1
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Wang J, Wang X, Feng F, Pan C, Lan X, Luoreng Z. LncRNA HULIB promotes LPS induced inflammatory response in bovine mammary epithelial cells via PP2AB. Int Immunopharmacol 2024; 143:113496. [PMID: 39488035 DOI: 10.1016/j.intimp.2024.113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Bovine mastitis is regulated by genetic and environmental factors. Long non-coding RNAs (LncRNAs), which regulate various biological processes (immune system and biological development), have been found to play a role in bovine mammary inflammation responses. Here, a novel functional lncRNA, named lncRNA HULIB, was identified as a regulator during bovine mastitis. qRT-PCR and subcellular fractionation assays showed that lncRNA HULIB was significantly up-regulated in LPS-induced bMECs and was mainly localized in the cytoplasm. Gain- or loss-of-function experiments demonstrated that an increase in lncRNA HULIB expression elevated the expression of TLR4 and NF-κB1, which enhanced NF-κB activity, promoting the expression of pro-inflammatory cytokines (IL-6, IL-8, IL-1β, etc) and apoptosis-related genes (BAX, CASP9 and CASP3, etc), while the expression of proliferation-related genes (PCNA, Cyclin D1, Cyclin D2, CDK4 and CDK2) was down-regulated. Ultimately, these changes exacerbated the LPS-induced inflammatory response. Mechanistically, RNA pull-down and RNA immunoprecipitation (RIP) assays revealed that lncRNA HULIB could directly bind the PP2AB protein to regulate inflammatory responses. Overall, lncRNA HULIB is a pro-inflammatory regulator, and its silencing can alleviate the inflammatory responses of bMECs, providing a potential strategy for molecular therapy of bovine mastitis.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Fen Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Wang Q, Yang Z, Chen X, Yang Y, Jiang K. Noncoding RNA, friend or foe for nephrolithiasis? Front Cell Dev Biol 2024; 12:1457319. [PMID: 39633711 PMCID: PMC11614778 DOI: 10.3389/fcell.2024.1457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nephrolithiasis is one of the most common diseases in urology, characterized by notable incidence and recurrence rates, leading to significant morbidity and financial burden. Despite its prevalence, the precise mechanisms underlying stone formation remain incompletely understood, thus hindering significant advancements in kidney stone management over the past three decades. Investigating the pivotal biological molecules that govern stone formation has consistently been a challenging and high-priority task. A significant portion of mammalian genomes are transcribed into noncoding RNAs (ncRNAs), which have the ability to modulate gene expression and disease progression. They are thus emerging as a novel target class for diagnostics and pharmaceutical exploration. In recent years, the role of ncRNAs in stone formation has attracted burgeoning attention. They have been found to influence stone formation by regulating ion transportation, oxidative stress injury, inflammation, osteoblastic transformation, autophagy, and pyroptosis. These findings contributes new perspectives on the pathogenesis of nephrolithiasis. To enhance our understanding of the diagnostic and therapeutic potential of nephrolithiasis-associated ncRNAs, we summarized the expression profiles, biological functions, and clinical significance of these ncRNAs in the current review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Zhao X, Wang X, Xue G, Gao Y, Zhang Y, Li Y, Wang Y, Li J. Regulation of cell-mediated immune responses in dairy bulls via long non-coding RNAs from submandibular lymph nodes, peripheral blood, and the spleen. Genomics 2024; 116:110958. [PMID: 39536956 DOI: 10.1016/j.ygeno.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cell-mediated immune responses (CMIRs) are critical to building a robust immune system and reducing disease susceptibility in cattle. Long non-coding RNAs (lncRNAs) regulate various biological processes. However, to the best of our knowledge, the characterization and functions of lncRNAs and their regulations on the bovine CMIR have not been investigated comprehensively. In this study, experimental bulls were immunized with heat-killed preparation of Candida albicans (HKCA) to induce delayed-type hypersensitivity (DTH). Three bulls were classified as high- CMIR responders and three were low-CMIR responders, based on their classical DTH skin reactions. LncRNAs were identified in the submandibular lymph nodes, peripheral blood, and spleen of high- and low-CMIR animals using strand-specific RNA sequencing. A total of 21,003 putative lncRNAs were identified across tissues, and 420, 468, and 599 lncRNAs were differentially expressed between the two groups in the submandibular lymph node, peripheral blood, and spleen tissues, respectively. Functional analysis of the differentially expressed lncRNA (DElncRNA) target genes showed that a number of immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched, including immune response, cell adhesion, nucleosome, DNA packaging, antigen processing and presentation, and complement and coagulation cascades. Tissue specificity analysis indicated that lncRNA transcripts have stronger tissue specificity than mRNA. Furthermore, an interaction network was constructed based on DElncRNAs and DEGs, and 11, 14, and 11 promising lncRNAs were identified as potential candidate genes influencing immune response regulation in submandibular lymph nodes, peripheral blood, and spleen tissues, respectively. These results provide a foundation for further research into the biological functions of lncRNAs associated with bovine CMIR and identify candidate lncRNA markers for cell-mediated immune responses.
Collapse
Affiliation(s)
- Xiuxin Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guanghui Xue
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Yundong Gao
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Yuanpei Zhang
- Shandong Ox Livestock Breeding Co., Ltd., Jinan 250100, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yachun Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
5
|
Hazazi A, Khan FR, Albloui F, Arif S, Abdulaziz O, Alhomrani M, Sindi AAA, Abu-Alghayth MH, Abalkhail A, Nassar SA, Binshaya AS. Signaling pathways in HPV-induced cervical cancer: Exploring the therapeutic promise of RNA modulation. Pathol Res Pract 2024; 263:155612. [PMID: 39357186 DOI: 10.1016/j.prp.2024.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cervical cancer, originating from the epithelial tissue of the uterine cervix, constitutes the most commonly diagnosed malignancy among women worldwide. The predominant etiological factor underpinning cervical carcinogenesis is persistent infection with high-risk human papillomavirus (HPV) genotypes, notably HPV-16 and HPV-18. Oncoproteins encoded by high-risk HPV interfere with multiple essential cellular signaling cascades. Specifically, E5, E6, and E7 proteins disrupt the signaling pathways like p53, retinoblastoma tumor suppressor protein (pRB), The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK), and Wnt/β-catenin, promoting HPV-mediated carcinogenesis. This dysregulation disrupts cell cycle control, apoptosis, and metastasis through modulation of microRNAs (miRNA) and key cellular processes. The novel therapeutic interventions for HPV prevention and detection are fundamental to patient management. RNA-based treatment modalities offer the potential for manipulating critical pathways involved in cervical carcinogenesis. RNA therapeutics offer novel approaches to drug development by targeting intracellular genetic elements inaccessible to conventional modalities. Additional advantages include rapid design, synthesis, and a reduced genotoxic profile compared to DNA-based therapies. Despite beneficial attributes, system stability and efficient delivery remain critical parameters. This study assessed the intricate relationship between HPV, cervical cancer, and various signaling pathways. The study explores miRNAs' diagnostic and therapeutic potential, mall interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs)in cervical cancer management. The review highlights the prospect of RNA-targeted therapies to modulate specific cancer signaling pathways. This approach offers a novel strategy for cervical cancer treatment through precise regulation of cancer signaling. Future research should concentrate on developing RNA-targeted interventions to improve cervical cancer treatment outcomes through increased therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Quwayiyah, Shaqra University, Riyadh, Saudi Arabia; Department of Pharmaceutical Chemistry, Azad Institute of Pharmacy and Research, Lucknow, UP, India
| | - Fawaz Albloui
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Sultan Arif
- Department of Plastic Surgery and Burn Unit, Security Force Hospital, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, P.O.Box 66666, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Professor, Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
6
|
Xu H, Wu X, Yang Z, Shi X, Guo A, Hu C. N 6-methyladenosine-modified lncRNA in Staphylococcus aureus-injured bovine mammary epithelial cells. Arch Microbiol 2024; 206:431. [PMID: 39395056 DOI: 10.1007/s00203-024-04156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Staphylococcus aureus-induced mastitis is a serious disease in dairy bovine, with no currently effective treatment. Antibiotics demonstrate certain therapeutic potency in dairy husbandry; they generate drug-resistant bacteria, thereby harming public health. LncRNAs and m6A have been verified as potential targets in infectious diseases and have powerful regulatory capabilities. However, the biological regulation of lncRNAs with m6A modification in mastitis needs further investigation. This study aims to determine the m6A-modified lncRNAs in bovine mammary epithelial cells and their diversity during S. aureus induction. Heat-inactivated S. aureus was used to develop the cell injury model, and we subsequently found low cell viability and different m6A modification levels. Our analysis of m6A-modified lncRNA profiles through MeRIP-seq revealed significant differences in 140 peaks within 130 lncRNAs when cells were injured by S. aureus. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these differential m6A-modified lncRNAs were mainly enriched in the WNT pathway, and their functions were associated with amino acid metabolism, lipid translocation, and metalloproteinase activity. Here, we report for the first time lncRNAs with m6A modification in regulating S. aureus infection, revealing potential mechanisms and targets of infectious diseases, such as mastitis, from an epigenetics perspective.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiming Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhuai Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Yan N, Wang Z, Li Z, Zheng Y, Chang N, Xu K, Wang Q, Duan X. Arsenic Exposure Induces Neuro-immune Toxicity in the Cerebral Cortex and the Hippocampus via Neuroglia and NLRP3 Inflammasome Activation in C57BL/6 Mice. Biol Trace Elem Res 2024; 202:4554-4566. [PMID: 38148432 DOI: 10.1007/s12011-023-04012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
This study aimed to examine the immuntoxic effects of arsenic in the nervous system. Our results showed that arsenic increased corticocerebral and hippocampal weights (p < 0.05). Morris water maze tests revealed that arsenic significantly increased the time spent in latency to platform on the fourth day in 50 mg/L arsenic exposure and the fifth day in 25 and 50 mg/L arsenic exposure, as well as reduced the path length in target quadrant, time spent in target quadrant, and crossing times of the platform (p < 0.05). Hematoxylin-eosin staining showed that the vacuolated degeneration and pyknosis was found in the cerebral cortex and hippocampus of arsenic-treated mice. The mRNA levels of corticocerebral and hippocampal brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were decreased in the 50 mg/L arsenic-treated group (p < 0.05). In addition, immunofluorescence staining showed that 25 and 50 mg/L arsenic all increased the expression of CD11b and glial fibrillary acidic protein (GFAP) in the cerebral cortex and hippocampus (p < 0.05). Arsenic markedly raised antigen-presenting molecule MHCII and CD40 mRNA levels in the cerebral cortex and hippocampus and upregulated the cell chemokine receptor 5 (CCR5) and CCR7 mRNA levels in the cerebral cortex at the 50 mg/L arsenic group, and increased the CCR7 mRNA levels in the hippocampus at the 25 and 50 mg/L arsenic groups (p < 0.05). Arsenic activated the nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome, and enhanced its upstream promoter NF-κB protein level and downstream regulators IL-18 mRNA levels. Collectively, these results provide new evidences for the neuro-immune toxicity of arsenic.
