIP1. Biol Cell 2021; 113:507-521. [PMID: 34523154 DOI: 10.1111/boc.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over 400 million people are diabetic. Type 1 and type 2 diabetes are characterized by decreased functional β-cell mass and, consequently, decreased glucose-stimulated insulin secretion. A potential intervention is transplantation of β-cell containing islets from cadaveric donors. A major impediment to greater application of this treatment is the scarcity of transplant-ready β-cells. Therefore, inducing β-cell proliferation ex vivo could be used to expand functional β-cell mass prior to transplantation. Various molecular pathways are sufficient to induce proliferation of young β-cells; however, aged β-cells are refractory to these proliferative signals. Given that the majority of cadaveric donors fit an aged demographic, defining the mechanisms that impede aged β-cell proliferation is imperative. RESULTS We demonstrate that aged rat (5-month-old) β-cells are refractory to mitogenic stimuli that otherwise induce young rat (5-week-old) β-cell proliferation. We hypothesized that this change in proliferative capacity could be due to differences in cyclin-dependent kinase inhibitor expression. We measured levels of p16INK4a , p15INK4b , p18INK4c , p19INK4d , p21CIP1 , p27KIP1 and p57KIP2 by immunofluorescence analysis. Our data demonstrates an age-dependent increase of p27KIP1 in rat β-cells by immunofluorescence and was validated by increased p27KIP1 protein levels by western blot analysis. Interestingly, HDAC1, which modulates the p27KIP1 promoter acetylation state, is downregulated in aged rat islets. These data demonstrate increased p27KIP1 protein levels at 5 months of age, which may be due to decreased HDAC1 mediated repression of p27KIP1 expression. SIGNIFICANCE As the majority of transplant-ready β-cells come from aged donors, it is imperative that we understand why aged β-cells are refractory to mitogenic stimuli. Our findings demonstrate that increased p27KIP1 expression occurs early in β-cell aging, which corresponds with impaired β-cell proliferation. Furthermore, the correlation between HDAC1 and p27 levels suggests that pathways that activate HDAC1 in aged β-cells could be leveraged to decrease p27KIP1 levels and enhance β-cell proliferation.
Collapse
Affiliation(s)
- Talon J Aitken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Des Moines University, Des Moines, IA, 50312, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Daelin M Jensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Biomedical Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Kavan H Hess
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Brennan R Leininger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Dental Education Program, UCLA School of Dentistry, Los Angeles, CA, 90024, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
23
|
Al-Yhya N, Khan MF, Almeer RS, Alshehri MM, Aldughaim MS, Wadaan MA. Pharmacological inhibition of HDAC1/3-interacting proteins induced morphological changes, and hindered the cell proliferation and migration of hepatocellular carcinoma cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49000-49013. [PMID: 33929667 DOI: 10.1007/s11356-021-13668-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Liver diseases are particularly severe health problems, but the options available for preventing and treating them remain limited. Accumulating evidence has shown that there is altered expression of individual histone deacetylase (HDAC) family members in hepatocellular carcinoma cells. In a previous study, we have identified a set of proteins which interact with histone deacetylase 1 and 3 (HDAC1/3) in hepatocellular carcinoma cell lines HepG2 by proteomic approach. This study was designed to investigate the therapeutic potential and expression of HDAC1/3-interacting genes in a human hepatocellular carcinoma cell line (HepG2). Pharmacological and transcriptional inhibition of HDAC1/3 resulted in the suppression of cancer cell proliferation, change of cell morphology, and downregulation of HDAC1/3 genes in HepG2 cells. The pharmacological inhibition also resulted in inhibition of liver cancer cell migration by wound scratch assay. Taken together, the results from this study show that the upregulation of HDAC1/3 in hepatocellular carcinoma resulted in the overexpression of CNOT1, PFDN2/6, and HMG20B, and that these genes could serve as novel molecular targets in liver cancer.
Collapse
Affiliation(s)
- Nouf Al-Yhya
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-products Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Rafa Sharaf Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mana M Alshehri
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed S Aldughaim
- Research Center, King Fahad Medical City, P.O.BOX:59046, Riyadh, 1152, Saudi Arabia
| | - Mohammad Ahmed Wadaan
- Bio-products Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
24
|
Hassan YA, Helmy MW, Ghoneim AI. Combinatorial antitumor effects of amino acids and epigenetic modulations in hepatocellular carcinoma cell lines. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2245-2257. [PMID: 34415354 DOI: 10.1007/s00210-021-02140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal form of liver cancer. Recently, the interest in using amino acids as therapeutic agents has noticeably grown. The present work aimed to evaluate the possible antiproliferative effects of selected amino acids supplementation or deprivation in human HCC cell lines and to investigate their effects on critical signaling molecules in HCC pathogenesis and the outcomes of their combination with the histone deacetylase inhibitor vorinostat. HepG2 and Huh7 cells were treated with different concentrations of L-leucine, L-glutamine, or L-methionine and cell viability was determined using MTT assay. Insulin-like growth factor 1 (IGF1), phosphorylated ribosomal protein S6 kinase (p70 S6K), p53, and cyclin D1 (CD1) protein levels were assayed using ELISA. Caspase-3 activity was assessed colorimetrically. L-leucine supplementation (0.8-102.4 mM) and L-glutamine supplementation (4-128 mM) showed dose-dependent antiproliferative effects in both cell lines but L-methionine supplementation (0.2-25.6 mM) only affected the viability of HepG2 cells. Glutamine or methionine deprivation suppressed the proliferation of HepG2 cells whereas leucine deprivation had no effect on cell viability in both cell lines. The combination between the effective antiproliferative changes in L-leucine, L-glutamine, and L-methionine concentrations greatly suppressed cell viability and increased the sensitivity to vorinostat in both cell lines. The growth inhibitory effects were paralleled with significant decreases in IGF-1, phospho p70 S6k, and CD1 levels and significant elevations in p53 and caspase-3 activity. Changes in amino acids concentrations could profoundly affect growth in HCC cell lines and their response to epigenetic therapy.
