1
|
Cao Y, Chen B, Liu Q, Mao Y, He Y, Liu X, Zhao X, Chen Y, Li X, Li Y, Liu L, Guo C, Liu S, Tan F, Lu H, Liu J, Chen C. Dissolvable microneedle-based wound dressing transdermally and continuously delivers anti-inflammatory and pro-angiogenic exosomes for diabetic wound treatment. Bioact Mater 2024; 42:32-51. [PMID: 39280578 PMCID: PMC11399477 DOI: 10.1016/j.bioactmat.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Due to overactive inflammation and hindered angiogenesis, self-healing of diabetic wounds (DW) remains challenging in the clinic. Platelet-derived exosomes (PLT-Exos), a novel exosome capable of anti-inflammation and pro-angiogenesis, show great potential in DW treatment. However, previous administration of exosomes into skin wounds is topical daub or intradermal injection, which cannot intradermally deliver PLT-Exos into the dermis layer, thus impeding its long-term efficacy in anti-inflammation and pro-angiogenesis. Herein, a dissolvable microneedle-based wound dressing (PLT-Exos@ADMMA-MN) was developed for transdermal and long-term delivery of PLT-Exos. Firstly, a photo-crosslinking methacrylated acellular dermal matrix-based hydrogel (ADMMA-GEL), showing physiochemical tailorability, fast-gelling performance, excellent biocompatibility, and pro-angiogenic capacities, was synthesized as a base material of our dressing. For endowing the dressing with anti-inflammation and pro-angiogenesis, PLT-Exos were encapsulated into ADMMA-GEL with a minimum effective concentration determined by our in-vitro experiments. Then, in-vitro results show that this dressing exhibits excellent properties in anti-inflammation and pro-angiogenesis. Lastly, in-vivo experiments showed that this dressing could continuously and transdermally deliver PLT-Exos into skin wounds to switch local macrophage into M2 phenotype while stimulating neovascularization, thus proving a low-inflammatory and pro-angiogenic microenvironment for DW healing. Collectively, this study provides a novel wound dressing capable of suppressing inflammation and stimulating vascularization for DW treatment.
Collapse
Affiliation(s)
- Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Bei Chen
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| | - Qixing Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yiyang Mao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng He
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xiaoren Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yaowu Chen
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Xiying Li
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Yabei Li
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Liang Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Chengwu Guo
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Shiyu Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Fenghua Tan
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Hongbin Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Fan Z, Gan Y, Hu Y. The potential utilization of platelet-derived extracellular vesicles in clinical treatment. Platelets 2024; 35:2397592. [PMID: 39287127 DOI: 10.1080/09537104.2024.2397592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Platelet-derived extracellular vesicles (PEVs) are released by platelets in the blood circulation, which carry a rich bio-molecular cargo influential in intercellular communications. PEVs can enter the lymph, bone marrow, and synovial fluid as nano-sized particles, while platelets cannot cross tissue barriers. Considering the advantages of PEVs such as low immunogenicity, high regulation of signal transduction, and easy obtainment, PEVs may be promising therapeutic tools for medical applications. The exceptional functional roles played by PEVs explain the recent interest in exploring new cell-free therapies that could address needs in angiogenesis, regenerative medicine, and targeted drug delivery. The review takes a critical look at the main advances of PEVs in the treatment of diseases by presenting the latest knowledge from the performed studies, in order to enhance the further translation of the PEVs research into feasible therapeutic applications.
Collapse
Affiliation(s)
- Zhijia Fan
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yanwei Hu
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| |
Collapse
|
3
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Tiryaki T. Staged Stem Cell-Enriched Tissue (SET) Injections for Soft Tissue Augmentation in Hostile Recipient Areas: A Preliminary Report. Aesthetic Plast Surg 2024; 48:3548-3549. [PMID: 38200127 DOI: 10.1007/s00266-023-03814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
|
5
|
Sędzik M, Rakoczy K, Sleziak J, Kisiel M, Kraska K, Rubin J, Łuniewska W, Choromańska A. Comparative Analysis of Exosomes and Extracellular Microvesicles in Healing Pathways: Insights for Advancing Regenerative Therapies. Molecules 2024; 29:3681. [PMID: 39125084 PMCID: PMC11314465 DOI: 10.3390/molecules29153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes and microvesicles bear great potential to broaden therapeutic options in the clinical context. They differ in genesis, size, cargo, and composition despite their similarities. They were identified as participating in various processes such as angiogenesis, cell migration, and intracellular communication. Additionally, they are characterized by their natural biocompatibility. Therefore, researchers concluded that they could serve as a novel curative method capable of achieving unprecedented results. Indeed, in experiments, they proved remarkably efficient in enhancing wound regeneration and mitigating inflammation. Despite immense advancements in research on exosomes and microvesicles, the time for their large-scale application is yet to come. This article aims to gather and analyze current knowledge on those promising particles, their characteristics, and their potential clinical implementations.
Collapse
Affiliation(s)
- Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Wiktoria Łuniewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
7
|
Nie X, Liu Y, Yuan T, Yu T, Yun Z, Xue W, Yu T, An J, Dai A, Wu K, Liu Q. Platelet-rich plasma-derived exosomes promote blood-spinal cord barrier repair and attenuate neuroinflammation after spinal cord injury. J Nanobiotechnology 2024; 22:456. [PMID: 39085856 PMCID: PMC11290287 DOI: 10.1186/s12951-024-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Spinal cord injury (SCI) compromises the blood-spinal cord barrier (BSCB) and induces neuroinflammation, potentially exacerbating neuronal damage. This underscores the importance of maintaining BSCB integrity and mitigating neuroinflammation in SCI treatment. Our study explores an innovative approach to treating SCI by utilizing platelet-rich plasma-derived exosomes (PRP-Exos) to stabilize BSCB function and alleviate neuroinflammation. We successfully isolated exosomes from platelet-rich plasma and conducted both in vivo and in vitro experiments to assess the therapeutic effects of PRP-Exos and explore their potential mechanisms in stabilizing the BSCB, reducing neuroinflammation, and promoting neural functional recovery.In vitro results demonstrate that PRP-Exos significantly reduce the permeability of bEnd.3 cells under hypoxic-hypoglycemic conditions, thereby restoring the integrity of tight junctions. Additionally, our study elucidates the critical role of the NF-κB signaling pathway in the amelioration of neuroinflammation by PRP-Exos. In the SCI model, local injection of hydrogel-encapsulated PRP-Exos reduced Evans blue dye leakage, enhanced the expression of tight junction proteins, alleviated the inflammatory environment in the damaged area, and improved neural functional recovery. In conclusion, PRP-Exos presents a promising and effective treatment option for SCI.