Collapse
Affiliation(s)
- Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zhengdong Wang
- Department of Human Anatomy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zhou Li
- Occupational and Environmental Health Monitoring Department, Dezhou Center for Disease Control and Prevention, Dezhou, 253016, China
| | - Yang Zheng
- Department of Scientific Research, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Nan Chang
- Department of Food Quality and Safety, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
8
|
Cendron F, Rosani U, Franzoi M, Boselli C, Maggi F, De Marchi M, Penasa M. Analysis of miRNAs in milk of four livestock species. BMC Genomics 2024; 25:859. [PMID: 39277740 PMCID: PMC11401297 DOI: 10.1186/s12864-024-10783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Milk is essential for mammalian nutrition because it provides vital nutrients for growth and development. Milk composition, which is influenced by genetic and environmental factors, supports lactation, a complex process crucial for milk production and quality. Recent research has focused on noncoding RNAs, particularly microRNAs (miRNAs), which are present in body fluids and regulate gene expression post-transcriptionally. This study comprehensively characterizes miRNAs in milk of four livestock species, namely Bubalus bubalis, Capra hircus, Equus asinus, and Ovis aries and identifies potential target genes. RESULTS High-throughput sequencing of milk RNA resulted in distinct read counts across species: B. bubalis (8,790,441 reads), C. hircus (12,976,275 reads), E. asinus (9,385,067 reads), and O. aries (7,295,297 reads). E. asinus had the highest RNA mapping rate (94.6%) and O. aries the lowest (84.8%). A substantially greater proportion of miRNAs over other small RNAs was observed for the donkey milk sample (7.74%) compared to buffalo (0.87%), goat (1.57%), and sheep (1.12%). Shared miRNAs, which included miR-200a, miR-200b, miR-200c, and miR-23a among others, showed varying expression levels across species, confirmed by qPCR analysis. Functional annotation of predicted miRNA target genes highlighted diverse roles, with an enrichment in functions linked to metabolism and immunity. Pathway analysis identified immune response pathways as significant, with several miRNAs targeting specific genes across species, suggesting their regulatory function in milk. CONCLUSIONS Both conserved and species-specific miRNAs were detected in milk of the investigated species. The identified target genes of these miRNAs have important roles in neonatal development, adaptation, growth, and immune response. Furthermore, they influence milk and meat production traits in livestock.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy.
| | - Umberto Rosani
- Department of Biology (DiBio), University of Padova, Viale Giuseppe Colombo 3, Padua, 35131, Italy
| | - Marco Franzoi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Carlo Boselli
- Istituto Zooprofilattico Sperimentale del Lazio E Della Toscana "M. Aleandri" - National Reference Centre for Ovine and Caprine Milk and Dairy Products Quality (C.Re.L.D.O.C.), Rome, 00178, Italy
| | - Flavio Maggi
- Azienda Sanitaria Locale, Roma 4, Distretto 4, Via G. Verdi 1, Rignano Flaminio, Rome, 00068, Italy
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| |
Collapse
|
9
|
Liu Z, Gao Y, Feng X, Su Y, Lian H, Zhao J, Xu J, Liu Q, Song F. Hecogenin alleviates LPS-induced osteolysis via regulating pyroptosis and ROS involved Nrf2 activation. Biomed Pharmacother 2024; 177:116933. [PMID: 38901204 DOI: 10.1016/j.biopha.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
Reactive oxidative species (ROS) generation triggers pyroptosis and induces development of inflammatory osteolysis. Hecogenin (HG) has anti-inflammatory and antioxidative property, but its effects on inflammatory osteolysis remains unclear. In our study, we investigated the mechanism of HG on pyroptosis and its effect on inflammatory osteolysis in vitro and in vivo. The impact of HG on osteoclastogenesis was evaluated using cytotoxicity, TRAcP staining and bone resorption assays. The RNA-sequencing was employed to identify potential signaling pathways, and then RT-qPCR, western blot, immunofluorescence, and ELISA were used to verify. To determine the protective effect of HG in vivo, Lipopolysaccharide (LPS)-induced animal models were utilized, along with micro-CT and histological examination. HG suppressed RANKL-induced osteoclast differentiation, bone resorption, NFATc1 activity and downstream factors. RNA-sequencing results showed that HG inhibited osteoclastogenesis by modulating the inflammatory response and macrophage polarization. Furthermore, HG inhibited the NF-κB pathway, and deactivated the NLRP3 inflammasome. HG activated the expression of nuclear factor E2-related factor 2 (Nrf2) to eliminate ROS generation. Importantly, the inhibitory effect of HG on NLRP3 inflammasome could be reversed by treatment with the Nrf2 inhibitor ML385. In vivo, HG prevented the mice against LPS-induced osteolysis by suppressing osteoclastogenesis and inflammatory factors. In conclusion, HG could activate Nrf2 to eliminate ROS generation, inactivate NLRP3 inflammasome and inhibit pyroptosis, thereby suppressing osteoclastogenesis in vitro and alleviating inflammatory osteolysis in vivo, which indicating that HG might be a promising candidate to treat inflammatory osteolysis.
Collapse
Affiliation(s)
- Zhijuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yijie Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoliang Feng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuangang Su
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haoyu Lian
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Biomedical Sciences, the University of Western Australia, Perth, Australia.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Fangming Song
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Shi L, Han X, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr Issues Mol Biol 2024; 46:7558-7576. [PMID: 39057090 PMCID: PMC11276060 DOI: 10.3390/cimb46070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (L.S.); (X.H.); (F.L.); (J.L.); (Y.J.); (S.C.); (G.D.)
| |
Collapse
|
11
|
Sivagurunathan N, Rahamathulla MP, Al-Dossary H, Calivarathan L. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Mol Neurobiol 2024; 61:4619-4632. [PMID: 38105409 DOI: 10.1007/s12035-023-03809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Hussein Al-Dossary
- University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India.
| |
Collapse
|
12
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
13
|
Zhang K, Zhang M, Su H, Zhao F, Wang D, Zhang Y, Cao G, Zhang Y. Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals (Basel) 2024; 14:1572. [PMID: 38891619 PMCID: PMC11171030 DOI: 10.3390/ani14111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study is to explore the mechanism of IL-17A infection in the development of bacterial mastitis in dairy cows. In this study, RT-qPCR and ELISA were used to measure the promoting effect of IL-17A on the generation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (IL-8). In addition, Western blot (WB) was applied to measure the influences of IL-17A on the inflammation-related ERK and p38 proteins in the MAPK pathways. The results show that under the stimulation of LPS on cow mammary epithelial cells (CMECs), cytokines IL-1β, IL-6, IL-8, TNF-α, and IL-17A will exhibit significantly increased expression levels (p < 0.05). With inhibited endogenous expression of IL-17A, cytokines IL-1β, IL-6, IL-8, and TNF-α will present reduced genetic expression (p < 0.01), with reduced phosphorylation levels of ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). Upon the exogenous addition of the IL-17A cytokine, the genetic expression of cytokines IL-1β, IL-6, IL-8, and TNF-α will increase (p < 0.05), with increased phosphorylation levels of the ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). These results indicate that under the stimulation of CMECs with LPS, IL-17A can be expressed together with relevant inflammatory cytokines. Meanwhile, the inflammatory responses of mammary epithelial cells are directly proportional to the expression levels of IL-17A inhibited alone or exogenously added. In summary, this study shows that IL-17A could be used as an important indicator for assessing the bacterial infections of mammary glands, indicating that IL-17A could be regarded as one potential therapeutic target for mastitis.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Min Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Feifei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Guifang Cao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| |
Collapse
|
14
|
Wei H, Sun M, Wang R, Zeng H, Zhao B, Jin S. Puerarin mitigated LPS-ATP or HG-primed endothelial cells damage and diabetes-associated cardiovascular disease via ROS-NLRP3 signalling. J Cell Mol Med 2024; 28:e18239. [PMID: 38774996 PMCID: PMC11109626 DOI: 10.1111/jcmm.18239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 05/24/2024] Open
Abstract
The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1β and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.
Collapse
Affiliation(s)
- Huizhen Wei
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ruixuan Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hairong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shenyi Jin
- Department of EndocrinologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
15
|
Feng F, Li Y, Wang J, Dong Y, Li Y, Luoreng Z, Wang X. LncRNA CA12-AS1 targets miR-133a to promote LPS-induced inflammatory response in bovine mammary epithelial cells. Int J Biol Macromol 2024; 261:129710. [PMID: 38278392 DOI: 10.1016/j.ijbiomac.2024.129710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Bovine mastitis seriously affects milk production and quality and causes huge economic losses in the dairy industry. Recent studies have shown that long non-coding RNAs (lncRNAs) may regulate bovine mastitis. In this study, the expression of lncRNA CA12-AS1 was significantly upregulated in LPS-induced bovine mammary epithelial cells (bMECs) but negatively correlated with the expression of miR-133a, suggesting that it may be related to the inflammatory response in bMECs. Dual luciferase reporter gene assay revealed that miR-133a is a downstream target gene of lncRNA CA12-AS1. Furthermore, lncRNA CA12-AS1 silencing negatively regulated the expression of miR-133a inhibited the secretion of inflammatory factors (IL-6, IL-8 and IL-1β) and decreased the mRNA expression levels of nuclear factor kappa B (NF-κB) (p65/p50) and apoptosis-related genes (BAX, caspase3 and caspase9). LncRNA CA12-AS1 silencing also promoted the mRNA expression levels of the Tight junction (TJ) signaling pathway-related genes (Claudin-1, Occludin and ZO-1), apoptotic gene BCL2, proliferation-related genes (CDK2, CDK4 and PCNA) and the viability of bMECs. However, overexpression of lncRNA CA12-AS1 reversed the above effects. These results revealed that lncRNA CA12-AS1 is a pro-inflammatory regulator, and its silencing can alleviate bovine mastitis by targeting miR-133a, providing a novel strategy for molecular therapy of cow mastitis.