Collapse
Affiliation(s)
- Yasmine A Hassan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt.
| | - Maged W Helmy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| | - Asser I Ghoneim
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Egypt
| |
Collapse
|
25
|
Identification of New Biomarker for Prediction of Hepatocellular Carcinoma Development in Early-Stage Cirrhosis Patients. JOURNAL OF ONCOLOGY 2021; 2021:9949492. [PMID: 34335764 PMCID: PMC8318773 DOI: 10.1155/2021/9949492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
Background Liver cirrhosis is one of the major drivers of hepatocellular carcinoma (HCC). In the present study, we aimed to identify and validate new biomarker for early prediction of HCC development in early-stage cirrhosis patients. Methods mRNA expression and clinical parameters of GSE63898, GSE89377, GSE15654, GSE14520, and TCGA-HCC cohort and ICGC-HCC cohort were downloaded for analysis. Wilcoxon test was performed to identify DEGs. Univariate and multivariate Cox regression analysis were used to develop the risk signature, and ROC analysis was performed to analyze the predictive accuracy and sensitivity of the risk signature. Results There were 42 DEGs (including 28 upregulated genes and 14 downregulated genes) found in early-stage liver cirrhosis patients before developing HCC from GSE1565442. Then, a risk signature consisting of 8 DEGs could effectively classify early-stage cirrhosis patients into high-risk group with shorter HCC development time and low-risk group with longer HCC development time from GSE15654. Multivariate Cox analysis indicated that the risk signature was an independent prognostic factor for the prediction of HCC development and ROC analysis showed that the signature exhibited good predictive efficiency in predicting 2-, 5-, and 10-year HCC development. Mechanistically, significantly higher proportions of CD8 T cells were found to be enriched in cirrhosis patients with low risk score, and higher CD8 T cells were associated with longer HCC development time. Besides, the signature was an independent prognostic factor for poorer prognosis of early-stage liver cirrhosis patients of GSE15654. Moreover, the signature could also separate HCC patients from healthy controls and was also associated with the poorer prognosis of HCC patients from three HCC cohorts. Finally, we also identified HDAC inhibitors, such as trichostatin A, to be a potential chemopreventive treatment for the prevention of HCC development by targeting risk signature based on CMap analysis. Conclusion A risk signature was developed and validated for early prediction of HCC development, which may be a useful tool to set up individualized follow-up interval schedules.
Collapse
|
26
|
Warnon C, Bouhjar K, Ninane N, Verhoyen M, Fattaccioli A, Fransolet M, Lambert de Rouvroit C, Poumay Y, Piel G, Mottet D, Debacq-Chainiaux F. HDAC2 and 7 down-regulation induces senescence in dermal fibroblasts. Aging (Albany NY) 2021; 13:17978-18005. [PMID: 34253688 PMCID: PMC8351730 DOI: 10.18632/aging.203304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Originally simply reported to be in a stable and irreversible growth arrest in vitro, senescent cells are now clearly associated with normal and pathological ageing in vivo. They are characterized by several biomarkers and changes in gene expression that may depend on epigenetic factors, such as histone acetylation, involving a balance between histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, we investigate the expression and the role of HDACs on the senescent phenotype of dermal fibroblasts. We report that during replicative senescence, most canonical HDACs are less expressed. Moreover, treatment with SAHA, a histone deacetylase inhibitor (HDACi) also known as Vorinostat, or the specific downregulation of HDAC2 or HDAC7 by siRNA, induces the appearance of senescence biomarkers of dermal fibroblasts. Conversely, the ectopic re-expression of HDAC7 by lentiviral transduction in pre-senescent dermal fibroblasts extends their proliferative lifespan. These results demonstrate that HDACs expression can modulate the senescent phenotype, highlighting their pharmaceutical interest in the context of healthy ageing.
Collapse
Affiliation(s)
- Céline Warnon
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Karim Bouhjar
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Noëlle Ninane
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Mathilde Verhoyen
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Antoine Fattaccioli
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Maude Fransolet
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | - Yves Poumay
- URPHYM, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège, Belgium
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, Liège, Belgium
| | | |
Collapse
|
27
|
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2021; 20:158-178. [PMID: 34151764 PMCID: PMC9199543 DOI: 10.2174/1570159x19666210609160017] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are a group of pathological conditions that cause motor inc-ordination (jerking movements), cognitive and memory impairments result from degeneration of neurons in a specific area of the brain. Oxidative stress, mitochondrial dysfunction, excitotoxicity, neuroinflammation, neurochemical imbalance and histone deacetylase enzymes (HDAC) are known to play a crucial role in neurodegeneration. HDAC is classified into four categories (class I, II, III and class IV) depending upon their location and functions. HDAC1 and 2 are involved in neurodegeneration, while HDAC3-11 and class III HDACs are beneficial as neuroprotective. HDACs are localized in different parts of the brain- HDAC1 (hippocampus and cortex), HDAC2 (nucleus), HDAC3, 4, 5, 7 and 9 (nucleus and cytoplasm), HDAC6 & HDAC7 (cytoplasm) and HDAC11 (Nucleus, cornus ammonis 1 and spinal cord). In pathological conditions, HDAC up-regulates glutamate, phosphorylation of tau, and glial fibrillary acidic proteins while down-regulating BDNF, Heat shock protein 70 and Gelsolin. Class III HDACs are divided into seven sub-classes (SIRT1-SIRT7). Sirtuins are localized in the different parts of the brain and neuron -Sirt1 (nucleus), Sirt2 (cortex, striatum, hippocampus and spinal cord), Sirt3 (mitochondria and cytoplasm), Sirt4, Sirt5 & Sirt6 (mitochondria), Sirt7 (nucleus) and Sirt8 (nucleolus). SIRTs (1, 3, 4, and 6) are involved in neuronal survival, proliferation and modulating stress response, and SIRT2 is associated with Parkinsonism, Huntington’s disease and Alzheimer’s disease, whereas SIRT6 is only associated with Alzheimer’s disease. In this critical review, we have discussed the mechanisms and therapeutic targets of HDACs that would be beneficial for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vishal Kumar
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Satyabrata Kundu
- Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
28
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
29
|
Inhibition of histone deacetylase 1 suppresses pseudorabies virus infection through cGAS-STING antiviral innate immunity. Mol Immunol 2021; 136:55-64. [PMID: 34087624 DOI: 10.1016/j.molimm.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023]
Abstract
Pseudorabies virus (PRV) is an enveloped double-stranded DNA virus that is the etiological agent of Aujeszky's disease in pigs. Vaccination is currently available to prevent PRV infection, but there is still an urgent need for new strategies to control this infectious disease. Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, chromatin conformation, protein-DNA interaction and even transcription. Viral transcription and protein activities are intimately linked to regulation by histone acetyltransferases and HDACs that remodel chromatin and regulate gene expression. We reported here that genetic and pharmacological inhibition of HDAC1 significantly influenced PRV replication. Moreover, we demonstrated that inhibition of HDAC1 induced a DNA damage response and antiviral innate immunity. Mechanistically, the HDAC1 inhibition-induced DNA damage response resulted in the release of double-strand DNA into the cytosol to activate cyclic GMP-AMP synthase and the downstream STING/TBK1/IRF3 innate immune signaling pathway. Our results demonstrate that an HDAC1 inhibitor may be used as a new strategy to prevent Aujeszky's disease in pigs.
