1
|
Ray S, McCall JL, Tian JB, Jeon J, Douglas A, Tyler K, Liu S, Berry K, Nicewarner B, Hall C, Groschner K, Bacsa B, Geldenhuys W, Zhu MX, Blair HC, Barnett JB, Soboloff J. Targeting TRPC channels for control of arthritis-induced bone erosion. SCIENCE ADVANCES 2025; 11:eabm9843. [PMID: 39813349 PMCID: PMC11734723 DOI: 10.1126/sciadv.abm9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca2+-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels. While ELP-004 minimally affected physiological RANKL-induced osteoclast maturation in murine bone marrow- and spleen-derived myeloid cells (BMSMCs) and human PBMC-derived cells, it potently interfered with osteoclast maturation driven by TNFα or LTB4. The contribution of TRPC channels to osteoclastogenesis was examined using BMSMCs derived from TRPC4-/- or TRPC(1-7)-/- mice, again revealing preferential interference with osteoclastogenesis driven by proinflammatory cytokines. ELP-004 also reduced bone erosion in a mouse model of rheumatoid arthritis. These investigations reveal TRPC channels as critical mediators of inflammatory bone erosion and provide insight into the major target of ELP-004, a drug currently in preclinical testing as a therapeutic for inflammatory arthritis.
Collapse
Affiliation(s)
- Suravi Ray
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Aidan Douglas
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kendall Tyler
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Kendyl Berry
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | | | - Casey Hall
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Klaus Groschner
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Bernadett Bacsa
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Harry C. Blair
- Research Service, VA Medical Centre, Departments of Pathology and of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Wang Q, Tao H, Wang H, Chen K, Zhu P, Chen W, Shi F, Gu Y, Xu Y, Geng D. Albiflorin inhibits osteoclastogenesis and titanium particles-induced osteolysis via inhibition of ROS accumulation and the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 142:113245. [PMID: 39340985 DOI: 10.1016/j.intimp.2024.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Periprosthetic osteolysis (PPO), caused by wear particles, is a significant complication of total joint replacement, leading to prosthesis failure. Previous research has highlighted the crucial role of osteoclast-induced bone destruction in PPO progression. Albiflorin (AF), a monoterpene glycoside from Paeonia lactiflora, is a key active ingredient known for its antioxidant and anti-inflammatory properties. Although AF has shown promise in treating various conditions, its impact on osteoclasts and PPO remains unexplored. Our study revealed that AF could effectively inhibit osteoclast differentiation to reduce overactivated bone resorption and effectively inhibit the accumulation of reactive oxygen species (ROS) induced by wear particles. In vitro experiments also confirmed that AF could effectively inhibit the PI3K/AKT signaling pathway and inhibit inflammation to regulate osteoclast generation. Studies in animal models have also verified the antioxidant and anti-inflammatory properties of AF. In summary, the above studies indicate that AF inhibits osteoclastogenesis via inhibiting ROS accumulation and the PI3K/AKT signaling pathway, which may be a potential therapeutic method for PPO.
Collapse
Affiliation(s)
- Qiufei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenxiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Shi
- Department of Dermatology and Venereology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2024; 301:108047. [PMID: 39638246 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
4
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Hao Y, Yang N, Sun M, Yang S, Chen X. The role of calcium channels in osteoporosis and their therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1450328. [PMID: 39170742 PMCID: PMC11335502 DOI: 10.3389/fendo.2024.1450328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoporosis, a systemic skeletal disorder marked by diminished bone mass and compromised bone microarchitecture, is becoming increasingly prevalent due to an aging population. The underlying pathophysiology of osteoporosis is attributed to an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Osteoclasts play a crucial role in the development of osteoporosis through various molecular pathways, including the RANK/RANKL/OPG signaling axis, cytokines, and integrins. Notably, the calcium signaling pathway is pivotal in regulating osteoclast activation and function, influencing bone resorption activity. Disruption in calcium signaling can lead to increased osteoclast-mediated bone resorption, contributing to the progression of osteoporosis. Emerging research indicates that calcium-permeable channels on the cellular membrane play a critical role in bone metabolism by modulating these intracellular calcium pathways. Here, we provide an overview of current literature on the regulation of plasma membrane calcium channels in relation to bone metabolism with particular emphasis on their dysregulation during the progression of osteoporosis. Targeting these calcium channels may represent a potential therapeutic strategy for treating osteoporosis.