Collapse
Affiliation(s)
- Fen Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yanxia Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinpeng Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiwen Dong
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
16
|
Sun H, Cao X, Sumayya, Ma Y, Li H, Han W, Qu L. Genome-wide transcriptional profiling and functional analysis of long noncoding RNAs and mRNAs in chicken macrophages associated with the infection of avian pathogenic E. coli. BMC Vet Res 2024; 20:49. [PMID: 38326918 PMCID: PMC10848384 DOI: 10.1186/s12917-024-03890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Avian pathogenic E. coli (APEC) can cause localized or systemic infections, collectively known as avian colibacillosis, resulting in huge economic losses to poultry industry globally per year. In addition, increasing evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in regulating host inflammation in response to bacterial infection. However, the role of lncRNAs in the host response to APEC infection remains unclear. RESULTS Here, we found 816 differentially expressed (DE) lncRNAs and 1,798 DE mRNAs in APEC infected chicken macrophages by RNAseq. The identified DE lncRNA-mRNAs were involved in Toll like receptor signaling pathway, VEGF signaling pathway, fatty acid metabolism, phosphatidylinositol signaling system, and other types of O-glycan biosynthesis. Furthermore, we found the novel lncRNA TCONS_00007391 as an important immune regulator in APEC infection was able to regulate the inflammatory response by directly targeting CD86. CONCLUSION These findings provided a better understanding of host response to APEC infection and also offered the potential drug targets for therapy development against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xinqi Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sumayya
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, 225009, China
| | - Wei Han
- The Poultry Research Institute of Chinese Academy of Agricultural Sciences, Yangzhou, 225009, China
| | - Lujiang Qu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100091, China
| |
Collapse
|
17
|
Khanaliha K, Sadri Nahand J, Khatami A, Mirzaei H, Chavoshpour S, Taghizadieh M, Karimzadeh M, Donyavi T, Bokharaei‐Salim F. Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e1861. [PMID: 38332929 PMCID: PMC10850438 DOI: 10.1002/hsr2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - AliReza Khatami
- Department of VirologyIran University of Medical SciencesTehranIran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
| | - Sara Chavoshpour
- Department of VirologyTehran University of Medical SciencesTehranIran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF)Isfahan University of Medical ScienceIsfahanIran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | |
Collapse
|
18
|
Pehlivanoglu B, Aysal A, Agalar C, Egeli T, Ozbilgin M, Unek T, Unek IT, Oztop I, Aktas S, Sagol O. lncRNA XIST Interacts with Regulatory T Cells within the Tumor Microenvironment in Chronic Hepatitis B-Associated Hepatocellular Carcinoma. Turk Patoloji Derg 2024; 40:101-108. [PMID: 38265097 PMCID: PMC11131571 DOI: 10.5146/tjpath.2023.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Alterations in the expression of several long non-coding RNAs (lncRNAs) have been shown in chronic hepatitis B-associated hepatocellular carcinoma (CHB-HCC). Here, we aimed to investigate the association between the expression of inflammation-associated lncRNA X-inactive specific transcript (XIST) and the type of inflammatory cells within the tumor microenvironment. MATERIAL AND METHODS Twenty-one consecutive cirrhotic patients with CHB-HCC were included. XIST expression levels were investigated on formalin-fixed paraffin-embedded (FFPE) tumoral and peritumoral tissue samples by real-time polymerase chain reaction (RT-PCR). Immunohistochemical staining for CD3, CD4, CD8, CD25, CD163, CTLA4, and PD-1 were performed. The findings were statistically analyzed. RESULTS Of the 21 cases, 11 (52.4%) had tumoral and 10 (47.6%) had peritumoral XIST expression. No significant association was found between the degree of inflammation and XIST expression. The number of intratumoral CD3, CD4, CD8 and CD20 positive cells was higher in XIST-expressing tumors, albeit without statistical significance. Tumoral and peritumoral XIST expression tended to be more common in patients with tumoral and peritumoral CD4high inflammation. The number of intratumoral CD25 positive cells was significantly higher in XIST-expressing tumors (p=0.01). Tumoral XIST expression was significantly more common in intratumoral CD25high cases (p=0.04). Peritumoral XIST expression was also more common among patients with CD25high peritumoral inflammation, albeit without statistical significance (p=0.19). CONCLUSION lncRNA XIST is expressed in CHB-HCC and its expression is significantly associated with the inflammatory tumor microenvironment, particularly with the presence and number of CD25 (+) regulatory T cells. In vitro studies are needed to explore the detailed mechanism.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Cihan Agalar
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tufan Egeli
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Mucahit Ozbilgin
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tarkan Unek
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilkay Tugba Unek
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilhan Oztop
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Safiye Aktas
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Basic Oncology, Dokuz Eylul University, Institute of Oncology, Izmir, Turkey
| | - Ozgul Sagol
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
19
|
Wang JM, Yang J, Xia WY, Wang YM, Zhu YB, Huang Q, Feng T, Xie LS, Li SH, Liu SQ, Yu SG, Wu QF. Comprehensive Analysis of PANoptosis-Related Gene Signature of Ulcerative Colitis. Int J Mol Sci 2023; 25:348. [PMID: 38203518 PMCID: PMC10779047 DOI: 10.3390/ijms25010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Accumulating evidence shows that the abnormal increase in the mortality of intestinal epithelial cells (IECs) caused by apoptosis, pyroptosis, and necroptosis is closely related to the function of mucous membrane immunity and barrier function in patients with ulcerative colitis (UC). As a procedural death path that integrates the above-mentioned many deaths, the role of PANoptosis in UC has not been clarified. This study aims to explore the characterization of PANoptosis patterns and determine the potential biomarkers and therapeutic targets. We constructed a PANoptosis gene set and revealed significant activation of PANoptosis in UC patients based on multiple transcriptome profiles of intestinal mucosal biopsies from the GEO database. Comprehensive bioinformatics analysis revealed five key genes (ZBP1, AIM2, CASP1/8, IRF1) of PANoptosome with good diagnostic value and were highly correlated with an increase in pro-inflammatory immune cells and factors. In addition, we established a reliable ceRNA regulatory network of PANoptosis and predicted three potential small-molecule drugs sharing calcium channel blockers that were identified, among which flunarizine exhibited the highest correlation with a high binding affinity to the targets. Finally, we used the DSS-induced colitis model to validate our findings. This study identifies key genes of PANoptosis associated with UC development and hypothesizes that IRF1 as a TF promotes PANoptosome multicomponent expression, activates PANoptosis, and then induces IECs excessive death.
Collapse
Affiliation(s)
- Jun-Meng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiao Yang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wan-Yu Xia
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yue-Mei Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuan-Bing Zhu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Huang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Feng
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu-Shuang Xie
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Si-Hui Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu-Qing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu-Guang Yu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu 611137, China
- Key Laboratory of Acupuncture for Senile Disease, Chengdu University of TCM, Ministry of Education, Chengdu 611137, China
| |
Collapse
|
20
|
Chen Y, Zhang X, Yang J, Feng W, Deng G, Xu S, Guo M. Extracellular Vesicles Derived from Selenium-Deficient MAC-T Cells Aggravated Inflammation and Apoptosis by Triggering the Endoplasmic Reticulum (ER) Stress/PI3K-AKT-mTOR Pathway in Bovine Mammary Epithelial Cells. Antioxidants (Basel) 2023; 12:2077. [PMID: 38136197 PMCID: PMC10740620 DOI: 10.3390/antiox12122077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.