Collapse
Affiliation(s)
- Xinyu Nie
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Yanting Liu
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tianyang Yuan
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Zhihe Yun
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Wu Xue
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Tao Yu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Junyan An
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Anyuan Dai
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Kun Wu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China
| | - Qinyi Liu
- Department of Orthopaedic, The second hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Everts PA, Lana JF, Alexander RW, Dallo I, Kon E, Ambach MA, van Zundert A, Podesta L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int J Mol Sci 2024; 25:7914. [PMID: 39063156 PMCID: PMC11277244 DOI: 10.3390/ijms25147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, A Non-Profit Organization, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic & Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative and Wound Healing, Hamilton, MT 59840, USA;
- Department of Surgery & Maxillofacial Surgery, School of Medicine & Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ignacio Dallo
- Unit of Biological Therapies and MSK Interventionism, Department of Orthopaedic Surgery and Sports Medicine, Sport Me Medical Center, 41013 Seville, Spain;
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mary A. Ambach
- BioEvolve, San Diego Orthobiologics and Sports Center, San Diego, CA 92024, USA
| | - André van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane and The University of Queensland, Brisbane 4072, Australia;
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Physical Medicine & Rehabilitation Orlando College of Osteopathic Medicine, Orlando, FL 32806, USA
| |
Collapse
|
9
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
10
|
Arai T, Shiga Y, Mukai M, Takayama N, Tashiro S, Tajiri I, Kosaka K, Sato M, Nakamura S, Okamoto H, Kimura S, Inage K, Suzuki-Narita M, Eguchi Y, Orita S, Eto K, Ohtori S. Osteogenic effects and safety of human induced pluripotent stem cell-derived megakaryocytes and platelets produced on a clinical scale. Regen Ther 2024; 26:850-858. [PMID: 39430581 PMCID: PMC11488481 DOI: 10.1016/j.reth.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Platelet-rich plasma obtained by centrifuging peripheral blood can promote osteogenesis owing to its abundant growth factors but has drawbacks, including rapid growth factor loss and inconsistent effects depending on donor factors. To overcome these issues, we were the first in the world to use freeze-dried human induced pluripotent stem cell-derived megakaryocytes and platelets (S-FD-iMPs) and found that they have osteogenesis-promoting effects. Since turbulence was found to activate platelet biogenesis and iPS cell-derived platelets can now be produced on a clinical scale by a device called VerMES, this study examined the osteogenesis-promoting effect and safety of clinical-scale FD-iMP (V-FD-iMPs) for future human clinical application. Method We administered either S-FD-iMPs, V-FD-iMPs, or saline along with artificial bone to the lumbar spine of 8-week-old male Sprague-Dawley rats (n = 4 each) and evaluated bone formation by computed tomography (CT) and pathology. Next, we administered V-FD-iMPs or saline along with artificial bone to the lumber spines of 5-week-old male New Zealand White rabbits (n = 4 each) and evaluated the bone formation by CT and pathology. Rats (n = 10) and rabbits (n = 6) that received artificial bone and V-FD-iMPs in the lumbar spine were also observed for 6 months for adverse events, including infection, tumor formation, and death. Results Both V-FD-iMPs and S-FD-iMPs significantly enhanced osteogenesis in the lumber spines of rats in comparison with the controls 8 weeks postoperatively, with no significant differences between them. Furthermore, V-FD-iMPs vigorously promoted osteogenesis in the lumber spines of rabbits 8 weeks postoperatively. In rats and rabbits, V-FD-iMPs showed no adverse effects, including infection, tumor formation, and death, over 6 months. Conclusion These results suggest that V-FD-iMPs promote safe osteogenesis.
Collapse
Affiliation(s)
- Takahito Arai
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Michiaki Mukai
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Susumu Tashiro
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Ikuko Tajiri
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Kentaro Kosaka
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Graduate School of Medicine, Chiba University, Chiba, 2608670, Japan
| | - Masashi Sato
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, 2838686, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for IPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| | - Haruki Okamoto
- Department of Clinical Application, Center for IPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| | - Seiji Kimura
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Miyako Suzuki-Narita
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 2608670, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| | - Sumihisa Orita
- Center for Frontier Medical Engineering, Chiba University, Chiba, 2638522, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
- Department of Clinical Application, Center for IPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, 2608670, Japan
| |
Collapse
|
11
|
Tao X, Xue F, Xu J, Wang W. Platelet-rich plasma-derived extracellular vesicles inhibit NF-κB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal 2024; 117:111106. [PMID: 38373669 DOI: 10.1016/j.cellsig.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a main contributor to lower back pain, and compression stress-induced apoptosis of nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation has been implicated in the IDD progression. The functions of platelet-rich plasma (PRP)-derived extracellular vesicles (PRP-EVs) in regulating these biological processes remain unclear in IDD. Here, we aimed to investigate the key role of long noncoding RNA (lncRNA) MALAT1 incorporated in PRP-EVs in IDD. METHODS Tert-butyl hydroperoxide (TBHP)-induced damage in NP cells was treated with PRP-EVs extracted from healthy volunteers, followed by MTT, EdU, TUNEL, and Western blot assays. IDD mice were also treated with PRP-EVs. Histomorphological and pathological changes were evaluated. The pyroptosis of cells and the degradation of ECM were detected by ELISA and immunohistochemistry. We screened the differentially expressed lncRNAs in NP cells after PRP-EVs treatment by microarray analysis. The downstream targets of MALAT1 in NP cells were predicted and validated by rescue experiments. FINDINGS TBHP induction reduced cell proliferation and exacerbated pyroptosis and ECM degradation, and PRP-EVs inhibited TBHP-induced cell damage. PRP-EVs-treated mice with IDD had reduced Thompson scores, increased NP tissue content, and restored ECM. PRP-EVs upregulated MALAT1 expression in vivo and in vitro, whereas MALAT1 downregulation exacerbated NP cell pyroptosis and ECM degradation. MALAT1 upregulated SIRT1 expression by downregulating microRNA (miR)-217 in NP cells. SIRT1 blocked the NF-κB/NLRP3 pathway-mediated pyroptosis, thereby alleviating IDD. INTERPRETATION PRP-EVs deliver MALAT1 to regulate miR-217/SIRT1, thereby controlling NP cell pyroptosis in IDD.