Collapse
Affiliation(s)
- Ying Hao
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Ningning Yang
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Mengying Sun
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
7
|
Jeong KH, Zhu J, Park S, Kim WJ. Transient Receptor Potential Vanilloid 6 Modulates Aberrant Axonal Sprouting in a Mouse Model of Pilocarpine-Induced Epilepsy. Mol Neurobiol 2024; 61:2839-2853. [PMID: 37940780 DOI: 10.1007/s12035-023-03748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Transient receptor potential vanilloid 6 (TRPV6) is a highly selective calcium-ion channel that belongs to the TRPV family. TRPV6 is widely distributed in the brain, but its role in neurological diseases such as epilepsy remains unknown. Here, we report for the first time that TRPV6 expression is upregulated in the hippocampus of a pilocarpine-induced status epilepticus model, mainly in the suprapyramidal bundle of the mossy fiber (MF) projection of the hippocampal CA3 regions. We found that TRPV6 overexpression via viral vector transduction attenuated abnormal MF sprouting (MFS), whereas TRPV6 knockdown aggravated the development of MFS and the incidence of recurrent seizures during epileptogenic progression. In the in vitro experiments, our results showed that modulation of TRPV6 expression resulted in a change in axonal formation in cultured hippocampal neurons. In addition, we found that TRPV6 was implicated in the regulation of Akt-glycogen synthase kinase-3-β activity, which is closely related to the cellular mechanism of axonal outgrowth. Therefore, these findings suggest that TRPV6 may regulate the formation of aberrant synaptic circuits during epileptogenesis.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jing Zhu
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| |
Collapse
|
8
|
Xiao J, Yu Z, Han Q, Guo Y, Ye J, Lian H, Wang L, Ma Y, Liu M. The Mechanism of Action and Experimental Verification of Narenmandula in the Treatment of Postmenopausal Osteoporosis. Comb Chem High Throughput Screen 2024; 27:2249-2259. [PMID: 38178685 PMCID: PMC11348460 DOI: 10.2174/0113862073264965231116105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Narenmandula is a classic ancient remedy in Inner Mongolia, historically used for gastrointestinal diseases. In recent decades, Inner Mongolia Medical University found that it has a significant effect in promoting fracture healing and increasing bone density, and has been used to treat postmenopausal osteoporosis (PMOP), but its mechanism is unclear. OBJECTIVE Identify the mechanism of action of Narenmandula for PMOP treatment. METHODS Network pharmacology, molecular docking and ovarian departing rat models were used to verify the relevant mechanism of Narenmandula in the treatment of PMOP. RESULTS We confirmed that NRMDL prescription can improve OVX-induced bone loss, improve trabecular density, and relieve osteoporosis. Upon screening of network pharmacology, we obtained 238 overlapping genes of Narenmandula and PMOP, and analyzed AKT, IL1B, and IL6 as key genes by network topology. Among the 1143 target genes that interact with PMOP, 107 NRMDL active compounds correspond to 345 target genes and 238 overlapping genes. Network topology analysis showed the top 8 active ingredients, such as quercetin and kaempferol, and the top 20 key genes, such as AKT, IL1B, IL6, INS, JUN, STAT3, TNF, TP53, etc. Enrichment analysis revealed involvement of PI3K-Akt, HIF-1, FoxO, MAPK, and TNF signaling pathways. In addition, we found the most important active compounds bind tightly to core proteins, which were verified by molecular docking analysis. The AKT-related pathway had good binding energy, and the pathway was verified by cell and animal experiments. CONCLUSION The potential mechanism and efficacy of Narenmandula against PMOP may be related to the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Jirimutu Xiao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, China
| | - Ziceng Yu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuge Han
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiapeng Ye
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Lian