Collapse
Affiliation(s)
- Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiangqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Jing Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Wen Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| |
Collapse
|
21
|
Wu YX, Xu RY, Jiang L, Chen XY, Xiao XJ. MicroRNA-30a-5p Promotes Chronic Heart Failure in Rats by Targeting Sirtuin-1 to Activate the Nuclear Factor-κB/NOD-Like Receptor 3 Signaling Pathway. Cardiovasc Drugs Ther 2023; 37:1065-1076. [PMID: 35488974 DOI: 10.1007/s10557-021-07304-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE MicroRNA-30a-5p (miR-30a-5p) has been identified as a marker of heart failure; however, its functional mechanisms in chronic heart failure (CHF) remain unknown. We aim to investigate the role of miR-30a-5p targeting sirtuin-1 (SIRT1) in myocardial remodeling in CHF via the nuclear factor-κB/NOD-like receptor 3 (NF-κB/NLRP3) signaling pathway. METHODS CHF rat models were established using aortic coarctation. The expression of miR-30a-5p, SIRT1, and the NF-κB/NLRP3 signaling pathway-related factors in CHF rats was determined. The CHF rats were then respectively treated with altered miR-30a-5p or SIRT1 to explore their roles in cardiac function, myocardial function, inflammatory response, pathological changes, and cardiomyocyte apoptosis. The binding relation between miR-30a-5p and SIRT1 was confirmed. RESULTS MiR-30a-5p was upregulated whereas SIRT1 was downregulated in myocardial tissues of CHF rats. MiR-30a-5p inhibition or SIRT1 overexpression improved cardiac and myocardial function, and suppressed the inflammatory response, alleviated pathological changes and inhibited cardiomyocyte apoptosis in CHF rats. MiR-30a-5p targeted SIRT1 to regulate the NF-κB/NLRP3 signaling pathway. In CHF rats, downregulated miR-30a-5p and silenced SIRT1 could reverse the beneficial effects of downregulated miR-30a-5p. CONCLUSION Inhibited miR-30a-5p inhibits CHF progression via the SIRT1-mediated NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yu-Xian Wu
- Department of Critical Care Medicine, Quanzhou First Hospital, Quanzhou, 362000, Fujian Province, China
| | - Rong-Yu Xu
- Department of Thoracic Surgery, Quanzhou First Hospital, Quanzhou, 362000, Fujian Province, China
| | - Ling Jiang
- Department of Cardiovascular Medicine, The First Hospital of Nanping, Nanping, 353000, Fujian Province, China
| | - Xiang-Yan Chen
- Department of Critical Care Medicine, Quanzhou First Hospital, Quanzhou, 362000, Fujian Province, China
| | - Xiong-Jian Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
22
|
Xu H, Lin C, Wang C, Zhao T, Yang J, Zhang J, Hu Y, Qi X, Chen X, Chen Y, Chen J, Guo A, Hu C. ALKBH5 Stabilized N 6-Methyladenosine-Modified LOC4191 to Suppress E. coli-Induced Apoptosis. Cells 2023; 12:2604. [PMID: 37998339 PMCID: PMC10670315 DOI: 10.3390/cells12222604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
E. coli is a ubiquitous pathogen that is responsible for over one million fatalities worldwide on an annual basis. In animals, E. coli can cause a variety of diseases, including mastitis in dairy cattle, which represents a potential public health hazard. However, the pathophysiology of E. coli remains unclear. We found that E. coli could induce global upregulation of m6A methylation and cause serious apoptosis in bovine mammary epithelial cells (MAC-T cells). Furthermore, numerous m6A-modified lncRNAs were identified through MeRIP-seq. Interestingly, we found that the expression of LOC4191 with hypomethylation increased in MAC-T cells upon E. coli-induced apoptosis. Knocking down LOC4191 promoted E. coli-induced apoptosis and ROS levels through the caspase 3-PARP pathway. Meanwhile, knocking down ALKBH5 resulted in the promotion of apoptosis through upregulated ROS and arrested the cell cycle in MAC-T cells. ALKBH5 silencing accelerated LOC4191 decay by upregulating its m6A modification level, and the process was recognized by hnRNP A1. Therefore, this indicates that ALKBH5 stabilizes m6A-modified LOC4191 to suppress E. coli-induced apoptosis. This report discusses an initial investigation into the mechanism of m6A-modified lncRNA in cells under E. coli-induced apoptosis and provides novel insights into infectious diseases.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Tianrui Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Jinghan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Junhao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Yanjun Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Xue Qi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
| |
Collapse
|
23
|
Wang G, Wang Z, Zhang J, Shen Y, Hou X, Su L, Chen W, Chen J, Guo X, Song H. Treatment of androgenetic alopecia by exosomes secreted from hair papilla cells and the intervention effect of LTF. J Cosmet Dermatol 2023; 22:2996-3007. [PMID: 37553912 DOI: 10.1111/jocd.15890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is the most common cause of chronic progressive hair loss in men, and AGA has a severe negative impact on the quality of life and physical and mental health of patients. METHODS Four female C57BL/6 mice were isolated from DP cells in culture (≤4 generations) after stimulation of DPC proliferation by herbal concentrations obtained by the CCK-8 method, and exosomes were isolated by differential centrifugation at low temperature. Testosterone propionate and topical hair removal treatments were used together to establish the C57BL/6 mouse AGA model, which was treated with LTF, 5% minoxidil, and LTF-DPC-EXO, respectively. ELISA was used to detect serum hormone levels, in vivo tracing was used to observe dynamic changes in exosomes, H&E staining showed changes in mouse hair follicle tissue, and (q) RT-PCR and WB were used to detect dorsal skin VEGF, AKT1, and CASP3 expression in dorsal skin tissues. RESULTS Hair regeneration was significant in the LTF group, minoxidil group, and LTF-DPC-EXO group mice, and the hair growth was only seen in the local skin in the model group. The hormone T in all treatment groups was lower than that in the model group, and e2 was higher than that in the model group. (q) RT-PCR and western blot showed that VEGF and AKT1 expressions were upregulated and Caspase3 expression was downregulated in the skin sections of mice in the treatment groups. CONCLUSION DPC-EXO obtained through LTF may activate AKT1 and VEGF in the PI3K/AKT signaling pathway to inhibit CASP3, thereby protecting DPC to restore the hair growth.
Collapse
Affiliation(s)
- Guiyue Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhili Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Shen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Hou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Su
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahao Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Abd-Elmawla MA, Elsabagh YA, Aborehab NM. Association of XIST/miRNA155/Gab2/TAK1 cascade with the pathogenesis of anti-phospholipid syndrome and its effect on cell adhesion molecules and inflammatory mediators. Sci Rep 2023; 13:18790. [PMID: 37914735 PMCID: PMC10620142 DOI: 10.1038/s41598-023-45214-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Anti-phospholipid syndrome (APS) is an autoimmune disease characterized by thrombosis and miscarriage events. Still, the molecular mechanisms underlying APS, which predisposes to a wide spectrum of complications, are being explored. Seventy patients with primary and secondary APS were recruited, in addition to 35 healthy subjects. Among APS groups, the gene expression levels of XIST, Gab2, and TAK1 were higher along with declined miRNA155 level compared with controls. Moreover, the sera levels of ICAM-1, VCAM-1, IL-1ꞵ, and TNF-α were highly elevated among APS groups either primary or secondary compared with controls. The lncRNA XIST was directly correlated with Gab2, TAK1, VCAM-1, ICAM-1, IL-1ꞵ, and TNF-α. The miRNA155 was inversely correlated with XIST, Gab2, and TAK1. Moreover, ROC curve analyses subscribed the predictive power of the lncRNA XIST and miRNA155, to differentiate between primary and secondary APS from control subjects. The lncRNA XIST and miRNA155 are the upstream regulators of the Gab2/TAK1 axis among APS patients via influencing the levels of VCAM-1, ICAM-1, IL1ꞵ, and TNF-α which propagates further inflammatory and immunological streams. Interestingly, the study addressed that XIST and miRNA155 may be responsible for the thrombotic and miscarriage events associated with APS and provides new noninvasive molecular biomarkers for diagnosing the disease and tracking its progression.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yumn A Elsabagh
- Internal Medicine Department (Rheumatology and Clinical Immunology Unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nora M Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
25
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
26
|
Li K, Ran X, Zeng Y, Li S, Hu G, Wang X, Li Y, Yang Z, Liu J, Fu S. Maslinic acid alleviates LPS-induced mice mastitis by inhibiting inflammatory response, maintaining the integrity of the blood-milk barrier and regulating intestinal flora. Int Immunopharmacol 2023; 122:110551. [PMID: 37406397 DOI: 10.1016/j.intimp.2023.110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Mastitis occurs frequently in breastfeeding women and not only affects the women's health but also hinders breastfeeding. Maslinic acid is a type of pentacyclic triterpenoid widely found in olives that has good anti-inflammatory activity. This study aims to discuss the protective function of maslinic acid against mastitis and its underlying mechanism. For this, mice models of mastitis were established using lipopolysaccharide (LPS). The results revealed that maslinic acid reduced the pathological lesions in the mammary gland. In addition, it reduced the generation of pro-inflammatory factors and enzymes (IL-6, IL-1β, TNF-α, iNOS, and COX2) in both mice mammary tissue and mammary epithelial cells. The high-throughput 16S rDNA sequencing of intestinal flora showed that in mice with mastitis, maslinic acid treatment altered β-diversity and regulated microbial structure by increasing the abundance of probiotics such as Enterobacteriaceae and downregulating harmful bacteria such as Streptococcaceae. In addition, maslinic acid protected the blood-milk barrier by maintaining tight-junction protein expression. Furthermore, maslinic acid downregulated mammary inflammation by inhibiting the activation of NLRP3 inflammasome, AKT/NF-κB, and MAPK signaling pathways. Thus, in a mice model of LPS-induced mastitis, maslinic acid can inhibit the inflammatory response, protect the blood-milk barrier, and regulate the constitution of intestinal flora.
Collapse
Affiliation(s)
- Kefei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xin Ran
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yiruo Zeng
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang 110164, China
| | - Guiqiu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoxuan Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ying Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhanqing Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
27
|
Zhao T, Zhou Z, Zhao S, Wan H, Li H, Hou J, Wang J, Qian M, Shen X. Vincamine as an agonist of G protein-coupled receptor 40 effectively ameliorates pulmonary fibrosis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154919. [PMID: 37392673 DOI: 10.1016/j.phymed.2023.154919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an irreversible and fatal lung disease with limited therapeutic options. G protein-coupled receptor 40 (GPR40) has been developed as a promising therapeutic target for metabolic disorders and functions potently in varied pathological and physiological processes. Vincamine (Vin) is a monoterpenoid indole alkaloid originated from Madagascar periwinkle and was reported as a GPR40 agonist in our previous work. PURPOSE Here, we aimed to clarify the role of GPR40 in PF pathogenesis by using the determined GPR40 agonist Vin as a probe and explore the potential of Vin in ameliorating PF in mice. METHODS Pulmonary GPR40 expression alterations were assessed in both PF patients and bleomycin-induced PF mice (PF mice). Vin was used to evaluate the therapeutic potential of GPR40 activation for PF and the underlying mechanism was intensively investigated by assays against GPR40 knockout (Ffar1-/-) mice and the cells transfected with si-GPR40 in vitro. RESULTS Pulmonary GPR40 expression level was highly downregulated in PF patients and PF mice. Pulmonary GPR40 deletion (Ffar1-/-) exacerbated pulmonary fibrosis as evidenced by the increases in mortality, dysfunctional lung index, activated myofibroblasts and extracellular matrix (ECM) deposition in PF mice. Vin-mediated pulmonary GPR40 activation ameliorated PF-like pathology in mice. Mechanistically, Vin suppressed ECM deposition by GPR40/β-arrestin2/SMAD3 pathway, repressed inflammatory response by GPR40/NF-κB/NLRP3 pathway and inhibited angiogenesis by decreasing GPR40-mediated vascular endothelial growth factor (VEGF) expression in the region of interface to normal parenchyma in pulmonary fibrotic tissues of mice. CONCLUSION Pulmonary GPR40 activation shows promise as a therapeutic strategy for PF and Vin exhibits high potential in treating this disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shimei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiqi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Honglin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiwei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China
| | - Minyi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing 210023, China.