Collapse
Affiliation(s)
- Xueqiang Tao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China; Department of Orthopaedics, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Fen Xue
- Department of Obstetrics and Gynecology, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Jiayuan Xu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Wenbo Wang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
12
|
Anitua E, Zalduendo M, Tierno R, Alkhraisat MH. Plasma Rich in Growth Factors in Bone Regeneration: The Proximity to the Clot as a Differential Factor in Osteoblast Cell Behaviour. Dent J (Basel) 2024; 12:122. [PMID: 38786520 PMCID: PMC11119057 DOI: 10.3390/dj12050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The osteogenic differentiation process, by which bone marrow mesenchymal stem cells and osteoprogenitors transform into osteoblasts, is regulated by several growth factors, cytokines, and hormones. Plasma Rich in Growth Factors (PRGF) is a blood-derived preparation consisting of a plethora of bioactive molecules, also susceptible to containing epigenetic factors such as ncRNAs and EVs, that stimulates tissue regeneration. The aim of this study was to investigate the effect of the PRGF clot formulation on osteogenic differentiation. Firstly, osteoblast cells were isolated and characterised. The proliferation of bone cells cultured onto PRGF clots or treated with PRGF supernatant was determined. Moreover, the gene expression of Runx2 (ID: 860), SP7 (ID: 121340), and ALPL (ID: 249) was analysed by one-step real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, alkaline phosphatase (ALPL) activity determination was performed. The highest proliferative effect was achieved by the PRGF supernatant in all the study periods analysed. Concerning gene expression, the logRGE of Runx2 increased significantly in osteoblasts cultured with PRGF formulations compared with the control group, while that of SP7 increased significantly in osteoblasts grown on the PRGF clots. On the other hand, despite the fact that the PRGF supernatant induced ALPL up-regulation, significantly higher enzyme activity was detected for the PRGF clots in comparison with the supernatant formulation. According to our results, contact with the PRGF clot could promote a more advanced phase in the osteogenic process, associated to higher levels of ALPL activity. Furthermore, the PRGF clot releasate stimulated a higher proliferation rate in addition to reduced SP7 expression in the cells located at a distant ubication, leading to a less mature osteoblast stage. Thus, the spatial relationship between the PRGF clot and the osteoprogenitors cells could be a factor that influences regenerative outcomes.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain; (M.Z.); (R.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| |
Collapse
|
13
|
Wu R, Xie Y, Peng Y, Wu X, Ma Y, Lyu FJ, Zheng Q, Deng Z. Young human plasma-derived extracellular vesicles rescue and reactivate IL-1β and TNF-α treated chondrocytes. Exp Cell Res 2024; 437:114009. [PMID: 38537745 DOI: 10.1016/j.yexcr.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects millions of individuals worldwide. Despite its prevalence, the exact causes and mechanisms behind OA are still not fully understood, resulting in a lack of effective treatments to slow down or halt disease progression. Recent research has discovered that extracellular vesicles (EVs) present in the circulation of young mice have a remarkable ability to activate musculoskeletal stem cells in elderly mice. Conversely, EVs derived from elderly mice do not exhibit the same potential, indicating that EVs obtained from young individuals may hold promise to activate aging cells in degenerative tissue. However, it remains unknown whether EVs derived from young individuals can also address cartilage degeneration caused by aging. In this study, we first evaluated EVs derived from young human plasma (YEVs) and EVs derived from old human plasma (OEVs) in an in vitro experiment using chondrocytes. The results revealed that YEVs effectively stimulated chondrocyte proliferation and migration, while OEVs from old plasma did not exhibit a similar effect. Given that OA represents a more complex inflammatory microenvironment, we further determine whether the benefits of YEVs on chondrocytes can be maintained in this context. Our findings indicate that YEVs have the ability to positively regulate chondrocyte function and protect them against apoptosis induced by IL-1β and TNF-α in an in vitro OA model. Furthermore, we discovered that lyophilized EVs could be stored under mild conditions without any alterations in their physical characteristics. Considering the exceptional therapeutic effects and the wide availability of EVs from young plasma, they hold significant promise as a potential approach to activate chondrocytes and promote cartilage regeneration in early-stage OA.
Collapse
Affiliation(s)
- Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China; Shantou University Medical College, Shantou, Guangdong Province, 515000, PR China
| | - Yu Xie
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China; Shantou University Medical College, Shantou, Guangdong Province, 515000, PR China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China; Shantou University Medical College, Shantou, Guangdong Province, 515000, PR China
| | - Xiaohu Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, PR China; Joint Center for Regenerative Medicine Research of South China University of Technology and the University of Western Australia, School of Medicine, South China University of Technology, Guangzhou, 515000, PR China.
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China.
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, PR China.
| |
Collapse
|
14
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
15
|
Zhang Y, Yi D, Hong Q, Cao J, Geng X, Liu J, Xu C, Cao M, Chen C, Xu S, Zhang Z, Li M, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes boost mesenchymal stem cells to promote peripheral nerve regeneration. J Control Release 2024; 367:265-282. [PMID: 38253204 DOI: 10.1016/j.jconrel.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Peripheral nerve injury (PNI) remains a severe clinical problem with debilitating consequences. Mesenchymal stem cell (MSC)-based therapy is promising, but the problems of poor engraftment and insufficient neurotrophic effects need to be overcome. Herein, we isolated platelet-rich plasma-derived exosomes (PRP-Exos), which contain abundant bioactive molecules, and investigated their potential to increase the regenerative capacity of MSCs. We observed that PRP-Exos significantly increased MSC proliferation, viability, and mobility, decreased MSC apoptosis under stress, maintained MSC stemness, and attenuated MSC senescence. In vivo, PRP-Exo-treated MSCs (pExo-MSCs) exhibited an increased retention rate and heightened therapeutic efficacy, as indicated by increased axonal regeneration, remyelination, and recovery of neurological function in a PNI model. In vitro, pExo-MSCs coculture promoted Schwann cell proliferation and dorsal root ganglion axon growth. Moreover, the increased neurotrophic behaviour of pExo-MSCs was mediated by trophic factors, particularly glia-derived neurotrophic factor (GDNF), and PRP-Exos activated the PI3K/Akt signalling pathway in MSCs, leading to the observed phenotypes. These findings demonstrate that PRP-Exos may be novel agents for increasing the ability of MSCs to promote neural repair and regeneration in patients with PNI.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Departments of Anaesthesiology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaodong Geng
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuang Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengyu Cao
- Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Chen
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuaixuan Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
16
|
Han L, Hu N, Wang C, Ye Z, Wang T, Lan F. Platelet-rich plasma-derived exosomes promote rotator cuff tendon-bone healing. Injury 2024; 55:111212. [PMID: 37984013 DOI: 10.1016/j.injury.2023.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Rotator cuff tear (RCT) is the most common type of shoulder joint injury, platelet-rich plasma-derived exosomes (PRP-exos) are highly promising in tissue repair and regeneration. The purpose of this study was to determine the function of PRP-exos in rotator cuff tendon-bone healing. METHODS PRP-exos were isolated from the rabbit whole blood by differential ultracentrifugation and characterized through transmission electron microscopy assay, nanoparticle tracking analysis, and western blotting. Alkaline phosphatase and Von Kossa staining were used to show tendon-derived stem cell (TDSC) differentiation. RT-qPCR and western blotting were performed to detect COL II, SOX-9, and TIMP-1. To determine the therapeutic effects of PRP-exos in vivo. Thirty New Zealand white rabbits were divided into control, model, and PRP-exos groups. The RCT animal model was constructed. The changes in tendon-bone tissue were determined by HE staining. Contents of COL-II, SOX-9, and TIMP-1 were determined by immunohistochemistry staining. RESULTS PRP-exos were successfully isolated from rabbit blood. PRP-exos promoted TDSC proliferation and differentiation and also induced tendon-specific markers COL II, SOX-9, and TIMP-1 production. In vivo study revealed that PRP-exos promoted early healing of injured tendons. Rabbits treated with PRP-exos had better tissue arrangement in the tear site. Additionally, the contents of COL II, SOX-9, and TIMP-1 were also increased in the RCT rabbit model after PRP-exos treatment. CONCLUSIONS PRP-exos enhanced tendon-bone healing by promoting TDSC proliferation and differentiation. This finding indicates that PRP-exos can serve as a promising strategy to treat rotator cuff tendon-bone healing.