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Santos MDS, Lima VTM, Barrioni BR, Vago JP, de Arruda JAA, Prazeres PD, Amaral FA, Silva TA, Macari S. Targeting phosphatidylinositol-3-kinase for inhibiting maxillary bone resorption. J Cell Physiol 2023; 238:2651-2667. [PMID: 37814842 DOI: 10.1002/jcp.31121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Previous studies have suggested a role of phosphatidylinositol-3-kinase gamma (PI3Kγ) in bone remodeling, but the mechanism remains undefined. Here, we explored the contribution of PI3Kγ in the resorption of maxillary bone and dental roots using models of orthodontic tooth movement (OTM), orthodontic-induced inflammatory root resorption, and rapid maxillary expansion (RME). PI3Kγ-deficient mice (PI3Kγ-/- ), mice with loss of PI3Kγ kinase activity (PI3KγKD/KD ) and C57BL/6 mice treated with a PI3Kγ inhibitor (AS605240) and respective controls were used. The maxillary bones of PI3Kγ-/- , PI3KγKD/KD , and C57BL/6 mice treated with AS605240 showed an improvement of bone quality compared to their controls, resulting in reduction of the OTM and RME in all experimental groups. PI3Kγ-/- mice exhibited increased root volume and decreased odontoclasts counts. Consistently, the pharmacological blockade or genetic deletion of PI3K resulted in increased numbers of osteoblasts and reduction in osteoclasts during OTM. There was an augmented expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (Alp), a reduction of interleukin-6 (Il-6), as well as a lack of responsiveness of receptor activator of nuclear factor kappa-Β (Rank) in PI3Kγ-/- and PI3KγKD/KD mice compared to control mice. The maxillary bones of PI3Kγ-/- animals showed reduced p-Akt expression. In vitro, bone marrow cells treated with AS605240 and cells from PI3Kγ-/- mice exhibited significant augment of osteoblast mineralization and less osteoclast differentiation. The PI3Kγ/Akt axis is pivotal for bone remodeling by providing negative and positive signals for the differentiation of osteoclasts and osteoblasts, respectively.
Collapse
Affiliation(s)
- Mariana de S Santos
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virgínia T M Lima
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno R Barrioni
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P Vago
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides A de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro D Prazeres
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio A Amaral
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
11
|
Cordier C, Haustrate A, Prevarskaya N, Lehen’kyi V. Characterization of the TRPV6 calcium channel-specific phenotype by RNA-seq in castration-resistant human prostate cancer cells. Front Genet 2023; 14:1215645. [PMID: 37576552 PMCID: PMC10415680 DOI: 10.3389/fgene.2023.1215645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Transient receptor potential vanilloid subfamily member 6 (TRPV6), a highly calcium-selective channel, has been shown to play a significant role in calcium homeostasis and to participate both in vitro and in vivo in growth, cell survival, and drug resistance of prostate cancer. Its role and the corresponding calcium-dependent pathways were mainly studied in hormone-dependent human prostate cancer cell lines, often used as a model of early-stage prostate cancers. The goal of the present study was to describe the TRPV6-specific phenotype and signaling pathways it is involved in, using castration-resistant prostate cancer cell lines. Methods: RNA sequencing (RNA-seq) was used to study the gene expression impacted by TRPV6 using PC3Mtrpv6-/- versus PC3Mtrpv6+/+ and its derivative PC3M-luc-C6trpv6+/+ cell line in its native and TRPV6 overexpressed form. In addition to the whole-cell RNA sequencing, immunoblotting, quantitative PCR, and calcium imaging were used to validate trpv6 gene status and functional consequences, in both trpv6 -/- and TRPV6 overexpression cell lines. Results: trpv6 -/- status was validated using both immunoblotting and quantitative PCR, and the functional consequences of either trpv6 gene deletion or TRPV6 overexpression were shown using calcium imaging. RNA-seq analysis demonstrated that the calcium channel TRPV6, being a crucial player of calcium signaling, significantly impacts the expression of genes involved in cancer progression, such as cell cycle regulation, chemotaxis, migration, invasion, apoptosis, ferroptosis as well as drug resistance, and extracellular matrix (ECM) re-organization. Conclusion: Our data suggest that the trpv6 gene is involved in and regulates multiple pathways related to tumor progression and drug resistance in castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | - V’yacheslav Lehen’kyi
- Department of Biology, Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channel Science and Therapeutics, Faculty of Science and Technologies, University of Lille, Villeneuve d’Ascq, France
| |
Collapse
|
12
|