| |
Collapse
|
28
|
Elahimanesh M, Najafi M. Cross talk between bacterial and human gene networks enriched using ncRNAs in IBD disease. Sci Rep 2023; 13:7704. [PMID: 37169818 PMCID: PMC10175251 DOI: 10.1038/s41598-023-34780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term inflammatory immune-mediated gut illness with several extra-intestinal complications. The aims of this study were to identify a novel network-based meta-analysis approach on the basis of the combinations of the differentially expressed genes (DEGs) from microarray data, to enrich the functional modules from human protein-protein interaction (PPI) and gene ontology (GO) data, and to profile the ncRNAs on the genes involved in IBD. The gene expression profiles of GSE126124, GSE87473, GSE75214, and GSE95095 are obtained from the Gene Expression Omnibus (GEO) database based on the study criteria between 2017 and 2022. The DEGs were screened by the R software. DEGs were then used to examine gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The ncRNAs including the miRNAs and ceRNAs were predicted on the PPIs visualized using Cytoscape. Enrichment analysis of genes with differential expression (n = 342) using KEGG and GO showed that the signaling pathways related with staphylococcus aureus and pertussis bacterial infections may stimulate the immune system and exacerbate IBD via the interaction with human proteins including Fibrinogen gamma chain (FGG), Keratin 10 (KRT10), and Toll like receptor 4 (TLR4). By building a ceRNA network, lncRNA XIST and NEAT1 were determined by affecting common miRNAs, hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-6763-5p, hsa-miR-4436a, and hsa-miR-520a-5p. Additionally, the chromosome regions including NM_001039703 and NM_006267, which produce the most potent circRNAs play a significant role in the ceRNA network of IBD. Also, we predicted the siRNAs that would be most effective against the bacterial genes in staphylococcus aureus and pertussis infections. These findings suggested that three genes (FGG, KRT10, and TLR4), six miRNAs (hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-4436a, hsa-miR-520a-5p, and hsa-miR-6763-5p), two lncRNAs (XIST and NEAT1), and chromosomal regions including NM_001039703 and NM_006267 with the production of the most effective circRNAs are involved in the ncRNA-associated ceRNA network of IBD. These ncRNA profiles are related to the described gene functions and may play therapeutic targets in controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Yang Y, Ge J, Lu Y, Zhou Y, Sun H, Li H. Long noncoding RNAs expression profile of RIP2 knockdown in chicken HD11 macrophages associated with avian pathogenic E. coli (APEC) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104650. [PMID: 36736641 DOI: 10.1016/j.dci.2023.104650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Avian pathogenic E. coli (APEC) has been detected to cause many acute and chronic diseases, resulting in huge economic losses to the poultry industry. Previous experiments have identified the effect of receptor interacting serine/threonine kinase 2 (RIP2) gene in APEC infection. Moreover, increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the anti-bacteria responses. However, little is known about the functions of lncRNAs, especially related to RIP2, in response to APEC. Therefore, we tried to reveal lncRNAs potentially involved in the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2. A total of 1856 and 1373 differentially expressed (DE) lncRNAs were identified in knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. APEC and shRIP2 vs. wild type cells (WT), respectively, which were mainly enriched in lysosome, phagosome, NOD-like receptor signaling pathway, TGF-beta signaling pathway. Significantly, TCONS_00009695 regulated by RIP2 could directly alter the expression of target BIRC3 to modulate cytokines and to participate in immune and inflammatory response against APEC infection. Our findings aid to a better understanding of host responses to APEC infection and provide new directions for understanding the potential association between lncRNAs and APEC pathogenesis.
Collapse
Affiliation(s)
- Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiayi Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuyang Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, 225009, China; Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, 225009, China
| |
Collapse
|
30
|
Li YX, Jiao P, Wang XP, Wang JP, Feng F, Bao BW, Dong YW, Luoreng ZM, Wei DW. RNA-seq reveals the role of miR-223 in alleviating inflammation of bovine mammary epithelial cells. Res Vet Sci 2023; 159:257-266. [PMID: 37192556 DOI: 10.1016/j.rvsc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Bovine mammary epithelial cells (bMECs) are involved in the early defense against the invasion of intramammary pathogens and are essential for the health of bovine mammary gland. MicroRNA (MiRNA) is a key factor that regulates cell state and physiological function. In the present study, the transcriptome profiles of miR-223 inhibitor transfection group (miR-223_Inhibitor) and negative control inhibitor transfection group (NC_Inhibitor) within bMECs were detected via the RNA sequencing (RNA-seq) platform. Based on these experiments, the differentially expressed mRNAs (DE-mRNAs) of the miR-223_Inhibitor transfection group were screened, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analyses of DE-mRNAs were performed. The results revealed that compared with the NC_Inhibitor, 224 differentially expressed genes (DEGs) were identified in the miR-223_Inhibitor, including 184 upregulated and 40 downregulated genes. The functional annotation of the above DEGs indicated that some of these genes are involved in the immune response generated by extracellular substance stimulation, regulation of the activity of cytokines and chemokines, and the immune signaling pathways of NF-κB and TNF. Meanwhile, miR-223_inhibitor upregulated the immune key genes IRF1 and NFκBIA, cytokines IL-6 and IL-24, as well as chemokines CXCL3, CXCL5, and CCR6, triggering a signaling cascade response that exacerbated inflammation in bMECs. These results suggested that miR-223 plays an important role in inhibiting the inflammatory response and maintaining the stability of bMECs, and is a potential target for treating mastitis in dairy cows.
Collapse
Affiliation(s)
- Yan-Xia Li
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fen Feng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Bin-Wu Bao
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yi-Wen Dong
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China.
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
31
|
Xiong X, Chen C, Li X, Yang J, Zhang W, Wang X, Zhang H, Peng M, Li L, Luo P. Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer. Front Oncol 2023; 13:972558. [PMID: 37064115 PMCID: PMC10090514 DOI: 10.3389/fonc.2023.972558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
PurposeBladder cancer (BLCA) is one of the most frequently diagnosed urological malignancies and is the 4th most common cancer in men worldwide. Molecular targets expressed in bladder cancer (BLCA) are usually used for developing targeted drug treatments. However, poor prognosis and poor immunotherapy efficacy remain major challenges for BLCA. Numerous studies have shown that long non-coding RNAs (LncRNAs) play an important role in the development of cancer. However, the role of lncRNAs related to inflammation in BLCA and their prognostic value remain unclear. Therefore, this study is aimed to explore new potential biomarkers that can predict cancer prognosis.MethodsWe downloaded BLCA-related RNA sequencing data from The Cancer Genome Atlas (TCGA) and searched for inflammation-related prognostic long non-coding RNAs (lncRNAs) by univariate Cox (uniCox) regression and co-expression analysis. We used the least absolute shrinkage and selection operator (LASSO) analysis to construct an inflammation-related lncRNA prognosis risk model. Samples were divided into high-risk score (HRS) group and low-risk score (LRS) group based on the median value of risk scores. The independent variable factors were identified by univariate Cox (uni-Cox) and multivariate Cox (multi-Cox) regression analyses, and receiver operating characteristic (ROC) curves were used to compare the role of different factors in predicting outcomes. Nomogram and Calibration Plot were generated by the R package rms to analyze whether the prediction results are correct and show good consistency. Correlation coefficients were calculated by Pearson analysis. The Kaplan-Meier method was used to assess the prognostic value. The expression of 7 lncRNAs related with inflammation was also confirmed by qRT-PCR in BLCA cell lines. Kyoto Encyclopedia of Gene and Genome (KEGG) pathways that were significantly enriched (P < 0.05) in each risk group were identified by the GSEA software. The R package pRRophetic was used to predict the IC50 of common chemotherapeutic agents. TIMER, XCELL, QUANTISEQ, MCPCOUNTER, EPIC and CIBERSORT were applied to quantify the relative proportions of infiltrating immune cells. We also used package ggpubr to evaluate TME scores and immune checkpoint activation in LRS and HRS populations. R package GSEABase was used to analyze the activity of immune cells or immune function. Different clusters of principal component analysis (PCA), t-distribution random neighborhood embedding (t-SNE), and Kaplan-Meier survival were analyzed using R package Rtsne’s. The R package ConsensesClusterPlus was used to class the inflammation-related lncRNAs.ResultsIn this study, a model containing 7 inflammation-related lncRNAs was constructed. The calibration plot of the model was consistent with the prognosis prediction outcomes. The 1-, 3-, and 5-year ROC curve (AUC) were 0.699, 0.689, and 0.699, respectively. High-risk patients were enriched in lncRNAs related with tumor invasion and immunity, and had higher levels of immune cell infiltration and immune checkpoint activation. Hot tumors and cold tumors were effectively distinguished by clusters 2 and 3 and cluster 1, respectively, which indicated that hot tumors are more susceptible to immunotherapy.ConclusionOur study showed that inflammation-related LncRNAs are closely related with BLCA, and inflammation-related lncRNA can accurately predict patient prognosis and effectively differentiate between hot and cold tumors, thus improving individualized immunotherapy for BLCA patients. Therefore, this study provides an effective predictive model and a new therapeutic target for the prognosis and clinical treatment of BLCA, thus facilitating the development of individualized tumor therapy.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science Technology, Wuhan, China
| | - Chen Chen
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science Technology, Wuhan, China
| | - Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Lili Li, ; Min Peng,
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Lili Li, ; Min Peng,
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital School of Medicine, Wuhan University of Science Technology, Wuhan, China
- *Correspondence: Pengcheng Luo, ; Lili Li, ; Min Peng,
| |
Collapse
|
32
|
Shen J, Yang F, Wang G, Mou X, Li J, Ding X, Wang X, Li H. Paeoniflorin alleviates inflammation in bovine mammary epithelial cells induced by Staphylococcus haemolyticus through TLR2/NF-κB signaling pathways. Res Vet Sci 2023; 156:95-103. [PMID: 36796241 DOI: 10.1016/j.rvsc.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is one of the most common coagulase-negative staphylococci (CoNS) isolates from bovine mastitis. Paeoniflorin (PF) shows anti-inflammatory effects on different inflammatory diseases in vitro studies and in vivo animal experiments. In this study, the viability of bovine mammary epithelial cells (bMECs) was detected by the cell counting kit-8 experiment. Subsequently, bMECs were induced with S. haemolyticus, and the induction dosage was determined. The expression of pro-inflammatory cytokines and toll-like receptor (TLR2) and nuclear factor kappa-B (NF-κB) signaling pathway-related genes were investigated by quantitative real-time PCR. The critical pathway proteins were detected by western blot. The results showed that the multiplicity of infection (MOI; the ratio of bacteria to bMECs) 5:1 of S. haemolyticus for 12 h could cause cellular inflammation, which was selected to establish the inflammatory model. Incubation with 50 μg/ml PF for 12 h was the best intervention condition for cells stimulated by S. hemolyticus. Quantitative real-time PCR and western blot analysis showed that PF inhibited the activation of TLR2 and NF-κB pathway-related genes and the expression of related proteins. Western blot results showed that PF suppressed the expression of NF-κB unit p65, NF-κB unit p50, and MyD88 in bMECs stimulated by S. haemolyticus. The inflammatory response pathway and molecular mechanism caused by S. haemolyticus on bMECs are related to TLR2-mediated NF-κB signaling pathways. The anti-inflammatory mechanism of PF may also be through this pathway. Therefore, PF is expected to develop potential drugs against CoNS-induced bovine mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guibo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaoqing Mou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jinyu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
33
|
Ding J, Chen J, Yin X, Zhou J. Current understanding on long non-coding RNAs in immune response to COVID-19. Virus Res 2023; 323:198956. [PMID: 36208691 PMCID: PMC9532266 DOI: 10.1016/j.virusres.2022.198956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic threatening the lives and health of people worldwide. Currently, there are no effective therapies or available vaccines for COVID-19. The molecular mechanism causing acute immunopathological diseases in severe COVID-19 is being investigated. Long noncoding RNAs (lncRNAs) have been proven to be involved in many viral infections, such as hepatitis, influenza and acquired immune deficiency syndrome. Many lncRNAs present differential expression between normal tissue and virus-infected tissue. However, the role of lncRNAs in SARS-CoV-2 infection has not been fully elucidated. This study aimed to review the relationship between lncRNAs and viral infection, interferon and cytokine storms in COVID-19, hoping to provide novel insights into promising targets for COVID-19 treatment.