Collapse
Affiliation(s)
- Lei Han
- Department of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine), Hangzhou, 321000, China
| | - Ningrui Hu
- School of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Canfeng Wang
- Department of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine), Hangzhou, 321000, China
| | - Zhengcong Ye
- Department of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine), Hangzhou, 321000, China
| | - Tuo Wang
- Department of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine), Hangzhou, 321000, China
| | - Fang Lan
- Department of Orthopedics, Lishui TCM Hospital Affiliated to Zhejiang Chinese Medical University (Lishui Hospital of Traditional Chinese Medicine), No.800, Zhongshan Street, Lishui, 323000, China.
| |
Collapse
|
17
|
Xiong Y, Lou P, Xu C, Han B, Liu J, Gao J. Emerging role of extracellular vesicles in veterinary practice: novel opportunities and potential challenges. Front Vet Sci 2024; 11:1335107. [PMID: 38332755 PMCID: PMC10850357 DOI: 10.3389/fvets.2024.1335107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Extracellular vesicles are nanoscale vesicles that transport signals between cells, mediating both physiological and pathological processes. EVs facilitate conserved intercellular communication. By transferring bioactive molecules between cells, EVs coordinate systemic responses, regulating homeostasis, immunity, and disease progression. Given their biological importance and involvement in pathogenesis, EVs show promise as biomarkers for veterinary diagnosis, and candidates for vaccine production, and treatment agents. Additionally, different treatment or engineering methods could be used to boost the capability of extracellular vesicles. Despite the emerging veterinary interest, EV research has been predominantly human-based. Critical knowledge gaps remain regarding isolation protocols, cargo loading mechanisms, in vivo biodistribution, and species-specific functions. Standardized methods for veterinary EV characterization and validation are lacking. Regulatory uncertainties impede veterinary clinical translation. Advances in fundamental EV biology and technology are needed to propel the veterinary field forward. This review introduces EVs from a veterinary perspective by introducing the latest studies, highlighting their potential while analyzing challenges to motivate expanded veterinary investigation and translation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Lei X, Zou C, Hu J, Fan M, Jiang Y, Xiong M, Han C, Zhang X, Li Y, Zhao L, Nie R, Li‐Ling J, Xie H. A Self-Assembly Pro-Coagulant Powder Capable of Rapid Gelling Transformation and Wet Adhesion for the Efficient Control of Non-Compressible Hemorrhage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306289. [PMID: 38044313 PMCID: PMC10811489 DOI: 10.1002/advs.202306289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Rapid and effective control of non-compressible massive hemorrhage poses a great challenge in first-aid and clinical settings. Herein, a biopolymer-based powder is developed for the control of non-compressible hemorrhage. The powder is designed to facilitate rapid hemostasis by its excellent hydrophilicity, great specific surface area, and adaptability to the shape of wound, enabling it to rapidly absorb fluid from the wound. Specifically, the powder can undergo sequential cross-linking based on "click" chemistry and Schiff base reaction upon contact with the blood, leading to rapid self-gelling. It also exhibits robust tissue adhesion through covalent/non-covalent interactions with the tissues (adhesive strength: 89.57 ± 6.62 KPa, which is 3.75 times that of fibrin glue). Collectively, this material leverages the fortes of powder and hydrogel. Experiments with animal models for severe bleeding have shown that it can reduce the blood loss by 48.9%. Studies on the hemostatic mechanism also revealed that, apart from its physical sealing effect, the powder can enhance blood cell adhesion, capture fibrinogen, and synergistically induce the formation of fibrin networks. Taken together, this hemostatic powder has the advantages for convenient preparation, sprayable use, and reliable hemostatic effect, conferring it with a great potential for the control of non-compressible hemorrhage.
Collapse
Affiliation(s)
- Xiong‐Xin Lei
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Orthopedic SurgeryFirst People's Hospital of FoshanFoshanGuangdong528000P. R. China
| | - Chen‐Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Juan‐Juan Hu
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Otolaryngology – Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Ming‐Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Yan‐Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Otolaryngology – Head & Neck SurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Xiu‐Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Ya‐Xing Li
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Long‐Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| | - Jesse Li‐Ling
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
- Center of Medical GeneticsWest China Second University HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Hui‐Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research InstituteLaboratory of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduSichuan610212P. R. China
| |
Collapse
|
19
|
Navab R, Haward R, Chacko J, Haward R. Platelet-Rich Plasma for Heart Cell Regeneration Post-myocardial Infarction: A Propitious Therapeutic Approach. Cureus 2024; 16:e51951. [PMID: 38333505 PMCID: PMC10852202 DOI: 10.7759/cureus.51951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Globally, one of the primary factors leading to death is cardiovascular disorders, specifically coronary artery disease, which leads to myocardial infarction (MI). This article investigates the potential of platelet-rich plasma (PRP) therapy for regenerating cardiac cells following MI. We look into the pathophysiology of MI, current treatment methods, and the heart's limited ability to heal itself. This is done to see if PRP could help the heart heal faster, reduce the size of the infarct, and stop scar tissue from forming. We analyze the production procedure of PRP, its composition of growth factors, and its utilization in many medical domains. The ways that PRP helps the heart heal are also being looked into. This includes how it affects inflammation, oxidative stress, angiogenesis, and cell proliferation. Although we recognize the existing constraints, we meticulously take into account issues such as standardization, therapeutic variance, and potential harmful effects. This study highlights the importance of comprehensive guidelines, continuous research, and enhanced clinical applications to fully harness the potential of platelet-rich plasma in the regeneration of cardiac cells after a heart attack.
Collapse
Affiliation(s)
- Rahul Navab
- Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, IND
| | - Raymond Haward
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Joshua Chacko
- Internal Medicine, Father Muller Medical College, Mangalore, IND
| | - Rachel Haward
- Internal Medicine, KVG Medical College and Hospital, Sullia, IND
| |
Collapse
|
20
|
Hou Y, Wen X, Zhou L, Fang X. The value of platelet-rich plasma-derived extracellular vesicles in modern medicine. Ann Med 2023; 55:2287705. [PMID: 38065677 PMCID: PMC10880568 DOI: 10.1080/07853890.2023.2287705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Platelet-rich plasma (PRP) has been widely used in clinical practice. The mechanism by which PRP promotes tissue repair lies in the release of multiple growth factors upon platelet activation, which accelerates the proliferation and differentiation of repair cells and the synthesis of extracellular matrix. In recent years, as extracellular vesicles (EVs) research has increased and intensified, it has been found that EVs also play an important role in tissue repair. This article provides a comprehensive review of the role of PRP and PRP-derived extracellular vesicles (PRP-EVs) in tissue repair. It discusses the biological characteristics, extraction, identification, activation, and preservation of PRP-EVs. It also reviews their applications in orthopedics and wound repair. The article highlights the importance of PRP-EVs in modern medicine and suggests that they could be a promising natural nanocarrier.