Yang H, Zhang F, Sun S, Li H, Li L, Xu H, Wang J, Shao M, Li C, Wang H, Pei J, Niu J, Yuan G, Lyu F. Brushite-coated Mg-Nd-Zn-Zr alloy promotes the osteogenesis of vertebral laminae through IGF2/PI3K/AKT signaling pathway. BIOMATERIALS ADVANCES 2023; 152:213505. [PMID: 37327764 DOI: 10.1016/j.bioadv.2023.213505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable magnesium (Mg) alloys have been extensively investigated in orthopedic implants due to their suitable mechanical strength and high biocompatibility. However, no studies have reported whether Mg alloys can be used to repair lamina defects, and the biological mechanisms regulating osteogenesis are not fully understood. The present study developed a lamina reconstruction device using our patented biodegradable Mg-Nd-Zn-Zr alloy (JDBM), and brushite (CaHPO4·2H2O, Dicalcium phosphate dihydrate, DCPD) coating was developed on the implant. Through in vitro and in vivo experiments, we evaluated the degradation behavior and biocompatibility of DCPD-JDBM. In addition, we explored the potential molecular mechanisms by which it regulates osteogenesis. In vitro, ion release and cytotoxicity tests revealed that DCPD-JDBM had better corrosion resistance and biocompatibility. We found that DCPD-JDBM extracts could promote MC3T3-E1 osteogenic differentiation via the IGF2/PI3K/AKT pathway. The lamina reconstruction device was implanted on a rat lumbar lamina defect model. Radiographic and histological analysis showed that DCPD-JDBM accelerated the repair of rat lamina defects and exhibited lower degradation rate compared to uncoated JDBM. Immunohistochemical and qRT-PCR results showed that DCPD-JDBM promoted osteogenesis in rat laminae via IGF2/PI3K/AKT pathway. This study shows that DCPD-JDBM is a promising biodegradable Mg-based material with great potential for clinical applications.
Collapse
Affiliation(s)
- Haiyuan Yang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linli Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China; Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Tan J, Li J, Cao B, Wu J, Luo D, Ran Z, Deng L, Li X, Jiang W, Xie K, Wang L, Hao Y. Niobium promotes fracture healing in rats by regulating the PI3K-Akt signalling pathway: An in vivo and in vitro study. J Orthop Translat 2022; 37:113-125. [PMID: 36262960 PMCID: PMC9563354 DOI: 10.1016/j.jot.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022] Open
Abstract
Background Stable fixation is crucial in fracture treatment. Currently, optimal fracture fixation devices with osteoinductivity, mechanical compatibility, and corrosion resistance are urgently needed for clinical practice. Niobium (Nb), whose mechanical properties are similar to those of bone tissue, has excellent biocompatibility and corrosion resistance, so it has the potential to be the most appropriate fixation material for internal fracture treatment. However, not much attention has been paid to the use of Nb in the area of clinical implants. Yet its role and mechanism of promoting fracture healing remain unclear. Hence, this study aims at elucidating on the effectiveness of Nb by systematically evaluating its osteogenic performance via in vivo and ex vivo tests. Methods Systematic in vivo and in vitro experiments were conducted to evaluate the osteogenic properties of Nb. In vitro experiments, the biocompatibility and osteopromoting activity of Nb were assessed. And the osteoinductive activity of Nb was assessed by alizarin red, ALP staining and PCR test. In vivo experiments, the effectiveness and biosafety of Nb in promoting fracture healing were evaluated using a rat femoral fracture model. Through the analysis of gene sequencing results of bone scab tissues, the upregulation of PI3K-Akt pathway expression was detected and it was verified by histochemical staining and WB experiments. Results Experiments in this study had proved that Nb had excellent in-vitro cell adhesion and proliferation-promoting effects without cytotoxicity. In addition, ALP activity, alizarin red staining and semi-quantitative analysis in the Nb group had indicated its profound impact on enhancing osteogenic differentiation of MC3T3-E1 cells. We also found that the use of Nb implants can accelerate fracture healing compared to that with Ti6Al4V using an animal model of femur fracture in rats, and the biosafety of Nb was confirmed in vivo via histological evaluation. Furthermore, we found that the osteogenic effects of Nb were achieved through activation of the PIK/Akt3 signalling pathway. Conclusion As is shown in the present research, Nb possessed excellent biosafety in clinical implants and accelerated fracture healing by activating the PI3K-Akt signalling pathway, which had good prospects for clinical translation, and it can replace titanium alloy as a material for new functional implants.