Collapse
Affiliation(s)
- Jing Ding
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jing Chen
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Xude Yin
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Yuan Y, Li N, Fu M, Ye M. Identification of Critical Modules and Biomarkers of Ulcerative Colitis by Using WGCNA. J Inflamm Res 2023; 16:1611-1628. [PMID: 37092131 PMCID: PMC10120594 DOI: 10.2147/jir.s402715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Background Ulcerative colitis (UC) is a chronic inflammatory disease of the colon and rectum that has no exact cause and is characterized by relapsing and remitting episodes. We aimed to find biomarkers of UC and its causes. Methods We got GSE73661 from the GEO database and used WGCNA to find DEGs that were expressed in the same way in both normal and UC samples. To identify the co-expression modules, we used Weighted Gene Co-Expression Network Analysis. Next, we selected genes that were both DEGs and parts of main modules. Later, three datasets were used to find the hub genes, and qRT-PCR was utilized to confirm the in-silico findings. Additionally, we analyzed the connection between the hub genes and the filtration of immune cells in UC. Using the databases, we made predictions about the miRNAs and lncRNAs that regulate the hub genes and predicted possible therapeutic drugs. Results We found 822 DEGs and three main modules related to immunity, endoplasmic reticulum, and metabolism. Using another three datasets and human samples to confirm the mRNA expression of these genes in UC patients, XBP1 and PLPP1 were selected as hub genes, and had excellent diagnostic potential. According to the findings of the immune infiltration, patients with UC exhibited a larger proportion of immune cells. And hub genes, particularly XBP1, were closely linked to a number of immune cell infiltrations. Based on the databases and hub genes, a lncRNA-miRNA-mRNA network, including two miRNAs (miR-214-3p and miR-93-5p), two hub genes, and 124 lncRNAs, and potential therapeutic medicine were identified. Conclusion We found two new genes, XBP1 and PLPP1, that are involved in UC and can help diagnose and measure the disease. XBP1 also relates to clinical scores and immune cells. We suggested a gene network and possible drugs based on them.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Na Li
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Mingyue Fu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
- Correspondence: Mei Ye, Email
| |
Collapse
|
35
|
Wang R, Li S, Chen P, Yue X, Wang S, Gu Y, Yuan Y. Salvianolic acid B suppresses hepatic stellate cell activation and liver fibrosis by inhibiting the NF-κB signaling pathway via miR-6499-3p/LncRNA-ROR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154435. [PMID: 36155216 DOI: 10.1016/j.phymed.2022.154435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNAs) have been reported to play an important role in liver fibrosis and are closely associated with hepatic stellate cell (HSC) activation. We previously found that salvianolic acid B (Sal B) improves liver fibrosis by regulating the NF-κB signaling pathway. However, whether the LncRNA, regulator of reprogramming (LncRNA-ROR) plays a role in Sal B-mediated anti-fibrosis effects via the NF-κB signaling pathway remain unclear. PURPOSE This study aimed to evaluate the effects of Sal B on HSC activation and liver fibrosis and investigate its mechanism from the perspective of LncRNA-ROR-mediated NF-κB signaling pathways. METHODS LX-2 and T6 cell lines were cultured. Animal models of liver fibrosis were established using CCl4 in male BALB/c mice. Primary HSCs were isolated from mice and cultured. Serum biochemical and liver histological analyses were performed to evaluate the effects of Sal B on liver fibrosis. The index of HSC activation and the expression of LncRNA-ROR, microRNAs (miRNAs), and inflammatory factors were determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) or immunofluorescence staining. Cell proliferation was measured by a Cell Counting Kit-8 (CCK-8). NF-κB signaling-associated protein levels were assessed using western blotting or immunofluorescence staining. A luciferase reporter assay was used to detect transcription activity. RESULTS In this study, a lower level of LncRNA-ROR was found during Sal B attenuating HSC activation in HSCs. Mechanistically, Sal B impeded the NF-κB signaling pathway to inhibit HSC proliferation and activation by downregulating LncRNA-ROR. Additionally, Sal B upregulated miR-6499-3p to target LncRNA-ROR for degradation. Functionally, Sal B treatment ameliorated CCl4-induced liver fibrosis in mice by inhibiting HSC activation. CONCLUSION Sal B suppresses HSC activation and liver fibrosis via regulation of miR-6499-3p/LncRNA-ROR-mediated NF-κB signaling pathway. These results reveal a new molecular mechanism of Sal B on liver fibrosis from the insight of LncRNAs.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Xin Yue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
36
|
Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, Wang X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells 2022; 11:cells11223642. [PMID: 36429069 PMCID: PMC9688074 DOI: 10.3390/cells11223642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered genetic regulatory molecules that regulate immune responses and are closely associated with the occurrence and development of various diseases, including inflammation, in humans and animals. Under specific physiological conditions, lncRNA expression varies at the cell or tissue level, and lncRNAs can bind to specific miRNAs, target mRNAs, and target proteins to participate in certain processes, such as cell differentiation and inflammatory responses, via the corresponding signaling pathways. This review article summarizes the regulatory role of lncRNAs in macrophage polarization, dendritic cell differentiation, T cell differentiation, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanism of lncRNAs in acute kidney injury, hepatitis, inflammatory injury of the lung, osteoarthritis, mastitis, and neuroinflammation to provide a reference for the molecular regulatory network as well as the genetic diagnosis and treatment of inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Fen Feng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yanxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Binwu Bao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
37
|
Badr EAE, El Sayed IE, Gabber MKR, Ghobashy EAE, Al-Sehemi AG, Algarni H, Elghobashy YAS. Are Antisense Long Non-Coding RNA Related to COVID-19? Biomedicines 2022; 10:2770. [PMID: 36359290 PMCID: PMC9687826 DOI: 10.3390/biomedicines10112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Fighting external pathogens relies on the tight regulation of the gene expression of the immune system. Ferroptosis, which is a distinct form of programmed cell death driven by iron, is involved in the enhancement of follicular helper T cell function during infection. The regulation of RNA is a key step in final gene expression. The present study aimed to identify the expression level of antisense lncRNAs (A2M-AS1, DBH-AS1, FLVCR1-DT, and NCBP2AS2-1) and FLVCR1 in COVID-19 patients and its relation to the severity of the disease. COVID-19 patients as well as age and gender-matched healthy controls were enrolled in this study. The expression level of the antisense lncRNAs was measured by RT-PCR. Results revealed the decreased expression of A2M-AS1 and FLVCR1 in COVID-19 patients. Additionally, they showed the increased expression of DBH-AS1, FLVCR1-DT, and NCBP2AS2. Both FLVCR1-DT and NCBP2AS2 showed a positive correlation with interleukin-6 (IL-6). DBH-AS1 and FLVCR1-DT had a significant association with mortality, complications, and mechanical ventilation. A significant negative correlation was found between A2M-AS1 and NCBP2AS2-1 and between FLVCR1 and FLVCR1-DT. The study confirmed that the expression level of the antisense lncRNAs was deregulated in COVID-19 patients and correlated with the severity of COVID-19, and that it may have possible roles in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Eman A E Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom 32511, Egypt
| | | | | | | | - Abdullah G. Al-Sehemi
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Yasser AS Elghobashy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom 32511, Egypt
| |
Collapse
|
38
|
Wang SK, Chen TX, Wang W, Xu LL, Zhang YQ, Jin Z, Liu YB, Tang YZ. Aesculetin exhibited anti-inflammatory activities through inhibiting NF-кB and MAPKs pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115489. [PMID: 35728711 DOI: 10.1016/j.jep.2022.115489] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aesculetin (6,7-dihydroxy-2H-1-benzopyran-2-one) has been reported to exhibit potent anti-inflammatory property both in vitro and in vivo. AIMS OF THIS STUDY In this study, we evaluated the anti-inflammatory effect and investigated underlying molecular mechanisms of aesculetin in LPS-induced RAW264.7 macrophages and DSS-induced colitis. MATERIALS AND METHODS In this study, the production of NO, TNF-α, and IL-6 were measured to identify the aesculetin with potent anti-inflammatory effect. Then, the underlying anti-inflammatory mechanisms were explored by western blotting in LPS-induced cells. Next, we verify the anti-inflammatory potential of aesculetin in DSS-induced colitis in vivo. The clinical symptoms of colitis, including weight loss, DAI, colon length and MPO activity, and the secretion of TNF-α and IL-6 were evaluated. Finally, Western blot analysis was applied to further investigate underlying mechanism in DSS-induced colitis model. RESULTS Our studies showed that aesculetin exhibited anti-inflammatory potential by inhibiting NO, TNF-α, and IL-6 production and reducing iNOS and NLRP3 expression in LPS-induced RAW264.7 cells. Mechanically, we found that aesculetin significantly inhibited LPS-induced activation of NF-κB and MAPKs signaling pathways. In DSS-induced mouse model, the colitis-related symptoms were relieved by treatment with aesculetin. Besides, aesculetin also inhibited the secretion of TNF-α and IL-6, and the activation of NF-κB and MAPKs signaling pathways in DSS-induced colitis. CONCLUSIONS The anti-inflammatory effect of aesculetin was connected with its inhibition on the activation of NF-κB and MAPKs signaling pathways both in vitro and in vivo. Therefore, aesculetin was expected to be developed as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ting-Xiao Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ling-Ling Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yu-Qing Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - You-Bin Liu
- Department of Cardiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Jing H, Chen Y, Qiu C, Guo MY. LncRNAs Transcriptome Analysis Revealed Potential Mechanisms of Selenium to Mastitis in Dairy Cows. Biol Trace Elem Res 2022; 200:4316-4324. [PMID: 35013889 DOI: 10.1007/s12011-021-03042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
The trace element selenium (Se) plays an indispensable role in the growth of humans and animals due to its antioxidant function. Mastitis is one of the most important diseases affecting the dairy industry in the world. In recent years, long non-coding RNAs (lncRNAs) have been implicated in a series of cellular processes and disease development processes. RNA-sequencing technology was used to characterize lncRNA profiles and compared transcriptomic dynamics among the control group, the LPS group, and the Se-treated group to highlight the potential roles and functions of lncRNAs in the mammary epithelial cells of dairy cows. We identified 14 specific lncRNAs related to Se and their predicted target genes. KEGG and GO functional annotation was used to elucidate their biological function and the pathways in which they may be involved. The present study provides novel insights for exploring the molecular markers for the protection of Se against mastitis in dairy cows.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