Collapse
|
30
|
Sanaei M, Kavoosi F. Effect of vorinostat on INK4 family and HDACs 1, 2, and 3 in pancreatic cancer and hepatocellular carcinoma. Res Pharm Sci 2021; 16:260-268. [PMID: 34221059 PMCID: PMC8216159 DOI: 10.4103/1735-5362.314824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 03/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose: In mammalian cells, several distinct surveillance systems, named cell cycle checkpoints, can interrupt normal cell-cycle progression. The cyclin-dependent kinases are negatively regulated by proteins of cyclin-dependent kinases inhibitors comprising INK4 and Cip/Kip families. Histone deacetylation induced by histone deacetylases (HDACs) inactivates the INK4 and Cip/Kip families lead to cancer induction. HDAC inhibitors (HDACIs) have been indicated to be potent inducers of differentiation, growth arrest, and apoptotic induction. Vorinostat (suberoylanilide hydroxamic acid, SAHA), as an HDACI, is reported to be useful in various cancers. Previously, we reported the effect of trichostatin A on hepatocellular carcinoma and also vorinostat on colon cancer cell lines. The current study was aimed to investigate the effect of vorinostat on p16INK4a, p14ARF, p15INK4b, and class I HDACs 1, 2, and 3 gene expression, cell growth inhibition, and apoptosis induction in pancreatic cancer AsPC-1 and hepatocellular carcinoma LCL-PI 11 cell lines. Experimental approach: The AsPC-1 and LCL-PI 11 cell lines were cultured and treated with vorinostat. To determine, viability, apoptosis, and the relative expression level of p16INK4a, p14ARF, p15INK4b, class I HDACs 1, 2, and 3 genes, MTT assay, cell apoptosis assay, and RT-qPCR were performed, respectively. Findings/Results: Vorinostat significantly inhibited cell growth, induced apoptosis, increased p16INK4a, p14ARF, p15INK4b, and decreased class I HDACs 1, 2, and 3 gene expression. Conclusion and implications: Vorinostat can reactivate the INK4 family through inhibition of class I HDACs 1, 2, and 3 genes activity.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, I.R. Iran
| |
Collapse
|
31
|
Yang Y, Yan Y, Chen Z, Hu J, Wang K, Tang N, Li X, Zhou Z. Histone Deacetylase Inhibitors Romidepsin and Vorinostat Promote Hepatitis B Virus Replication by Inducing Cell Cycle Arrest. J Clin Transl Hepatol 2021; 9:160-168. [PMID: 34007797 PMCID: PMC8111102 DOI: 10.14218/jcth.2020.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIMS Chronic hepatitis B virus (HBV) infection is a global public health challenge. HBV reactivation usually occurs in cancer patients after receiving cytotoxic chemotherapy or immunosuppressive therapies. Romidepsin (FK228) and vorinostat (SAHA) are histone deacetylase inhibitors (HDACi) approved by the Food and Drug Administration as novel antitumor agents. The aim of this study was to explore the effects and mechanisms of HDACi treatment on HBV replication. METHODS To assess these effects, human hepatoma cell lines were cultured and cell viability after FK228 or SAHA treatment was measured by the CCK-8 cell counting kit-8 assay. Then, HBV DNA and RNA were quantified by real-time PCR and Southern blotting. Furthermore, analysis by western blotting, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and flow cytometry was performed. RESULTS FK228/SAHA treatment significantly promoted HBV replication and biosynthesis in both HBV-replicating cells and HBV-transgenic mouse model. Flow cytometry assay indicated that FK228/SAHA enhanced HBV replication by inducing cell cycle arrest through modulating the expression of cell cycle regulatory proteins. In addition, simultaneous inhibition of HDAC1/2 by FK228 promoted HBV replication more effectively than the broad spectrum HDAC inhibitor SAHA. CONCLUSIONS Overall, our results demonstrate that cell cycle blockage plays an important role in FK228/SAHA-enhanced HBV replication, thus providing a potential avenue for rational use of HDACi in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu Yan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence to: Xiaosong Li, Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China. Tel: +86-23-68486780, E-mail: ; Zhi Zhou, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China. Tel: +86-23-62887067, E-mail:
| | - Zhi Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence to: Xiaosong Li, Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China. Tel: +86-23-68486780, E-mail: ; Zhi Zhou, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China. Tel: +86-23-62887067, E-mail:
| |
Collapse
|
32
|
Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes 2021; 14:135. [PMID: 33849645 PMCID: PMC8045300 DOI: 10.1186/s13104-021-05551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/02/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Histone acetylation is an important mechanism in the regulation of gene expression and plays a crucial role in both cellular development and cellular response to external or internal stimuli. One key aspect of this form of regulation is that acetylation marks can be added and removed from sites of regulation very quickly through the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The activity of both HATs and HDACs has been shown to be important for both physiological hematopoiesis as well as during development of hematological neoplasia, such as lymphomas. In the present study we analyzed the effect of knockout of the two HDACs, Hdac1 and Hdac2 in cells expressing the fractalkine receptor (Cx3cr1) on lymphocyte development. Results We report data showing a maturation defect in mice harboring a Cx3cr1 dependent knockout of Hdac1 and 2. Furthermore, we report that these mice develop a T-cell neoplasia at about 4–5 months of age, suggesting that a Cx3cr1 expressing subpopulation of immature T-cells gives rise to T-cell lymphomas in the combined absence of Hdac1 and Hdac2. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05551-6.