Collapse
Affiliation(s)
- Jia Tan
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Jiaxin Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Junxiang Wu
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Dinghao Luo
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Zhaoyang Ran
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Liang Deng
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Xiaoping Li
- Ningxia Orient Ta Ind Co, 119, Yejin Road, Dawukou District, Shizuishan, Ningxia, 753000, PR China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China
| | - Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China,Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lei Wang
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China,Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Jin Zun Road No. 115, 200011, Shanghai, China,Corresponding author. Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
15
|
TRPV6 is a potential regulator of bone resorption in bone loss induced by estrogen deficiency. iScience 2021; 24:103261. [PMID: 34778726 PMCID: PMC8577076 DOI: 10.1016/j.isci.2021.103261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
The precise effect of estrogen (E2) on osteoclast function is still poorly understood. The aim of this study was to investigate the potential role of transient receptor potential vanilloid 6 (TRPV6) in E2-mediated osteoclast function and to characterize the relevant underlying mechanisms. Here, we found that Trpv6 is drastically decreased in ovariectomy operation animals and the administration of E2 results in an increased expression of Trpv6 in osteoclasts. In contrast, Trpv6 depletion significantly blocked the inhibitory effects of E2 on bone resorption activity, and silencing Trpv6 alleviated E2-induced osteoclast apoptosis. In addition, we found that E2 regulates the transcription of Trpv6 through ERα, by interacting with C/EBPβ and NF-κB. Chip assay analysis indicated that C/EBPβ regulates Trpv6 transcription by binding to Trpv6 promoter fragments −1,866 nt to −1,761 nt and −2,685 nt to −2,580 nt, whereas NF-κB binds to the −953 nt to −851 nt region. We conclude that TRPV6 has a significant effect on E2-mediated osteoclast function. E2 induces Trpv6 expression in osteoclasts TRPV6 was involved in the effect of E2-mediated osteoclast function E2 regulates the transcription of Trpv6 through Erα in osteoclasts
Collapse
|
16
|
Gong S, Ma J, Tian A, Lang S, Luo Z, Ma X. Effects and mechanisms of microenvironmental acidosis on osteoclast biology. Biosci Trends 2021; 16:58-72. [PMID: 34732613 DOI: 10.5582/bst.2021.01357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to continuous bone remodeling, the bone tissue is dynamic and constantly being updated. Bone remodeling is precisely regulated by the balance between osteoblast-induced bone formation and osteoclast-induced bone resorption. As a giant multinucleated cell, formation and activities of osteoclasts are regulated by macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-kappaB ligand (RANKL), and by pathological destabilization of the extracellular microenvironment. Microenvironmental acidosis, as the prime candidate, is a driving force of multiple biological activities of osteoclast precursor and osteoclasts. The mechanisms involved in these processes, especially acid-sensitive receptors/channels, are of great precision and complicated. Recently, remarkable progress has been achieved in the field of acid-sensitive mechanisms of osteoclasts. It is important to elucidate the relationship between microenvironmental acidosis and excessive osteoclasts activity, which will help in understanding the pathophysiology of diseases that are associated with excess bone resorption. This review summarizes physiological consequences and in particular, potential mechanisms of osteoclast precursor or osteoclasts in the context of acidosis microenvironments.