40
|
Chen Q, Ji H, Lin Y, Chen Z, Liu Y, Jin L, Peng R. LncRNAs regulate ferroptosis to affect diabetes and its complications. Front Physiol 2022; 13:993904. [PMID: 36225311 PMCID: PMC9548856 DOI: 10.3389/fphys.2022.993904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the rapid increase in the incidence of diabetes and its complications poses a serious threat to human health. Ferroptosis, which is a new nonapoptotic form of cell death, has been proven to be closely related to the occurrence and development of diabetes and its complications. In recent years, lncRNAs have been confirmed to be involved in the occurrence and development of diabetes and play an important role in regulating ferroptosis. An increasing number of studies have shown that lncRNAs can affect the occurrence and development of diabetes and its complications by regulating ferroptosis. Therefore, lncRNAs have great potential as therapeutic targets for regulating ferroptosis-mediated diabetes and its complications. This paper reviewed the potential impact and regulatory mechanism of ferroptosis on diabetes and its complications, focusing on the effects of lncRNAs on the occurrence and development of ferroptosis-mediated diabetes and its complications and the regulation of ferroptosis-inducing reactive oxygen species, the key ferroptosis regulator Nrf2 and the NF-κB signaling pathway to provide new therapeutic strategies for the development of lncRNA-regulated ferroptosis-targeted drugs to treat diabetes.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zheyan Chen
- Department of Plastic Surgery, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| |
Collapse
|
41
|
Yang J, Tang Y, Liu X, Zhang J, Zahoor Khan M, Mi S, Wang C, Yu Y. Characterization of peripheral white blood cells transcriptome to unravel the regulatory signatures of bovine subclinical mastitis resistance. Front Genet 2022; 13:949850. [PMID: 36204322 PMCID: PMC9530456 DOI: 10.3389/fgene.2022.949850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Subclinical bovine mastitis is a pathogenic infection of the breast characterized by a marked decrease in milk production and quality. As it has no obvious clinical symptoms, diagnosis and treatment are challenging. Therefore, searching for biomarkers in cows’ peripheral white blood cells is valuable for preventing and treating subclinical mastitis. Thus, in this study, the transcriptome of peripheral blood from healthy and subclinical mastitis cows was characterized to find the regulatory signatures of bovine subclinical mastitis using RNA-seq. A total of 287 differentially expressed genes (DEGs) and 70 differentially expressed lncRNAs (DELs) were detected, and 37 DELs were documented near known Quantitative Trait Loci (QTL) associated with the mastitis of cows. Bioinformatic analysis indicated that lncRNAs MSTRG25101.2, MSTRG.56327.1, and MSTRG.18968.1, which are adjacent to the SCS QTL and SCC QTL, may be candidate lncRNAs that influence the pathogenesis of mastitis in cows by up-regulating the expression of genes TLR4, NOD2, CXCL8, and OAS2. Moreover, the alternative splicing (AS) pattern of transcriptional sequence differences between healthy cows and subclinical mastitis cows suggested a molecular mechanism of mastitis resistance and susceptibility. A total of 2,212 differential alternative splicing (DAS) events, corresponding to 1,621 unique DAS genes, were identified in both groups and significantly enriched in immune and inflammatory pathways. Of these, 29 DAS genes were subject to regulation by 32 alternative splicing SNPs, showing diverse and specific splicing patterns and events. It is hypothesized that the PIK3C2B and PPRPF8 splice variants associated with AS SNPs (rs42705933 and rs133847062) may be risk factors for susceptibility to bovine subclinical mastitis. Altogether, these key blood markers associated with resistance to subclinical mastitis and SNPs associated with alternative splicing of genes provide the basis for genetic breeding for resistance to subclinical mastitis in cows.
Collapse
Affiliation(s)
- Jinyan Yang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Tang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueqin Liu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinning Zhang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Siyuan Mi
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuduan Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Ying Yu,
| |
Collapse
|
42
|
Wang YH, Tsai CH, Liu SC, Chen HT, Chang JW, Ko CY, Hsu CJ, Chang TK, Tang CH. miR-150-5p and XIST interaction controls monocyte adherence: Implications for osteoarthritis therapy. Front Immunol 2022; 13:1004334. [PMID: 36203618 PMCID: PMC9530358 DOI: 10.3389/fimmu.2022.1004334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Recent literature highlights the importance of microRNAs (miRNAs) functioning as diagnostic biomarkers and therapeutic agents in osteoarthritis (OA) and regulators of gene expression. In OA pathogenesis, cell adhesion molecules (CAMs), especially vascular cell adhesion protein 1 (VCAM-1), recruit monocyte infiltration to inflamed synovial tissues and thus accelerate OA progression. Up until now, little has been known about the regulatory mechanisms between miRNAs, long non-coding RNAs (lncRNAs) and VCAM-1 during OA progression. The evidence in this article emphasizes that the functional feature of miR-150-5p is an interaction with the lncRNA X-inactive specific transcript (XIST), which regulates VCAM-1-dependent monocyte adherence in OA synovial fibroblasts (OASFs). Levels of VCAM-1, CD11b (a monocyte marker) and XIST expression were higher in human synovial tissue samples and OASFs, while levels of miR-150-5p were lower in human OA synovial tissue compared with non-OA specimens. XIST enhanced VCAM-1-dependent monocyte adherence to OASFs. Upregulation of miR-150-5p inhibited the effects of XIST upon monocyte adherence. Administration of miR-150-5p effectively ameliorated OA severity in anterior cruciate ligament transection (ACLT) rats. The interaction of miR-150-5p and XIST regulated VCAM-1-dependent monocyte adherence and attenuated OA progression. Our findings suggest that miR-150-5p is a promising small-molecule therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| |
Collapse
|
43
|
MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea. J Biol Chem 2022; 298:102461. [PMID: 36067883 PMCID: PMC9647533 DOI: 10.1016/j.jbc.2022.102461] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a chronic and relapsing inflammatory disorder in which pathogenesis has been shown to be in part the result of miRNA-mediated signaling. Here, we investigated the alleviatory role of miR-16 in IBS-D. First, we established an IBS-D mouse model using colonic instillation of acetic acid and developed an IBS-D cell model using lipopolysaccharide exposure. The experimental data demonstrated that miR-16 was underexpressed in the serum of IBS-D patients, as well as in the colorectal tissues of IBS-D mouse models and lipopolysaccharide-exposed intestinal epithelial cells. Next, miR-16 and TLR4 were overexpressed or inhibited to characterize their roles in the viability and apoptosis of intestinal epithelial cells, inflammation, and epithelial tight junction. We found that miR-16 overexpression increased the viability of intestinal epithelial cells, maintained tight junction integrity, and inhibited cell apoptosis and inflammation. We showed that miR-16 targeted TLR4 and inhibited the TLR4/NF-κB signaling pathway. Additionally, inhibition of NF-κB suppressed the long noncoding RNA XIST, thereby promoting enterocyte viability, inhibiting apoptosis and cytokine production, and maintaining tight junction integrity. In vivo experiments further verified the alleviatory effect of miR-16 on IBS-D symptoms in mice. Taken together, we conclude that miR-16 downregulates XIST through the TLR4/NF-κB pathway, thereby relieving IBS-D. This study suggests that miR-16 may represent a potential target for therapeutic intervention against IBS-D.
Collapse
|
44
|
Oyelami FO, Usman T, Suravajhala P, Ali N, Do DN. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022; 11:pathogens11091009. [PMID: 36145441 PMCID: PMC9501195 DOI: 10.3390/pathogens11091009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Tahir Usman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana 690525, Kerala, India
| | - Nawab Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Duy N. Do
- Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Hanoi 100000, Vietnam
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: ; Tel.: +1-9029578789
| |
Collapse
|
45
|
Liu K, Zhou X, Fang L, Dong J, Cui L, Li J, Meng X, Zhu G, Li J, Wang H. PINK1/parkin-mediated mitophagy alleviates Staphylococcus aureus-induced NLRP3 inflammasome and NF-κB pathway activation in bovine mammary epithelial cells. Int Immunopharmacol 2022; 112:109200. [PMID: 36063687 DOI: 10.1016/j.intimp.2022.109200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus (S. aureus) is known to induce chronic and persistent bovine mammary infection, which affects milk quality and leads to premature culling. The ability of S. aureus to invade mammalian cells protects it from clearance by the immune system. Mitophagy is important in cell homeostasis, and can be utilized by pathogens for immune escape. However, mitophagy's role in S. aureus-associated bovine mastitis remains unclear. Here, S. aureus infection induced mitophagy and enhanced mitochondrial translocation of parkin in MAC-T cells. After mitophagy inhibition by Mdivi-1 treatment or PTEN-induced putative kinase 1 (PINK1) silencing in MAC-T cells infected with S. aureus, NOD-like receptor protein 3 (NLRP3) inflammasome activation and p65 and IκBα phosphorylation were increased. Meanwhile, PINK1 overexpression had the opposite effects. In addition, NLRP3 inflammasome overactivation and enhanced p65 and IκBα phosphorylation caused by PINK1 silencing were reversed by MitoTEMPO. Furthermore, PINK1/parkin-mediated mitophagy promoted S. aureus survival and contributed to persistent S. aureus infection. These findings provide new insights into S. aureus invasion in bovine mastitis.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Xi Zhou
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
46
|
Mo C, Zhao J, Liang J, Wang H, Chen Y, Huang G. Exosomes: A novel insight into traditional Chinese medicine. Front Pharmacol 2022; 13:844782. [PMID: 36105201 PMCID: PMC9465299 DOI: 10.3389/fphar.2022.844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles and play an essential role in the mediation of intercellular communication both in health and disease. Traditional Chinese medicine (TCM) has historically been used to maintain human health and treat various diseases up till today. The interplay between exosomes and TCM has attracted researchers’ growing attention. By integrating the available evidence, TCM formulas and compounds isolated from TCM as exosome modulators have beneficial effects on multiple disorders, such as tumors, kidney diseases, and hepatic disease, which may associate with inhibiting cells proliferation, anti-inflammation, anti-oxidation, and attenuating fibrosis. Exosomes, a natural delivery system, are essential in delivering compounds isolated from TCM to target cells or tissues. Moreover, exosomes may be the potential biomarkers for TCM syndromes, providing strategies for TCM treatment. These findings may provide a novel insight into TCM from exosomes and serve as evidence for better understanding and development of TCM.