Collapse
Affiliation(s)
- Moumita Datta
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, 79106, Freiburg, Germany.,Faculty of Medicine, Institute for Immunology, Ulm University, 89081, Ulm, Germany
| | - Ori Staszewski
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, 79106, Freiburg, Germany. .,Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
33
|
Garmpis N, Damaskos C, Garmpi A, Georgakopoulou VE, Sarantis P, Antoniou EA, Karamouzis MV, Nonni A, Schizas D, Diamantis E, Koustas E, Farmaki P, Syllaios A, Patsouras A, Kontzoglou K, Trakas N, Dimitroulis D. Histone Deacetylase Inhibitors in the Treatment of Hepatocellular Carcinoma: Current Evidence and Future Opportunities. J Pers Med 2021; 11:223. [PMID: 33809844 PMCID: PMC8004277 DOI: 10.3390/jpm11030223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide with a continuous increasing prevalence. Despite the introduction of targeted therapies like the multi-kinase inhibitor sorafenib, treatment outcomes are not encouraging. The prognosis of advanced HCC is still dismal, underlying the need for novel effective treatments. Apart from the various risk factors that predispose to the development of HCC, epigenetic factors also play a functional role in tumor genesis. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone lysine residues of proteins, such as the core nucleosome histones, in this way not permitting DNA to loosen from the histone octamer and consequently preventing its transcription. Considering that HDAC activity is reported to be up-regulated in HCC, treatment strategies with HDAC inhibitors (HDACIs) showed some promising results. This review focuses on the use of HDACIs as novel anticancer agents and explains the mechanisms of their therapeutic effects in HCC.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.A.); (K.K.); (D.D.)
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasiliki E. Georgakopoulou
- Department of Pulmonology, Laiko General Hospital, 11527 Athens, Greece;
- First Department of Pulmonology, Sismanogleio Hospital, 15126 Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.); (E.K.)
| | - Efstathios A. Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.A.); (K.K.); (D.D.)
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.); (E.K.)
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (A.S.)
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, 11527 Athens, Greece;
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.); (E.K.)
| | - Paraskevi Farmaki
- First Department of Pediatrics, Agia Sofia Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.S.); (A.S.)
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, 18536 Piraeus, Greece;
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.A.); (K.K.); (D.D.)
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece;
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.A.A.); (K.K.); (D.D.)
| |
Collapse
|
34
|
Jin Q, Hu H, Yan S, Jin L, Pan Y, Li X, Peng Y, Cao P. lncRNA MIR22HG-Derived miR-22-5p Enhances the Radiosensitivity of Hepatocellular Carcinoma by Increasing Histone Acetylation Through the Inhibition of HDAC2 Activity. Front Oncol 2021; 11:572585. [PMID: 33718133 PMCID: PMC7943860 DOI: 10.3389/fonc.2021.572585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background With the development of radiotherapy technology, radiotherapy has been increasingly used to treat primary hepatocellular carcinoma (HCC). However, due to radioresistance and the intolerance of the adjacent organs to radiation, the effects of radiotherapy are often unsatisfactory. Therefore, it is necessary to study radiosensitization in HCC. Method A microarray was used to analyze the genes that were significantly associated with radiosensitivity. HCC cells, HepG2 and MHCC97H, were subjected to radiation in vitro. Real-time PCR was performed to determine MIR22HG (microRNA22 host gene) and miR-22-5p expression levels. Western blotting was performed to determine histone expression levels. A histone deacetylase (HDAC) whole cell assay was used to determine the activity of HDAC2. MTT, colony formation, 5-ethynyl-2′-deoxyuridine, and wound healing assays were performed to examine the function of MIR22HG and miR-22-5p in cellular radiosensitivity. Chromatin immunoprecipitation-PCR was used to confirm that HDAC2 affects the acetylation level of the MIR22HG promoter region. Finally, animal experiments were performed to demonstrate the in vivo effect of MIR22HG on the radiosensitivity of hepatoma. Results Irradiation can up-regulate MIR22HG expression and down-regulate HDAC2 expression. Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region and up-regulates MIR22HG expression. MIR22HG can increase radiosensitivity via miR-22-5p in HCC. Conclusion Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region, thereby up-regulating the expression of MIR22HG and promoting the production of miR-22-5p, and ultimately increasing the sensitivity of liver cancer radiotherapy.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Siqi Yan
- Department of Oncological Radiotherapy, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangjun Li
- Department of Oncology, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yayi Peng
- Department of Oncology, The Second People's Hospital of Hunan Province, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
35
|
Transcription Repressor Protein ZBTB25 Associates with HDAC1-Sin3a Complex in Mycobacterium tuberculosis-Infected Macrophages, and Its Inhibition Clears Pathogen by Autophagy. mSphere 2021; 6:6/1/e00036-21. [PMID: 33627504 PMCID: PMC8544881 DOI: 10.1128/msphere.00036-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Downregulation of host gene expression is a key strategy employed by intracellular pathogens for their survival in macrophages and subsequent pathogenesis. In a previous study, we have shown that histone deacetylase 1 (HDAC1) levels go up in macrophages infected with Mycobacterium tuberculosis, and it hypoacetylates histone H3 at the promoter of IL-12B gene, leading to its downregulation. We now show that after infection with M. tuberculosis, HDAC1 is phosphorylated, and the levels of phosphorylated HDAC1 (pHDAC1) increase significantly in macrophages. We found that transcriptional repressor protein zinc finger and BTB domain 25 (ZBTB25) and transcriptional corepressor Sin3a associate with the HDAC1 silencing complex, which is recruited to the promoter of IL-12B to downregulate its expression in infected macrophages. Knocking down of ZBTB25 enhanced release of IL-12p40 from infected macrophages. Inhibition of HDAC1 and ZBTB25 promoted colocalization of M. tuberculosis and LC3 (microtubule-associated protein 1A/1B-light chain 3) in autophagosomes. Induction of autophagy resulted in the killing of intracellular M. tuberculosis. Enhanced phosphorylation of JAK2 and STAT4 was observed in macrophages upon treatment with HDAC1 and ZBTB inhibitors, and inhibition of JAK2/STAT4 negated the killing of the intracellular pathogen, suggesting their role in the autophagy-mediated killing of intracellular M. tuberculosis. In view of the emergence of drug resistance in M. tuberculosis, host-directed therapy is an attractive alternative strategy to combat tuberculosis (TB). HDACs have been proposed to be host targets for TB treatment. Our study indicates that ZBTB25, a functional subunit of the HDAC1/Sin3a repressor complex involved in IL-12B suppression, could be an alternative target for host-directed anti-TB therapy. IMPORTANCE Following infection with M. tuberculosis, levels of HDAC1 go up in macrophages, and it is recruited to the promoter of IL-12B where it hypoacetylates histone H3, leading to the downregulation of the gene. Here, we show that host transcriptional repressor protein ZBTB25 and transcriptional corepressor Sin3a associate with HDAC1 in the silencing complex. Knocking down of ZBTB25 prevented the recruitment of the complex to the promoter and consequently enhanced the gene expression and the release of IL-12p40 from infected macrophages. Pharmacological inhibition of ZBTB25 in infected macrophages resulted in the induction of autophagy and killing of intracellular M. tuberculosis. Drug-resistant TB is a serious challenge to TB control programs all over the world which calls for finding alternative therapeutic methods. Host-directed therapy is gaining significant momentum in treating infectious diseases. We propose that ZBTB25 is a potential target for host-directed treatment of TB.