Collapse
Affiliation(s)
- Shuwei Gong
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianxiong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Aixian Tian
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Shuang Lang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiheng Luo
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
17
|
Diao X, Wang L, Zhou Y, Bi Y, Zhou K, Song L. The mechanism of Epimedin B in treating osteoporosis as revealed by RNA sequencing-based analysis. Basic Clin Pharmacol Toxicol 2021; 129:450-461. [PMID: 34491615 DOI: 10.1111/bcpt.13657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
With the ageing of populations, the management of osteoporosis is a priority of society in general. Epimedin B, a major ingredient of Herba Epimedii, which has the advantages of high content and hypotoxicity has been proved to be effective in preventing osteoporosis in vitro. However, the efficacy and mechanism of Epimedin B on osteoporosis in vivo have not been well elucidated yet. This study aimed to investigate the effects and the potential mechanisms of 8-week repeated oral administration of Epimedin B (10 and 20 mg/kg/day) on a mouse osteoporosis model. Effects of Epimedin B were evaluated by examinations of serum bone turnover markers, bone mineral density, bone microstructure parameters and histopathological section. Epimedin B significantly rose N-terminal propeptide of type I procollagen (P1NP) and dropped C-telopeptide of type I collagen (CTX1). Connectivity density (Conn.D) increased significantly while structure model index (DA) decreased significantly after treated by Epimedin B. Meanwhile, Epimedin B administration significantly increased the number of trabecular bones while significantly decreased the gap between them. Overall, Epimedin B showed beneficial effects on osteoporosis. Furthermore, RNA sequencing-based analysis revealed 5 significantly down-regulated transcripts and 107 significantly up-regulated transcripts between the Epimedin B administration group and the model group. These transcripts were mapped to 15 pathways by KEGG enrichment analysis, of which PI3K-Akt signalling pathway, MAPK signalling pathway and PPAR signalling pathway were most connected to osteoporosis. To conclude, Epimedin B is effective in treating osteoporosis in mice via regulating PI3K-Akt, MAPK and PPAR signalling pathway.
Collapse
Affiliation(s)
- Xinyue Diao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liwen Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yating Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Bi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Ou L, Kang W, Zhang J, Wei P, Li M, Gao F, Dong T. Network Pharmacology-Based Investigation on the Anti-Osteoporosis Mechanism of Astragaloside IV. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211029549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Astragaloside IV is the main active ingredient of Astragalus membranaceus. Studies have found that it can promote the proliferation of osteoblasts and can antagonize the apoptosis of mouse osteoblasts induced by hydrogen peroxide, but its molecular mechanism for the treatment of osteoporosis is still not clear. First, we used 3 online platforms: CTD, PharmMapper and SwissTargetPrediction to retrieve the targets of Astragaloside IV, and collected osteoporosis-related targets. Next, we used Cytoscape 3.7.2 software to construct a visual network diagram of PPI and further screened the key genes of Astragaloside IV in the treatment of osteoporosis using cluster analysis. Finally, after the receptor and ligand were docked, the binding activity was assessed by docking score. We obtained 102 overlapping targets of Astragaloside IV and osteoporosis. According to the node degree value in the PPI network, the top 10 genes were PIK3CA, MAPK1, SRC, STAT3, VEGFA, HSP90AA1, RELA, AKT1, IGF1, EGFR, of which SRC, AKT1, PIK3CA could bind stably to Astragaloside IV. KEGG pathway enrichment results showed that Astragaloside IV treated osteoporosis through 10 main pathways, including PI3K-Akt signaling pathway, FoxO signaling pathway, MAPK pathway, and so on. The classification of these pathways belongs to signal transduction, immune system, development and regeneration and endocrine system. Astragaloside IV is significantly related to several pathways involved in osteoporosis, such as PI3K-Akt, FoxO signaling pathway and MAPK pathway. SRC, AKT1, and PIK3CA can bind stably with Astragaloside IV, and they may be hub genes for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wenqian Kang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Jiahao Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| |
Collapse
|
19
|