Collapse
Affiliation(s)
- Chao Mo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingyan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guodong Huang,
| |
Collapse
|
47
|
Zhong Y, Ashley CL, Steain M, Ataide SF. Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Front Mol Biosci 2022; 9:975322. [PMID: 36052163 PMCID: PMC9424846 DOI: 10.3389/fmolb.2022.975322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts that are over 200 nucleotides and rarely encode proteins or peptides. They regulate gene expression and protein activities and are heavily involved in many cellular processes such as cytokine secretion in respond to viral infection. In severe COVID-19 cases, hyperactivation of the immune system may cause an abnormally sharp increase in pro-inflammatory cytokines, known as cytokine release syndrome (CRS), which leads to severe tissue damage or even organ failure, raising COVID-19 mortality rate. In this review, we assessed the correlation between lncRNAs expression and cytokine release syndrome by comparing lncRNA profiles between COVID-19 patients and health controls, as well as between severe and non-severe cases. We also discussed the role of lncRNAs in CRS contributors and showed that the lncRNA profiles display consistency with patients’ clinic symptoms, thus suggesting the potential of lncRNAs as drug targets or biomarkers in COVID-19 treatment.
Collapse
Affiliation(s)
- Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Caroline L. Ashley
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Megan Steain
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sandro Fernandes Ataide
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sandro Fernandes Ataide,
| |
Collapse
|
48
|
Fan H, Shao H, Gao X. Long Non-Coding RNA HOTTIP is Elevated in Patients with Sepsis and Promotes Cardiac Dysfunction. Immunol Invest 2022; 51:2086-2096. [PMID: 35921152 DOI: 10.1080/08820139.2022.2107932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cardiac dysfunction is the most common clinical complication of sepsis. Herein, the study explored the clinical importance of long non-coding RNA (lncRNA) HOXA terminal transcript antisense RNA (HOTTIP) in the onset of sepsis and the development of cardiac dysfunction. METHODS 120 patients with sepsis were recruited and divided into cardiac dysfunction group and non-cardiac dysfunction group. Serum HOTTIP levels were measured via RT-qPCR. AC16 cells were treated with lipopolysaccharide (LPS) for cell experiments and detected for cell viability and apoptosis. RESULTS High serum HOTTIP levels were tested in sepsis patients, which was associated with procalcitonin (PCT) level. Serum HOTTIP can identify sepsis cases from healthy people with the AUC of 0.927. 72 cases developed into cardiac dysfunction, accompanied by elevated levels of HOTTIP. ROC curve displayed the predictive ability of serum HOTTIP in the development of cardiac dysfunction in patients with sepsis. After adjusting for other clinical parameters, HOTTIP can independently affect the development of cardiac dysfunction. In vitro, HOTTIP knockdown promoted the recovery of cell viability and reversed LPS-induced cell apoptosis and excessive interleukin-6 (IL-6) release. CONCLUSION LncRNA HOTTIP is closely related to the condition of patients with sepsis and the development of cardiac dysfunction, possibly owing to its function in LPS-induced myocardial apoptosis and inflammation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Shao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyu Gao
- Department of Burn Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
49
|
Li Z, Hu J, Wang X, Du Y, Yin J, Gao J, Han B, Cui S, Liu Y, Liu J. Effects of Artemisinin on Escherichia coli–Induced Mastitis in Bovine Mammary Epithelial Cells and Mice. Vet Sci 2022; 9:vetsci9080381. [PMID: 35893774 PMCID: PMC9330913 DOI: 10.3390/vetsci9080381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bovine mastitis is a persistent and inflammatory reaction of the udder tissue that is usually caused by microbial infection, which can result in substantial losses due to reduced milk yield. Escherichia coli is considered a causative environmental pathogen and has been reported as a common cause of bovine mastitis worldwide. Because of its pathogenicity, Escherichia coli is always an important problem to the dairy industry worldwide and also poses a threat to food safety and public health, and with the widespread use of antibiotics, the resistance of Escherichia coli is increasing. Despite considerable research on bovine mastitis, the disease still remains one of the most prevalent and costly diseases of the dairy industry. The need to control mastitis is driven by multiple considerations, including milk quality, reductions in antimicrobial use, and animal welfare. Artemisinin is an antimalarial drug that was developed from a Chinese traditional herb, Qinghao. In recent years, other effects of artemisinin (including antitumor, anti-inflammatory, antifungal, etc.) have been increasingly discovered and applied. In this study, we demonstrated that artemisinin possesses a protective effect toward Escherichia coli–induced mastitis, thus providing a practical approach for the clinical control of mastitis. Abstract Bovine mastitis is an important disease affecting dairy farming, and it causes large economic losses to the dairy industry. Escherichia coli (E. coli) is considered to be a causative environmental pathogen and frequently enters into mammary glands, causing inflammation. Artemisinin is a highly effective malaria remedy and is not easy to develop drug resistance to. In recent years, other effects of artemisinin (including antitumor, anti-inflammatory, antifungal, etc.) have been increasingly discovered and applied. The current study aimed to investigate whether artemisinin could attenuate E. coli–induced inflammation. Through the E. coli mastitis model in MAC-T cells and mice, the protective effects of artemisinin were analyzed by CCK-8 (Cell Counting Kit-8), Western blot, and RT-qPCR. The results showed that artemisinin reversed the decrease of cell viability and upregulated TLR4 (toll-like receptor 4)/NF-κB (nuclear factor κB) and MAPK (mitogen activated protein kinase)/p38 signaling pathways, as well as restrained the expression of TNF-α, IL-6, and IL-1β mRNA caused by E. coli. Meanwhile, artemisinin also alleviated mammary tissue damage, reduced inflammatory cells’ infiltration, and decreased the levels of inflammatory factors in a mice mastitis model. This study demonstrated that artemisinin alleviated the inflammatory response of mouse mastitis and MAC-T cells induced by E. coli, thus providing a practical approach for the clinical control of mastitis.
Collapse
Affiliation(s)
- Zhaoming Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (X.W.); (Y.D.)
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (X.W.); (Y.D.)
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (X.W.); (Y.D.)
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yongzhen Du
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (X.W.); (Y.D.)
| | - Jinhua Yin
- College of Animal Science and Technology, Tarim University, Alar 843300, China;
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.G.); (B.H.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.G.); (B.H.)
| | - Shuai Cui
- Modern Animal Husbandry Development Service Center of Dongying City, Dongying 257091, China;
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (X.W.); (Y.D.)
- Correspondence: (Y.L.); (J.L.)
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (Y.L.); (J.L.)
| |
Collapse
|
50
|
Yan L, Yang Y, Ma X, Wei L, Wan X, Zhang Z, Ding J, Peng J, Liu G, Gou H, Wang C, Zhang X. Effect of Two Different Drug-Resistant Staphylococcus aureus Strains on the Physiological Properties of MAC-T Cells and Their Transcriptome Analysis. Front Vet Sci 2022; 9:818928. [PMID: 35812882 PMCID: PMC9263607 DOI: 10.3389/fvets.2022.818928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the main pathogens causing mastitis in dairy cows. The current work mainly focuses on the pathway of apoptosis induction in MAC-T cells caused by S. aureus infection or other factors. However, the physiological characteristics of S. aureus infected MAC-T cells and the resulting mRNA expression profile remain unknown particularly in the case of diverse drug resistant strains. Methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains were used to infect MAC-T cells to investigate this issue. The adhesion, invasion and apoptosis ability of MRSA-infected group and MSSA-infected group was assessed over time (2, 4, 6, 8, and 12 h). After 8 h, the RNA sequencing was conducted on the MRSA-infected and the MSSA-infected with uninfected MAC-T cells as controls. The results showed that the adhesion and invasion ability of MRSA-infected and MSSA-infected to MAC-T cells increased and then decreased with infection time, peaking at 8 h. The adhesion and invasion rates of the MSSA-infected were substantially lower than those of the MRSA-infected, and the invasion rate of the MSSA-infected group was nearly non-existent. Then the apoptosis rate of MAC-T cells increased as the infection time increased. The transcriptome analysis revealed 549 differentially expressed mRNAs and 390 differentially expressed mRNAs in MRSA-infected and MSSA-infected MAC-T cells, respectively, compared to the uninfected MAC-T cells. According to GO analysis, these differentially expressed genes were involved in immune response, inflammation, apoptosis, and other processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to adhesion, invasion inflammation and apoptosis, including AMPK, FOXO, HIF-1, IL-17, JAK-STAT, MAPK, mTOR, NF-κB, p53, PI3K-Akt, TNF, Toll-like receptor, Rap1, RAS, prion disease, the bacterial invasion of epithelial cells pathway. We found 86 DEGs from 41 KEGG-enriched pathways associated with adhesion, invasion, apoptosis, and inflammation, all of which were implicated in MAC-T cells resistance to MRSA and MSSA infection. This study offers helpful data toward understanding the effect of different drug-resistant S. aureus on dairy cow mammary epithelial cells and aid in the prevention of mastitis in the dairy industry.
Collapse
Affiliation(s)
- Lijiao Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jucai Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chuan Wang
| | - Xiaoli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Xiaoli Zhang
| |
Collapse
|