Collapse
|
36
|
Han X, Kuang Y, Chen H, Liu T, Zhang J, Liu J. p19INK4d: More than Just a Cyclin-Dependent Kinase Inhibitor. Curr Drug Targets 2021; 21:96-102. [PMID: 31400265 DOI: 10.2174/1389450120666190809161901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) are important cell cycle regulators. The CDKI family is composed of the INK4 family and the CIP/KIP family. p19INK4d belongs to the INK4 gene family and is involved in a series of normal physiological activities and the pathogenesis of diseases. Many factors play regulatory roles in the p19INK4d gene expression at the transcriptional and posttranscriptional levels. p19INK4d not only regulates the cell cycle but also plays regulatory roles in apoptosis, DNA damage repair, cell differentiation of hematopoietic cells, and cellular senescence. In this review, the regulatory network of the p19INK4d gene expression and its biological functions are summarized, which provides a basis for further study of p19INK4d as a drug target for disease treatment.
Collapse
Affiliation(s)
- Xu Han
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yijin Kuang
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huiyong Chen
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Romidepsin hepatocellular carcinoma suppression in mice is associated with deregulated gene expression of bone morphogenetic protein and Notch signaling pathway components. Mol Biol Rep 2021; 48:551-562. [PMID: 33393006 DOI: 10.1007/s11033-020-06089-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/12/2020] [Indexed: 11/12/2022]
Abstract
Recently, our group showed that Romidepsin, a histone deacetylase inhibitor (HDACi), suppressed diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in mice. In the present study, we investigated the effect of Romidepsin-treatment on gene expression levels of components of Bmp and Notch signaling pathways, which are both known to be aberrantly regulated in hepatocarcinogenesis. Total RNA from liver tissue samples and paraffin-embedded livers were retrieved from a recent experiment where C57BL/6 mice were treated with Romidepsin 10 months after DEN challenge and sacrificed 2 months later. RT qPCR was used for quantification of gene expression and immunohistochemistry for in situ protein detection. Regarding Bmp pathway, Romidepsin HCC-suppression was found to correlate significantly with Bmp2 and Bmp7 ligand up- and down-regulation, respectively. Intracellularly, Romidepsin-treated HCC mice exhibited a significant elevation of Bmp-inhibitor Smurf2 and Bmp-target gene Id3, as compared to the HCC untreated controls. Concerning Notch signaling, higher expression levels of ligands Jag1/Dll4, accompanied by a decreased expression of receptor Notch2, were identified in the Romidepsin-treated group. Τhe anti-oncogenic effect of Romidepsin, also correlated significantly with an increased expression of Hes1 target, as well as an up- and down-regulation of Klf4 and Sox9 transcription factors, respectively. Moreover, the cancer-related genes Snai2 and p21, known to be involved in many signaling pathways, including Bmp and Notch, were also found to be downregulated in Romidepsin-treated mice. Romidepsin HCC suppression is associated with gene expression deregulation of selective components of both Bmp and Notch signaling cascades.
Collapse
|
38
|
Chi F, Liu J, Brady SW, Cosgrove PA, Nath A, McQuerry JA, Majumdar S, Moos PJ, Chang JT, Kahn M, Bild AH. A `one-two punch' therapy strategy to target chemoresistance in estrogen receptor positive breast cancer. Transl Oncol 2020; 14:100946. [PMID: 33221681 PMCID: PMC7689336 DOI: 10.1016/j.tranon.2020.100946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Patient tumor subclones that survive chemotherapy acquire primitive cell traits. HDAC inhibitors can reverse chemo-acquired stemness states and abolish self-renewal abilities. Belinostat promotes stem cell differentiation and inhibits HDAC and MYC pathways. A ‘one-two punch’, chemotherapy-HDAC inhibitor combination strategy reverses chemo-induced resistant phenotypes.
Cancer cell phenotypes evolve during a tumor's treatment. In some cases, tumor cells acquire cancer stem cell-like (CSL) traits such as resistance to chemotherapy and diminished differentiation; therefore, targeting these cells may be therapeutically beneficial. In this study we show that in progressive estrogen receptor positive (ER+) metastatic breast cancer tumors, resistant subclones that emerge following chemotherapy have increased CSL abundance. Further, in vitro organoid growth of ER+ patient cancer cells also shows that chemotherapy treatment leads to increased abundance of ALDH+/CD44+ CSL cells. Chemotherapy induced CSL abundance is blocked by treatment with a pan-HDAC inhibitor, belinostat. Belinostat treatment diminished both mammosphere formation and size following chemotherapy, indicating a decrease in progenitor CSL traits. HDAC inhibitors specific to class IIa (HDAC4, HDAC5) and IIb (HDAC6) were shown to primarily reverse the chemo-resistant CSL state. Single-cell RNA sequencing analysis with patient samples showed that HDAC targets and MYC signaling were promoted by chemotherapy and inhibited upon HDAC inhibitor treatment. In summary, HDAC inhibition can block chemotherapy-induced drug resistant phenotypes with ‘one-two punch’ strategy in refractory breast cancer cells.
Collapse
Affiliation(s)
- Feng Chi
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Jiayi Liu
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX 77030, United States
| | - Samuel W Brady
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, United States
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Jasmine A McQuerry
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States; Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, United States; Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, United States
| | - Sumana Majumdar
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Philip J Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, United States
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Sciences Center at Houston, Houston, TX 77030, United States
| | - Michael Kahn
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, United States.
| |
Collapse
|
39
|
Rutz J, Thaler S, Maxeiner S, Chun FKH, Blaheta RA. Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7. Int J Mol Sci 2020; 21:ijms21228724. [PMID: 33218199 PMCID: PMC7699211 DOI: 10.3390/ijms21228724] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer patients whose tumors develop resistance to conventional treatment often turn to natural, plant-derived products, one of which is sulforaphane (SFN). This study was designed to determine whether anti-tumor properties of SFN, identified in other tumor entities, are also evident in cultivated DU145 and PC3 prostate cancer cells. The cells were incubated with SFN (1–20 µM) and tumor cell growth and proliferative activity were evaluated. Having found a considerable anti-growth, anti-proliferative, and anti-clonogenic influence of SFN on both prostate cancer cell lines, further investigation into possible mechanisms of action were performed by evaluating the cell cycle phases and cell-cycle-regulating proteins. SFN induced a cell cycle arrest at the S- and G2/M-phase in both DU145 and PC3 cells. Elevation of histone H3 and H4 acetylation was also evident in both cell lines following SFN exposure. However, alterations occurring in the Cdk-cyclin axis, modification of the p19 and p27 proteins and changes in CD44v4, v5, and v7 expression because of SFN exposure differed in the two cell lines. SFN, therefore, does exert anti-tumor properties on these two prostate cancer cell lines by histone acetylation and altering the intracellular signaling cascade, but not through the same molecular mechanisms.