Huang Z, Su Q, Li W, Ren H, Huang H, Wang A. MCTS1 promotes invasion and metastasis of oral cancer by modifying the EMT process. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:997. [PMID: 34277797 PMCID: PMC8267330 DOI: 10.21037/atm-21-2361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Background The oncogene, malignant T-cell-amplified sequence 1 (MCTS1), has been found to be highly expressed in a variety of cancer cell lines. It has been shown to be involved in cell cycle progression and to confer a growth advantage for lymphomas and breast cancer. Nevertheless, the role of MCTS1 in contributing to the development of oral cancer remains elusive. Methods We analyzed the gene expression profiles of MCTS1 in normal oral keratinocytes and cancerous cells. Cellular proliferation, invasion, and migration experiments were performed to detect the effect of MCTS1 on the biological evolution of oral cancer. The in vitro results were verified by the in vivo lymphatic metastasis test. The underlying mechanism of MCTS1 in promoting oral cancer invasion and metastasis correlated with the epithelial-mesenchymal transition (EMT) process as revealed by western blotting. Results The results showed that MCTS1 was aberrantly expressed in oral cancer cells. MCTS1 overexpression significantly promoted tumor cell growth, proliferation, migration, and invasion. MCTS1-mediated lymphatic metastasis was verified in vivo using an intraplantar tumor model. Biomarkers associated with EMT progression were positively or negatively regulated upon knockdown or overexpression of MCTS1, respectively. Conclusions Higher MCTS1 expression in oral cancer may be connected with an unfavorable prognosis due to involvement of MCTS1. MCTS1 potentiates the growth and proliferation of oral cancer cells and subsequent metastasis by regulating cell cycle and modifying the EMT process. Keywords Oral cancer; oncogene; malignant T-cell-amplified sequence 1 (MCTS1); metastasis; invasion.
Collapse
Affiliation(s)
- Zhexun Huang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Li
- Animal Experiment Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Ma J, Zhu L, Zhou Z, Song T, Yang L, Yan X, Chen A, Ye TW. The calcium channel TRPV6 is a novel regulator of RANKL-induced osteoclastic differentiation and bone absorption activity through the IGF-PI3K-AKT pathway. Cell Prolif 2020; 54:e12955. [PMID: 33159483 PMCID: PMC7791174 DOI: 10.1111/cpr.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Calcium ion signals are important for osteoclast differentiation. Transient receptor potential vanilloid 6 (TRPV6) is a regulator of bone homeostasis. However, it was unclear whether TRPV6 was involved in osteoclast formation. Therefore, the aim of this study was to evaluate the role of TPRV6 in bone metabolism and to clarify its regulatory role in osteoclasts at the cellular level. Materials and methods Bone structure and histological changes in Trpv6 knockout mice were examined using micro‐computed tomography and histological analyses. To investigate the effects of Trpv6 on osteoclast function, we silenced or overexpressed Trpv6 in osteoclasts via lentivirus transfection, respectively. Osteoclast differentiation and bone resorption viability were measured by tartrate‐resistant acid phosphatase (TRAP) staining and pit formation assays. The expression of osteoclast marker genes, including cathepsin k, DC‐STAMP, Atp6v0d2 and TRAP, was measured by qRT‐PCR. Cell immunofluorescence and Western blotting were applied to explore the mechanisms by which the IGF‐PI3K‐AKT pathway was involved in the regulation of osteoclast formation and bone resorption by Trpv6. Results We found that knockout of Trpv6 induced osteoporosis and enhanced bone resorption in mice, but did not affect bone formation. Further studies showed that Trpv6, which was distributed on the cell membrane of osteoclasts, acted as a negative regulator for osteoclast differentiation and function. Mechanistically, Trpv6 suppressed osteoclastogenesis by decreasing the ratios of phosphoprotein/total protein in the IGF–PI3K–AKT signalling pathway. Blocking of the IGF–PI3K–AKT pathway significantly alleviated the inhibitory effect of Trpv6 on osteoclasts formation. Conclusions Our study confirmed the important role of Trpv6 in bone metabolism and clarified its regulatory role in osteoclasts at the cellular level. Taken together, this study may inspire a new strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China.,Department of Health Statistics, The Second Military Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopedic Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tengfei Song
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Lei Yang
- Department of Orthopedic Surgery, The 2nd affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xu Yan
- Department of Orthopedic Surgery, Naval Characteristic Medical Center, The Second Military Medical University, Shanghai, China
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Tian Wen Ye
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|