Collapse
Affiliation(s)
- Ya Hou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoyun Wen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Zhou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Blood Transfusion Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
21
|
Zhu D, Li Y, Tian AY, Wang HN. Comparing acute normovolumic hemodilution with autologous platelet-rich plasma for blood preservation during aortic surgery : study protocol for a randomized controlled clinical trial. Trials 2023; 24:741. [PMID: 37980486 PMCID: PMC10657030 DOI: 10.1186/s13063-023-07800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Both acute normovolumic hemodilution (ANH) and autologous platelet-rich plasma (aPRP) have been demonstrated blood-protective effects in cardiac aortic surgery; however, the efficacies of the two methods have not been compared. This study aims to compare the effects of aPRP and ANH prior to aortic surgery on postoperative bleed and other outcomes. METHODS AND ANALYSIS This is a prospective, single-center, double-blind controlled clinical trial including 160 patients randomized 1:1 to receive aPRP (test group) or autologous whole blood (ANH, control group). The primary objective is to compare the drainage volumes in the two groups at 24, 48, and 72 h postoperatively. Secondary outcomes include input of allogeneic blood and blood products and durations of aortic block, extracorporeal circulation, deep hypothermic arrest of circulation, tracheal extubation, hospital stay, requirement for secondary surgical hemostasis, and application of intra-aortic balloon pump or extracorporeal membrane oxygenation in the two groups. In addition, heart rate, systolic blood pressure, diastolic blood pressure, central venous pressure, and thromboelastography recorded before blood reservation (T1), after blood reservation (T2), before blood transfusion (T3), and after the blood is returned (T4) to the transfusion will be compared between the two groups of patients. DISCUSSION This study will demonstrate if the use of aPRP could reduce the risk of bleeding after aortic surgery compared with ANH. The results are expected to have practical clinical applications in terms of more effective blood protection and shorter hospital stay. TRIAL REGISTRATION This study was registered with the Chinese Clinical Trial Registry ( http://www.chictr.org.cn/ ) with the ID ChiCTR 1900023351.Registered on May 23, 2019. TRIAL STATUS Recruiting start date: July 1, 2019; expected recruiting end date: July 1, 2024 Version number and date: Version 2 of 05-04-2019.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, China
| | - Yu Li
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, China
| | - A-Yong Tian
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, China
| | - Hong-Nan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
22
|
Cao W, Meng X, Cao F, Wang J, Yang M. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience 2023; 26:108236. [PMID: 37953957 PMCID: PMC10637946 DOI: 10.1016/j.isci.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetic non-healing wounds are bringing a heavy burden on patients and society. Platelet-rich plasma (PRP) has been widely applied in tissue regenerating for containing various growth factors. Recently, PRP-derived exosomes (PRP-Exos) have been proved to be more effective than PRP in tissue regeneration. However, few studies have investigated the therapeutic potential of PRP-Exos in diabetic wound healing to date. Therefore, we extracted and identified exosomes derived from PRP and tested its promoting effect on diabetic wound healing in vivo and in vitro. We found that high glucose (HG) inhibited cell proliferation and migration and induced apoptosis through ROS-dependent activation of the JNK and p38 MAPK signaling pathways. PRP-Exos can stimulate fibroblast functions and accelerate diabetic wound healing. The benefits of PRP-Exos may be attributed to its capability to prevent HG-induced ROS-dependent apoptosis via the PDGF-BB/JAK2/STAT3/Bcl-2 signaling pathway. This illustrates the therapeutic potential of PRP-Exos in diabetic wounds.
Collapse
Affiliation(s)
- Wenhai Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xiaotong Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Cai CS, He GJ, Xu FW. Advances in the Applications of Extracellular Vesicle for the Treatment of Skin Photoaging: A Comprehensive Review. Int J Nanomedicine 2023; 18:6411-6423. [PMID: 37954453 PMCID: PMC10638935 DOI: 10.2147/ijn.s433611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Skin photoaging is a complex biological process characterized by the accumulation of oxidative damage and structural changes in the skin, resulting from chronic exposure to ultraviolet (UV) radiation. Despite the growing demand for effective treatments, current therapeutic options for skin photoaging remain limited. However, emerging research has highlighted the potential of extracellular vesicles (EVs), including exosomes, micro-vesicles, apoptotic bodies and liposomes, as promising therapeutic agents in skin rejuvenation. EVs are involved in intercellular communication and can deliver bioactive molecules, including proteins, nucleic acids, and lipids, to recipient cells, thereby influencing various cellular processes. This comprehensive review aims to summarize the current research progress in the application of EVs for the treatment of skin photoaging, including their isolation and characterization methods, roles in skin homeostasis, therapeutic potential and clinical applications for skin photoaging. Additionally, challenges and future directions in EVs-based therapies for skin rejuvenation are discussed.
Collapse
Affiliation(s)
- Chan-Sheng Cai
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Gui-Juan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| | - Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| |
Collapse
|
24
|
Forteza-Genestra MA, Antich-Rosselló M, Ramis-Munar G, Calvo J, Gayà A, Monjo M, Ramis JM. Comparative effect of platelet- and mesenchymal stromal cell-derived extracellular vesicles on human cartilage explants using an ex vivo inflammatory osteoarthritis model. Bone Joint Res 2023; 12:667-676. [PMID: 37852621 PMCID: PMC10584413 DOI: 10.1302/2046-3758.1210.bjr-2023-0109.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine.
Collapse
Affiliation(s)
- Maria A. Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Ramis-Munar
- Microscopy Area, Serveis Cietificotècnics, University of the Balearic Islands, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
25
|
Feng J, Yao Y, Wang Q, Han X, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Exosomes: Potential key players towards novel therapeutic options in diabetic wounds. Biomed Pharmacother 2023; 166:115297. [PMID: 37562235 DOI: 10.1016/j.biopha.2023.115297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetic wounds are usually difficult to heal, and wounds in foot in particular are often aggravated by infection, trauma, diabetic neuropathy, peripheral vascular disease and other factors, resulting in serious foot ulcers. The pathogenesis and clinical manifestations of diabetic wounds are complicated, and there is still a lack of objective and in-depth laboratory diagnosis and classification standards. Exosomes are nanoscale vesicles containing DNA, mRNA, microRNA, cyclic RNA, metabolites, lipids, cytoplasm and cell surface proteins, etc., which are involved in intercellular communication and play a crucial role in vascular regeneration, tissue repair and inflammation regulation in the process of diabetic wound healing. Here, we discussed exosomes of different cellular origins, such as diabetic wound-related fibroblasts (DWAF), adipose stem cells (ASCs), mesenchymal stem cells (MSCs), immune cells, platelets, human amniotic epithelial cells (hAECs), epidermal stem cells (ESCs), and their various molecular components. They exhibit multiple therapeutic effects during diabetic wound healing, including promoting cell proliferation and migration associated with wound healing, regulating macrophage polarization to inhibit inflammatory responses, promoting nerve repair, and promoting vascular renewal and accelerating wound vascularization. In addition, exosomes can be designed to deliver different therapeutic loads and have the ability to deliver them to the desired target. Therefore, exosomes may become an innovative target for precision therapeutics in diabetic wounds. In this review, we summarize the latest research on the role of exosomes in the healing of diabetic wound by regulating the pathogenesis of diabetic wounds, and discuss their potential applications in the precision treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaozhou Han