Collapse
|
40
|
Luo Q, Wu X, Chang W, Zhao P, Zhu X, Chen H, Nan Y, Luo A, Zhou X, Su D, Jiao W, Liu Z. ARID1A Hypermethylation Disrupts Transcriptional Homeostasis to Promote Squamous Cell Carcinoma Progression. Cancer Res 2020; 80:406-417. [PMID: 32015157 DOI: 10.1158/0008-5472.can-18-2446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022]
Abstract
Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complexes have a mutation rate of approximately 20% in human cancer, and ARID1A is the most frequently mutated component. However, some components of SWI/SNF complexes, including ARID1A, exhibit a very low mutation rate in squamous cell carcinoma (SCC), and their role in SCC remains unknown. Here, we demonstrate that the low expression of ARID1A in SCC is the result of promoter hypermethylation. Low levels of ARID1A were associated with a poor prognosis. ARID1A maintained transcriptional homeostasis through both direct and indirect chromatin-remodeling mechanisms. Depletion of ARID1A activated an oncogenic transcriptome that drove SCC progression. The anti-inflammatory natural product parthenolide was synthetically lethal to ARID1A-depleted SCC cells due to its inhibition of both HDAC1 and oncogenic signaling. These findings support the clinical application of parthenolide to treat patients with SCC with low ARID1A expression. SIGNIFICANCE: This study reveals novel inactivation mechanisms and tumor-suppressive roles of ARID1A in SCC and proposes parthenolide as an effective treatment for patients with SCC with low ARID1A expression.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Movement
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Homeostasis
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Prognosis
- Sesquiterpenes/pharmacology
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Zhejiang, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Shandong, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
41
|
Kuang Y, Han X, Cao P, Xiong D, Peng Y, Liu Z, Xu Z, Liang L, Roy M, Liu J, Nie L, Zhang J. p19 INK4d inhibits proliferation and enhances imatinib efficacy through BCR-ABL signaling pathway in chronic myeloid leukemia. Blood Cells Mol Dis 2020; 85:102477. [PMID: 32711219 DOI: 10.1016/j.bcmd.2020.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a kind of myeloproliferative disorder caused by a constitutively active BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs), imatinib and its derivatives, have achieved great progress in the treatment of CML. However, many CML patients do not respond to TKIs alone. p19INK4d, a cyclin-dependent kinase inhibitor, plays important roles in proliferation, DNA damage repair, apoptosis and cell differentiation, but its role in CML is unknown. Herein, we found that the expression of p19INK4d in CML patients was significantly lower than that in healthy controls. p19INK4d overexpression inhibits cell proliferation through cell cycle arrest, and cooperates with imatinib to inhibit CML more effectively in vitro and in vivo. Mechanistically, p19INK4d decreased the expression of BCR-ABL and its downstream molecules p-Mek1/2, moreover, the expression of Gli-1, c-myc, MUC1, Shh and TC48 also reduced significantly. Collectively, p19INK4d inhibits proliferation and enhances imatinib efficacy in the treatment of CML. These findings maybe have implications for developing potential targets to increase imatinib sensitivity for CML.
Collapse
Affiliation(s)
- Yijin Kuang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410008, China
| | - Dehui Xiong
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of South China University, Hengyang 421000, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of South China University, Hengyang 421000, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mridul Roy
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Erythropoiesis Research Center, Central South University, Changsha 410078, China
| | - Ling Nie
- Department of Hematology, Xiangya Hospital, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410008, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of South China University, Hengyang 421000, China.
| |
Collapse
|
42
|
Tao K, Cai Q, Zhang X, Zhu L, Liu Z, Li F, Wang Q, Liu L, Feng D. Astrocytic histone deacetylase 2 facilitates delayed depression and memory impairment after subarachnoid hemorrhage by negatively regulating glutamate transporter-1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:691. [PMID: 32617311 PMCID: PMC7327310 DOI: 10.21037/atm-20-4330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Delayed cognitive impairment (DCI) after subarachnoid hemorrhage (SAH) is one of the most common sequelae in patients. This study aimed to investigate the characteristics of the course and glutamatergic pathogenesis of DCI after SAH in mice. Methods A SAH mouse model of internal carotid puncture was used. Depressive and cognitive behaviors were detected by forced swimming and sucrose preference tests and Morris water maze test, respectively. Microdialysis and high-performance liquid chromatography (HPLC) were used to detect the interstitial glutamate. The expressions of histone deacetylases (HDACs), glutamate transporters, and glutamate receptors were examined. Primary astrocytes magnetically sorted from adult mice were cultured for glutamate uptake assay and protein and mRNA detection. Selective HDAC2 inhibitor and glutamate transporter-1 (GLT-1) inhibitor administered via were intraperitoneal injection to evaluate their effects on DCI in SAH mice. Results Depression and memory impairment lasted for more than 12 weeks and peaked at 8 weeks after SAH. Interstitial glutamate accumulation in the hippocampus and impaired glutamate uptake in astrocytes of the SAH mice were found during DCI, which could be explained by there being a significant decrease in GLT-1 expression but not in glutamate and aspartate transporter (GLAST) in hippocampal astrocytes. Meanwhile, the phosphorylation level of excitatory glutamate receptors (GluN2B and GluA1) in the hippocampus was significantly reduced, although there was no significant change in the expression of the receptors. Importantly, the expression of HDAC2 increased most significantly in astrocytes after SAH compared with that of other subtypes of HDACs. Inhibition of HDAC2 markedly rescued the decrease in GLT-1 expression after SAH through transcriptional regulation. Behavioral results showed that a selective HDAC2 inhibitor effectively improved DCI in SAH mice, but this effect could be weakened by GLT-1 inhibition. Conclusions In summary, our study suggests that the dysfunction of GLT-1-mediated glutamate uptake in astrocytes may be a key pathological mechanism of DCI after SAH, and that a specific inhibitor of HDAC2 may exert a potential therapy.
Collapse
Affiliation(s)
- Kai Tao
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xudong Zhang
- China-Nepal Friendship Medical Research Center of Rajiv Kumar Jha, School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Lin Zhu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenru Liu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Li
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Wang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
Afaloniati H, Angelopoulou K, Giakoustidis A, Hardas A, Pseftogas A, Makedou K, Gargavanis A, Goulopoulos T, Iliadis S, Papadopoulos V, Papalois A, Mosialos G, Poutahidis T, Giakoustidis D. HDAC1/2 Inhibitor Romidepsin Suppresses DEN-Induced Hepatocellular Carcinogenesis in Mice. Onco Targets Ther 2020; 13:5575-5588. [PMID: 32606772 PMCID: PMC7304783 DOI: 10.2147/ott.s250233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a frequently diagnosed cancer and a leading cause of cancer-related death worldwide. Its rapid progression, combined with the limited treatment options at late stages, imposes the need for early detection and aggressive intervention. Based on the knowledge that hepatocarcinogenesis is significantly influenced by histone acetylation, we directed our search for novel HCC therapeutics among histone deacetylation inhibitors (HDACi). The aim of the present study was to investigate the effect of HDAC1/2 inhibitor Romidepsin in the well-established mouse model of diethylnitrosamine (DEN)-induced HCC. MATERIALS AND METHODS C56BL/6 mice were treated with Romidepsin at the critical point of 10 months after DEN challenge and their livers were examined 2 months later using histopathology and morphometry. Protein levels were assessed in serum using ELISA and in liver tissues using Western blot and immunohistochemistry (in-situ detection). Gene expression was quantified using real-time PCR. RESULTS Romidepsin suppressed cancer progression. This effect was associated with decreased proliferation and increased apoptosis of cancer cells. The cell cycle regulator CK2a, the anti-inflammatory molecule PPAR-γ, and the tumor suppressors PTEN and CYLD were upregulated in treated HCC. By contrast, the expression of PI3K, NF-κB p65 and c-Jun was reduced. In line with this result, the levels of two major apoptosis regulators, ie, BAD and the multifunctional protein c-Met, were lower in the blood serum of treated mice compared to the untreated mice with HCC. CONCLUSION These findings suggest that Romidepsin, a drug currently used in the treatment of lymphoma, could also be considered in the management of early-stage HCC.
Collapse
Affiliation(s)
- Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexander Giakoustidis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Alexandros Hardas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Pseftogas
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kali Makedou
- Department of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Gargavanis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Thomas Goulopoulos
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Stavros Iliadis
- Department of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Papadopoulos
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Apostolos Papalois
- Experimental, Educational and Research Center, ELPEN, Pikermi, Attica, Greece
| | - George Mosialos
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Giakoustidis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| |
Collapse
|
44
|
Chronic Sulforaphane Administration Inhibits Resistance to the mTOR-Inhibitor Everolimus in Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21114026. [PMID: 32512849 PMCID: PMC7312500 DOI: 10.3390/ijms21114026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive bladder cancer growth is associated with abnormal activation of the mammalian target of the rapamycin (mTOR) pathway, but treatment with an mTOR inhibitor has not been as effective as expected. Rather, resistance develops under chronic drug use, prompting many patients to lower their relapse risk by turning to natural, plant-derived products. The present study was designed to evaluate whether the natural compound, sulforaphane (SFN), combined with the mTOR inhibitor everolimus, could block the growth and proliferation of bladder cancer cells in the short- and long-term. The bladder cancer cell lines RT112, UMUC3, and TCCSUP were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM) alone or in combination. Cell growth, proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins were evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Short-term application of SFN and/or everolimus resulted in significant tumor growth suppression, with additive inhibition on clonogenic tumor growth. Long-term everolimus treatment resulted in resistance development characterized by continued growth, and was associated with elevated Akt-mTOR signaling and cyclin-dependent kinase (CDK)1 phosphorylation and down-regulation of p19 and p27. In contrast, SFN alone or SFN+everolimus reduced cell growth and proliferation. Akt and Rictor signaling remained low, and p19 and p27 expressions were high under combined drug treatment. Long-term exposure to SFN+everolimus also induced acetylation of the H3 and H4 histones. Phosphorylation of CDK1 was diminished, whereby down-regulation of CDK1 and its binding partner, Cyclin B, inhibited tumor growth. In conclusion, the addition of SFN to the long-term everolimus application inhibits resistance development in bladder cancer cells in vitro. Therefore, sulforaphane may hold potential for treating bladder carcinoma in patients with resistance to an mTOR inhibitor.
Collapse
|
45
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
46
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
47
|
Zhao H, Wang Y, Yang C, Zhou J, Wang L, Yi K, Li Y, Wang Q, Shi J, Kang C, Zeng L. EGFR-vIII downregulated H2AZK4/7AC though the PI3K/AKT-HDAC2 axis to regulate cell cycle progression. Clin Transl Med 2020; 9:10. [PMID: 31993801 PMCID: PMC6987283 DOI: 10.1186/s40169-020-0260-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The EGFR-vIII mutation is the most common malignant event in GBM. Epigenetic reprogramming in EGFR-activated GBM has recently been suggested to downregulate the expression of tumour suppressor genes. Histone acetylation is important for chromatin structure and function. However, the role and biological function of H2AZK4/7AC in tumours have not yet been clarified. RESULTS In our study, we found that EGFR-vIII negatively regulated H2AZK4/7AC expression though the PI3K/AKT-HDAC2 axis. Because HDAC1 and HDAC2 are highly homologous enzymes that usually form multi-protein complexes for transcriptional regulation and epigenetic landscaping, we simultaneously knocked out HDAC1 and HDAC2 and found that H2AZK4/7AC and H3K27AC were upregulated, which partially released EGFR-vIII-mediated inhibition of USP11, negative regulator of cell cycle. In addition, we demonstrated in vitro and in vivo that FK228 induced G1/S transition arrest in GBM with EGFR-vIII mutation. FK228 could enhance anti-tumour activity by upregulating expression of the tumour suppressor USP11 in GBM cells. CONCLUSIONS EGFR-vIII mutation downregulates H2AZK4/7AC and H3K27AC, inhibiting USP11 expression though the PI3K/AKT-HDAC1/2 axis. FK228 is an effective and promising treatment for GBM with EGFR-vIII mutation.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Lin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Kaikai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yansheng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Jin Shi
- Department of Neurosurgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China.