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Afflicted to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
26
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
27
|
Anitua E, Troya M, Falcon-Pérez JM, López-Sarrio S, González E, Alkhraisat MH. Advances in Platelet Rich Plasma-Derived Extracellular Vesicles for Regenerative Medicine: A Systematic-Narrative Review. Int J Mol Sci 2023; 24:13043. [PMID: 37685849 PMCID: PMC10488108 DOI: 10.3390/ijms241713043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The use of platelet-rich plasma (PRP) has gained increasing interest in recent decades. The platelet secretome contains a multitude of growth factors, cytokines, chemokines, and other biological biomolecules. In recent years, developments in the field of platelets have led to new insights, and attention has been focused on the platelets' released extracellular vesicles (EVs) and their role in intercellular communication. In this context, the aim of this review was to compile the current evidence on PRP-derived extracellular vesicles to identify the advantages and limitations fortheir use in the upcoming clinical applications. A total of 172 articles were identified during the systematic literature search through two databases (PubMed and Web of Science). Twenty publications met the inclusion criteria and were included in this review. According to the results, the use of PRP-EVs in the clinic is an emerging field of great interest that represents a promising therapeutic option, as their efficacy has been demonstrated in the majority of fields of applications included in this review. However, the lack of standardization along the procedures in both the field of PRP and the EVs makes it extremely challenging to compare results among studies. Establishing standardized conditions to ensure optimized and detailed protocols and define parameters such as the dose or the EV origin is therefore urgent. Further studies to elucidate the real contribution of EVs to PRP in terms of composition and functionality should also be performed. Nevertheless, research on the field provides promising results and a novel basis to deal with the regenerative medicine and drug delivery fields in the future.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - María Troya
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Juan Manuel Falcon-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029 Madrid, Spain
- Metabolomics Platform, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Silvia López-Sarrio
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
| | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
| | - Mohammad H. Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| |
Collapse
|
28
|
Al-Sharabi N, Gruber R, Sanz M, Mohamed-Ahmed S, Kristoffersen EK, Mustafa K, Shanbhag S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int J Mol Sci 2023; 24:13057. [PMID: 37685865 PMCID: PMC10487446 DOI: 10.3390/ijms241713057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| |
Collapse
|
29
|
Adamczyk AM, Leicaj ML, Fabiano MP, Cabrerizo G, Bannoud N, Croci DO, Witwer KW, Remes Lenicov F, Ostrowski M, Pérez PS. Extracellular vesicles from human plasma dampen inflammation and promote tissue repair functions in macrophages. J Extracell Vesicles 2023; 12:e12331. [PMID: 37272889 PMCID: PMC10241174 DOI: 10.1002/jev2.12331] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Although inflammation is a vital defence response to infection, if left uncontrolled, it can lead to pathology. Macrophages are critical players both in driving the inflammatory response and in the subsequent events required for restoring tissue homeostasis. Extracellular vesicles (EVs) are membrane-enclosed structures released by cells that mediate intercellular communication and are present in all biological fluids, including blood. Herein, we show that extracellular vesicles from plasma (pEVs) play a relevant role in the control of inflammation by counteracting PAMP-induced macrophage activation. Indeed, pEV-treatment of macrophages simultaneously with or prior to PAMP exposure reduced the secretion of pro-inflammatory IL-6 and TNF-α and increased IL-10 response. This anti-inflammatory activity was associated with the promotion of tissue-repair functions in macrophages, characterized by augmented efferocytosis and pro-angiogenic capacity, and increased expression of VEGFa, CD300e, RGS2 and CD93, genes involved in cell growth and tissue remodelling. We also show that simultaneous stimulation of macrophages with a PAMP and pEVs promoted COX2 expression and CREB phosphorylation as well as the accumulation of higher concentrations of PGE2 in cell culture supernatants. Remarkably, the anti-inflammatory activity of pEVs was abolished if cells were treated with a pharmacological inhibitor of COX2, indicating that pEV-mediated induction of COX2 is critical for the pEV-mediated inhibition of inflammation. Finally, we show that pEVs added to monocytes prior to their M-CSF-induced differentiation to macrophages increased efferocytosis and diminished pro-inflammatory cytokine responses to PAMP stimulation. In conclusion, our results suggest that pEVs are endogenous homeostatic modulators of macrophages, activating the PGE2/CREB pathway, decreasing the production of inflammatory cytokines and promoting tissue repair functions.
Collapse
Affiliation(s)
- Alan M. Adamczyk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - María Luz Leicaj
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Martina Paula Fabiano
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Gonzalo Cabrerizo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Diego O. Croci
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Paula Soledad Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| |
Collapse
|
30
|
Antich-Rosselló M, Forteza-Genestra MA, Ronold HJ, Lyngstadaas SP, García-González M, Permuy M, López-Peña M, Muñoz F, Monjo M, Ramis JM. Platelet-derived extracellular vesicles formulated with hyaluronic acid gels for application at the bone-implant interface: An animal study. J Orthop Translat 2023; 40:72-79. [PMID: 37457308 PMCID: PMC10338901 DOI: 10.1016/j.jot.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background/Objective Platelet derived extracellular vesicles (pEV) are promising therapeutical tools for bone healing applications. In fact, several in vitro studies have already demonstrated the efficacy of Extracellular Vesicles (EV) in promoting bone regeneration and repair in various orthopedic models. Therefore, to evaluate the translational potential in this field, an in vivo study was performed. Methods Here, we used hyaluronic acid (HA) gels formulated with pEVs, as a way to directly apply pEVs and retain them at the bone defect. In this study, pEVs were isolated from Platelet Lysate (PL) through size exclusion chromatography and used to formulate 2% HA gels. Then, the gels were locally applied on the tibia cortical bone defect of New Zeland White rabbits before the surgical implantation of coin-shaped titanium implants. After eight weeks, the bone healing process was analyzed through biomechanical, micro-CT, histological and biochemical analysis. Results Although no biomechanical differences were observed between pEV formulated gels and non-formulated gels, biochemical markers of the wound fluid at the interface presented a decrease in Lactate dehydrogenase (LDH) activity and alkaline phosphatase (ALP) activity for pEV HA treated implants. Moreover, histological analyses showed that none of the treatments induced an irritative effect and, a decrease in the fibrotic response surrounding the implant for pEV HA treated implants was described. Conclusion In conclusion, pEVs improve titanium implants biocompatibility at the bone-implant interface, decreasing the necrotic effects of the surgery and diminishing the fibrotic layer associated to the implant encapsulation that can lead to implant failure.