| | - Liang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Cheng S, Wu T, Li Y, Huang J, Cai T. Romidepsin (FK228) in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury is Associated with Down-Regulation of the CYP2E1 Gene. Med Sci Monit 2020; 26:e918528. [PMID: 31954012 PMCID: PMC6986234 DOI: 10.12659/msm.918528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Romidepsin (FK228) or depsipeptide, is a selective inhibitor of histone deacetylase 1 (HDAC1) and HDAC2. This study aimed to investigate the effects and molecular mechanisms of romidepsin (FK228) in a mouse model of acute kidney injury (AKI) induced by lipopolysaccharide (LPS). Material/Methods The mouse model of AKI was developed by intraperitoneal injection of LPS. The mice were also treated intraperitoneally with romidepsin (FK228) six hours following injection of LPS. Markers of renal injury were measured, including blood urea nitrogen (BUN), serum creatinine (SCR), and serum cystatin C (Cys C) were measured. Histology and transmission electron microscopy were performed to evaluate tissue injury further. Levels of HDACs were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays were used to investigate the regulation of CYP2E1 expression. Results Treatment with romidepsin (FK228) significantly reduced the levels of BUN, SCR, and Cys C induced by LPS. Histology of the mouse kidneys showed that treatment with romidepsin (FK228) reduced the degree of renal injury. CYP2E1 significantly reduced following treatment with romidepsin (FK228) in the mouse model of AKI. Also, acetylation of H3 was upregulated following treatment with romidepsin (FK228), and binding of hepatocyte nuclear factor-1 alpha (HNF-1α) on the CYP2E1 promoter was significantly increased. Conclusions In a mouse model of LPS-induced AKI, treatment with romidepsin (FK228) downregulated the expression of CYP2E1 by inhibiting the binding if HNF-1α with the CYP2E1 promoter to reduce renal injury.
Collapse
Affiliation(s)
- Shulin Cheng
- Department of Urological Surgery, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Tao Wu
- Department of Urological Surgery, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Yugen Li
- Department of Urological Surgery, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Jing Huang
- Department of Urological Surgery, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Tao Cai
- Department of Urological Surgery, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| |
Collapse
|
49
|
Sanaei M, Kavoosi F, Esmi Z. The Effect of 5-Aza-2'-Deoxycytidine in Combination to and in Comparison with Vorinostat on DNA Methyltransferases, Histone Deacetylase 1, Glutathione S-Transferase 1 and Suppressor of Cytokine Signaling 1 Genes Expression, Cell Growth Inhibition and Apoptotic Induction in Hepatocellular LCL-PI 11 Cell Line. Int J Hematol Oncol Stem Cell Res 2020; 14:45-55. [PMID: 32337014 PMCID: PMC7167604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background: Aberrant methylation and histone deacetylation of tumor suppressor genes (TSGs) are the most epigenetic alterations involving in tumorigenesis. Overexpression of DNA methyltransferases (DNMTs) and histone deacetylase 1 (HDAC1) have been reported in several cancers. The reversion of hypermethylation and deacetylation by epi-drugs such as 5-aza-2'-deoxycytidine (5-AZA-CdR) and vorinostat (SAHA) can restore normal expression of TSGs. Previously, we reported that 5-AZA-CdR and valproic acid (VPA) can inhibit DNMT1 in hepatocellular carcinoma (HCC). The aim of this study was to investigate the effect of 5-AZA-CdR in combination to and in comparison with SAHA on DNMT1, DNMT3a, DNMT3b, histone deacetylase 1 (HDAC1), glutathione S-transferase 1 (GSTP1) and suppressor of cytokine signaling 1 (SOCS1) genes expression, cell growth inhibition and apoptotic induction in hepatocellular LCL-PI 11 cell line. Materials and Methods: The cells were treated with 5-AZA-CdR and SAHA and then MTT assay, cell apoptosis assay and Real-time quantitative RT-PCR (qRT-PCR) were done. Results: Both agents indicated significant inhibitory and apoptotic effect (P< 0.001). The apoptotic effect of SAHA was more than that of 5-Aza-CdR. The result of qRT-PCR indicated that 5-Aza-CdR decreased DNMT1, DNMT3a, DNMT3b and increased GSTP1and SOCS1 genes expression and SAHA decreased HDAC1 and increased GSTP1 and SOCS1 genes expression significantly. Maximal apoptosis and genes expression were seen with combined treatment. Conclusion: 5-AZA-CdR and SAHA down-regulated DNMT1, DNMT3a, DNMT3b, and HDAC1 and up-regulated GSTP1 and SOCS1 gene expression by which inhibited cell viability and induced apoptosis, suggesting that they could be used in the treatment of HCC.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Zahra Esmi
- Research Committee Student, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
50
|
Li P, Liu L, Dang X, Tian X. Romidepsin Induces G2/M Phase Arrest and Apoptosis in Cholangiocarcinoma Cells. Technol Cancer Res Treat 2020. [PMCID: PMC7570773 DOI: 10.1177/1533033820960754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Cholangiocarcinoma (CCA) is an extremely intractable malignancy since most patients are already in an advanced stage when firstly discovered. CCA needs more effective treatment, especially for advanced cases. Our study aimed to evaluate the effect of romidepsin on CCA cells in vitro and in vivo and explore the underlying mechanisms. Methods: The antitumor effect was determined by cell viability, cell cycle and apoptosis assays. A CCK-8 assay was performed to measure the cytotoxicity of romidepsin on CCA cells, and flow cytometry was used to evaluate the effects of romidepsin on the cell cycle and apoptosis. Moreover, the in vivo effects of romidepsin were measured in a CCA xenograft model. Results: Romidepsin could reduce the viability of CCA cells and induce G2/M cell cycle arrest and apoptosis, indicating that romidepsin has a significant antitumor effect on CCA cells in vitro. Mechanistically, the antitumor effect of romidepsin on the CCA cell lines was mediated by the induction of G2/M cell cycle arrest and promotion of cell apoptosis. The G2/M phase arrest of the CCA cells was associated with the downregulation of cyclinB and upregulation of the p-cdc2 protein, resulting in cell cycle arrest. The apoptosis of the CCA cells induced by romidepsin was attributed to the activation of caspase-3. Furthermore, romidepsin significantly inhibited the growth of the tumor volume of the CCLP-1 xenograft, indicating that romidepsin significantly inhibited the proliferation of CCA cells in vivo. Conclusions: Romidepsin suppressed the proliferation of CCA cells by inducing cell cycle arrest through cdc2/cyclinB and cell apoptosis by targeting caspase-3/PARP both in vitro and in vivo, indicating that romidepsin is a potential therapeutic agent for CCA.
Collapse
Affiliation(s)
- Pihong Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luguang Liu
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiangguo Dang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|