Collapse
Affiliation(s)
- Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Antònia Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Hans Jacob Ronold
- Department of Prosthetic Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Mario García-González
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
| | - María Permuy
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Mónica López-Peña
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Fernando Muñoz
- Departamento de Ciencias Clínicas Veterinarias. Universidade de Santiago de Compostela. Campus Universitario S/n, 27002, Lugo, Spain
- IBoneLab SL, Avenida da Coruña 500; 27003, Lugo, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Departament de Biologia Fonamental I Ciències de La Salut, UIB, Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Departament de Biologia Fonamental I Ciències de La Salut, UIB, Palma, Spain
| |
Collapse
|
31
|
Dai Z, Xia C, Zhao T, Wang H, Tian H, Xu O, Zhu X, Zhang J, Chen P. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater Today Bio 2023; 18:100512. [DOI: 10.1016/j.mtbio.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
|
32
|
Ibrahim A, Khalil IA, Mahmoud MY, Bakr AF, Ghoniem MG, Al-Farraj ES, El-Sherbiny IM. Layer-by-layer development of chitosan/alginate-based platelet-mimicking nanocapsules for augmenting doxorubicin cytotoxicity against breast cancer. Int J Biol Macromol 2023; 225:503-517. [PMID: 36403763 DOI: 10.1016/j.ijbiomac.2022.11.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/20/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Breast carcinoma is considered one of the most invasive and life-threatening malignancies in females. Mastectomy, radiation therapy, hormone therapy and chemotherapy are the most common treatment choices for breast cancer. Doxorubicin (DOX) is one of the most regularly utilized medications in breast cancer protocols. However, DOX has showed numerous side effects including lethal cardiotoxicity. This study aims to fortify DOX cytotoxicity and lowering its side effects via its combining with the antidiabetic metformin (MET) as an adjuvant therapy, along with its effective delivery using natural platelet-rich plasma (PRP), and newly-developed PRP-mimicking nanocapsules (NCs). The PRP-mimicking NCs were fabricated via layer-by-layer (LBL) deposition of oppositely charged biodegradable and biocompatible chitosan (CS) and alginate (ALG) on a core of synthesized polystyrene nanoparticles (PS NPs) followed by removal of the PS core. Both natural PRP and PRP-mimicking NCs were loaded with DOX and MET adjuvant therapy, followed by their physicochemical characterizations including DLS, FTIR, DSC, and morphological evaluation using TEM. In-vitro drug release studies, cytotoxicity, apoptosis/necrosis, and cell cycle analysis were conducted using MCF-7 breast cancer cells. Also, an in-vivo assessment was carried out using EAC-bearing balb/c mice animal model to evaluate the effect of DOX/MET-loaded natural PRP and PRP-mimicked NCs on tumor weight, volume and growth biomarkers in addition to analyzing the immunohistopathology of the treated tissues. Results confirmed the development of CS/ALG-based PRP-mimicking NCs with a higher loading capacity of both drugs (DOX and MET) and smaller size (259.7 ± 19.3 nm) than natural PRP (489 ± 20.827 nm). Both in-vitro and in-vivo studies were in agreement and confirmed that MET synergized the anticancer activity of DOX against breast cancer. Besides, the developed LBL NCs successfully mimicked the PRP in improving the loaded drugs biological efficiency more than free drugs.
Collapse
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Monira G Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Eida S Al-Farraj
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, 6th of October City, 12578 Giza, Egypt.
| |
Collapse
|
33
|
Extracellular Vesicles in Regenerative Processes Associated with Muscle Injury Recovery of Professional Athletes Undergoing Sub Maximal Strength Rehabilitation. Int J Mol Sci 2022; 23:ijms232314913. [PMID: 36499243 PMCID: PMC9739739 DOI: 10.3390/ijms232314913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Platelet-rich plasma (PRP) has great potential in regenerative medicine. In addition to the well-known regenerative potential of secreted growth factors, extracellular vesicles (EVs) are emerging as potential key players in the regulation of tissue repair. However, little is known about their therapeutic potential as regenerative agents. In this study, we have identified and subtyped circulating EVs (platelet-, endothelial-, and leukocyte-derived EVs) in the peripheral blood of athletes recovering from recent muscular injuries and undergoing a submaximal strength rehabilitation program. We found a significant increase in circulating platelet-derived EVs at the end of the rehabilitation program. Moreover, EVs from PRP samples were isolated by fluorescence-activated cell sorting and analyzed by label-free proteomics. The proteomic analysis of PRP-EVs revealed that 32% of the identified proteins were associated to "defense and immunity", and altogether these proteins were involved in vesicle-mediated transport (GO: 0016192; FDR = 3.132 × 10-19), as well as in wound healing (GO: 0042060; FDR = 4.252 × 10-13) and in the events regulating such a process (GO: 0061041; FDR = 2.812 × 10-12). Altogether, these data suggest that platelet-derived EVs may significantly contribute to the regeneration potential of PRP preparations.
Collapse
|
34
|
Gardin C, Ferroni L, Leo S, Tremoli E, Zavan B. Platelet-Derived Exosomes in Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012546. [PMID: 36293399 PMCID: PMC9604238 DOI: 10.3390/ijms232012546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis (AS), the main cause of many cardiovascular diseases (CVDs), is a progressive inflammatory disease characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. The result is the thickening and clogging of these vessel walls. Several cell types are directly involved in the pathological progression of AS. Among them, platelets represent the link between AS, inflammation, and thrombosis. Indeed, besides their pivotal role in hemostasis and thrombosis, platelets are key mediators of inflammation at injury sites, where they act by regulating the function of other blood and vascular cell types, including endothelial cells (ECs), leukocytes, and vascular smooth muscle cells (VSMCs). In recent years, increasing evidence has pointed to a central role of platelet-derived extracellular vesicles (P-EVs) in the modulation of AS pathogenesis. However, while the role of platelet-derived microparticles (P-MPs) has been significantly investigated in recent years, the same cannot be said for platelet-derived exosomes (P-EXOs). For this reason, this reviews aims at summarizing the isolation methods and biological characteristics of P-EXOs, and at discussing their involvement in intercellular communication in the pathogenesis of AS. Evidence showing how P-EXOs and their cargo can be used as biomarkers for AS is also presented in this review.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Sara Leo
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Ferrara, Italy
- Correspondence:
| |
Collapse
|
35
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
36
|
Miller CM, L Enninga EA, Rizzo SA, Phillipps J, Guerrero-Cazares H, Destephano CC, Peterson TE, Stalboerger PG, Behfar A, Khan Z. Platelet-derived exosomes induce cell proliferation and wound healing in human endometrial cells. Regen Med 2022; 17:805-817. [PMID: 36193669 DOI: 10.2217/rme-2022-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the regenerative effects of a platelet-derived purified exosome product (PEP) on human endometrial cells. Materials & methods: Endometrial adenocarcinoma cells (HEC-1A), endometrial stromal cells (T HESC) and menstrual blood-derived stem cells (MenSC) were assessed for exosome absorption and subsequent changes in cell proliferation and wound healing properties over 48 h. Results: Cell proliferation increased in PEP treated T HESC (p < 0.0001) and MenSC (p < 0.001) after 6 h and in HEC-1A (p < 0.01) after 12 h. PEP improved wound healing after 6 h in HEC-1A (p < 0.01) and MenSC (p < 0.0001) and in T HESC between 24 and 36 h (p < 0.05). Conclusion: PEP was absorbed by three different endometrial cell types. PEP treatment increased cell proliferation and wound healing capacity.
Collapse
Affiliation(s)
- Colleen M Miller
- Division of Reproductive Endocrinology & Infertility, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Skylar A Rizzo
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Jordan Phillipps
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Timothy E Peterson
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul G Stalboerger
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zaraq Khan
- Division of Reproductive Endocrinology & Infertility, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Jäger M, Busch A, Sowislok A. Bioactivation of scaffolds in osteonecrosis. ORTHOPADIE (HEIDELBERG, GERMANY) 2022; 51:808-814. [PMID: 36074165 DOI: 10.1007/s00132-022-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Avascular osteonecrosis (AVN) due to local ischemia leads to an inhomogeneous osseous defect, which can be treated by resection and with bone substitute materials in a joint-preserving treatment. Due to the underlying risk profile of AVN, the mostly subchondral localization and the size of the local bone defect, bone regeneration is impaired. Therefore, bioactivation of the applied bone substitute materials prior to application is highly desirable. Apart from the use of growth factors and other soluble substances, the autologous application of location-typical cells and tissue is a useful alternative to support the bone healing properties of scaffolds. This article presents various methods to activate scaffolds for bone stimulation and discusses these techniques with respect to recent data from the literature.
Collapse
Affiliation(s)
- M Jäger
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien Hospital Mülheim a. d. Ruhr, Kaiserstr. 50, 45468, Mülheim a. d. Ruhr, Germany.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, Essen, Germany.
| | - A Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, Essen, Germany
| | - A Sowislok
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022; 10:914891. [PMID: 35874830 PMCID: PMC9299085 DOI: 10.3389/fcell.2022.914891] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
39
|
Saumell-Esnaola M, Delgado D, García del Caño G, Beitia M, Sallés J, González-Burguera I, Sánchez P, López de Jesús M, Barrondo S, Sánchez M. Isolation of Platelet-Derived Exosomes from Human Platelet-Rich Plasma: Biochemical and Morphological Characterization. Int J Mol Sci 2022; 23:ijms23052861. [PMID: 35270001 PMCID: PMC8911307 DOI: 10.3390/ijms23052861] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Platelet-Rich Plasma (PRP) is enriched in molecular messengers with restorative effects on altered tissue environments. Upon activation, platelets release a plethora of growth factors and cytokines, either in free form or encapsulated in exosomes, which have been proven to promote tissue repair and regeneration. Translational research on the potential of exosomes as a safe nanosystem for therapeutic cargo delivery requires standardizing exosome isolation methods along with their molecular and morphological characterization. With this aim, we isolated and characterized the exosomes released by human PRP platelets. Western blot analysis revealed that CaCl2-activated platelets (PLT-Exos-Ca2+) released more exosomes than non-activated ones (PLT-Exos). Moreover, PLT-Exos-Ca2+ exhibited a molecular signature that meets the most up-to-date biochemical criteria for platelet-derived exosomes and possessed morphological features typical of exosomes as assessed by transmission electron microscopy. Array analysis of 105 analytes including growth factors and cytokines showed that PLT-Exos-Ca2+ exhibited lower levels of most analytes compared to PLT-Exos, but relatively higher levels of those consistently validated as components of the protein cargo of platelet exosomes. In summary, the present study provides new insights into the molecular composition of human platelet-derived exosomes and validates a method for isolating highly pure platelet exosomes as a basis for future preclinical studies in regenerative medicine and drug delivery.
Collapse
Affiliation(s)
- Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| | - Imanol González-Burguera
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| |
Collapse
|
40
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
41
|
Zhang Y, Wang X, Chen J, Qian D, Gao P, Qin T, Jiang T, Yi J, Xu T, Huang Y, Wang Q, Zhou Z, Bao T, Zhao X, Liu H, Zheng Z, Fan J, Zhao S, Li Q, Yin G. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology 2022; 20:56. [PMID: 35093078 PMCID: PMC8801111 DOI: 10.1186/s12951-022-01245-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractSubtalar osteoarthritis (STOA) is often secondary to chronic ankle sprains, which seriously affects the quality of life of patients. Due to its etiology and pathogenesis was not studied equivocally yet, there is currently a lack of effective conservative treatments. Although they have been used for tissue repair, platelet-rich plasma-derived exosomes (PRP-Exo) have the disadvantage of low retention and short-lived therapeutic effects. This study aimed to determine whether incorporation of PRP-Exo in thermosensitive hydrogel (Gel) increased their retention in the joint and thereby playing a therapeutic role on STOA due to chronic mechanical instability established by transecting lateral ligaments (anterior talofibular ligament (ATFL)/calcaneal fibular ligament (CFL)). PRP-Exo incorporated Gel (Exo-Gel) system, composed of Poloxamer-407 and 188 mixture-based thermoresponsive hydrogel matrix in an optimal ratio, was determined by its release ability of Exo and rheology of Gel response to different temperature. The biological activity of Exo-Gel was evaluated in vitro, and the therapeutic effect of Exo-Gel on STOA was evaluated in vivo. Exo released from Exo-Gel continuously for 28 days could promote the proliferation and migration of mouse bone mesenchymal stem cells (mBMSCs) and chondrocytes, at the same time enhance the chondrogenic differentiation of mBMSCs, and inhibit inflammation-induced chondrocyte degeneration. In vivo experiments confirmed that Exo-Gel increased the local retention of Exo, inhibited the apoptosis and hypertrophy of chondrocytes, enhanced their proliferation, and potentially played the role in stem cell recruitment to delay the development of STOA. Thus, Delivery of PRP-Exo incorporated in thermosensitive Gel provides a novel approach of cell-free therapy and has therapeutic effect on STOA.
Graphical Abstract
Collapse
|
42
|
Gomes FG, Andrade AC, Wolf M, Hochmann S, Krisch L, Maeding N, Regl C, Poupardin R, Ebner-Peking P, Huber CG, Meisner-Kober N, Schallmoser K, Strunk D. Synergy of Human Platelet-Derived Extracellular Vesicles with Secretome Proteins Promotes Regenerative Functions. Biomedicines 2022; 10:238. [PMID: 35203448 PMCID: PMC8869293 DOI: 10.3390/biomedicines10020238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Platelet-rich plasma is a promising regenerative therapeutic with controversial efficacy. We and others have previously demonstrated regenerative functions of human platelet lysate (HPL) as an alternative platelet-derived product. Here we separated extracellular vesicles (EVs) from soluble factors of HPL to understand the mode of action during skin-organoid formation and immune modulation as model systems for tissue regeneration. HPL-EVs were isolated by tangential-flow filtration (TFF) and further purified by size-exclusion chromatography (SEC) separating EVs from (lipo)protein-enriched soluble fractions. We characterized samples by tunable resistive pulse sensing, western blot, tandem mass-tag proteomics and super-resolution microscopy. We evaluated EV function during angiogenesis, wound healing, organoid formation and immune modulation. We characterized EV enrichment by TFF and SEC according to MISEV2018 guidelines. Proteomics showed three major clusters of protein composition separating TSEC-EVs from HPL clustering with TFF soluble fractions and TFF-EVs clustering with TSEC soluble fractions, respectively. HPL-derived TFF-EVs promoted skin-organoid formation and inhibited T-cell proliferation more efficiently than TSEC-EVs or TSEC-soluble fractions. Recombining TSEC-EVs with TSEC soluble fractions re-capitulated TFF-EV effects. Zeta potential and super-resolution imaging further evidenced protein corona formation on TFF-EVs. Corona depletion on SEC-EVs could be artificially reconstituted by TSEC late fraction add-back. In contrast to synthetic nanoparticles, which commonly experience reduced function after corona formation, the corona-bearing EVs displayed improved functionality. We conclude that permissive isolation technology, such as TFF, and better understanding of the mechanism of EV corona function are required to realize the complete potential of platelet-based regenerative therapies.
Collapse
Affiliation(s)
- Fausto Gueths Gomes
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - Nicole Maeding
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Christof Regl
- Department for Biosciences and Medical Biology, Paris Lodron University, 5020 Salzburg, Austria; (C.R.); (C.G.H.); (N.M.-K.)
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| | - Christian G. Huber
- Department for Biosciences and Medical Biology, Paris Lodron University, 5020 Salzburg, Austria; (C.R.); (C.G.H.); (N.M.-K.)
| | - Nicole Meisner-Kober
- Department for Biosciences and Medical Biology, Paris Lodron University, 5020 Salzburg, Austria; (C.R.); (C.G.H.); (N.M.-K.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria;
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (F.G.G.); (A.C.A.); (M.W.); (S.H.); (L.K.); (N.M.); (R.P.); (P.E.-P.)
| |
Collapse
|