1
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
2
|
Zheng K, Chen Y, Liu S, He C, Yang Y, Wu D, Wang L, Li M, Zeng X, Zhang F. Leflunomide: Traditional immunosuppressant with concurrent antiviral effects. Int J Rheum Dis 2023; 26:195-209. [PMID: 36371788 DOI: 10.1111/1756-185x.14491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
Abstract
Leflunomide is a classic disease-modifying anti-rheumatic drug that is widely used to treat autoimmune diseases. Studies also show its antiviral effects in in vitro and/or in vivo experiments. Considering glucocorticoids, immunosuppressants and newly emerged antibodies commonly used in autoimmune diseases and autoinflammatory disorders bring risk of infection such as viral infection, leflunomide with combination of anti-viral and immunosuppressive features to maintain the balance between infection and anti-inflammation are attractive. Here we summarize the actions and mechanisms of leflunomide in immunoregulatory and antiviral effects.
Collapse
Affiliation(s)
- Kunyu Zheng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yiran Chen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Chengmei He
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| |
Collapse
|
3
|
Immunosuppressive Drugs. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8987166 DOI: 10.1016/b978-0-12-818731-9.00068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunosuppressant is a class of medicines that inhibit or decrease the intensity of the immune response in the body. Most of these medications are used to allow the body less likely to resist a transplanted organ. In solid organ transplantation, immunosuppressive agents are needed for the activation of early-stage immunosuppression, the management of late-stage immunosuppression or for the maintenance of organ rejection. The emergence of novel agents and improvements in immunosuppression regimens after transplantation are significant factors leading to this progress. However, these drugs also increase the risk of infection, cancers and specific adverse side effects specific to each agent in patients particularly in pregnant women and fertility issues. Corona virus disease being hot topic of debate is has given positive outcome to immunosuppressive drugs however need more attention in future. Transplant centers across the world utilize multiple immunosuppression protocols; nevertheless, each patient can require an individually formulated immunosuppression regimen to manage the advantages and possible damage of treatment thus eliminating the likelihood of their primary disease recurrence.
Collapse
|
4
|
Marques CDL, Ribeiro SLE, Albuquerque CP, de Sousa Studart SA, Ranzolin A, de Andrade NPB, Dantas AT, Mota GD, Resende GG, Marinho AO, Angelieri D, Andrade D, Ribeiro FM, Omura F, Silva NA, Rocha Junior L, Brito DE, Fernandino DC, Yazbek MA, Souza MPG, Ximenes AC, Martins ASS, Castro GRW, Oliveira LC, Freitas ABSB, Kakehasi AM, Gomides APM, Reis Neto ET, Pileggi GS, Ferreira GA, Mota LMH, Xavier RM, de Medeiros Pinheiro M. COVID-19 was not associated or trigger disease activity in spondylarthritis patients: ReumaCoV-Brasil cross-sectional data. Adv Rheumatol 2022; 62:45. [PMID: 36419163 PMCID: PMC9685130 DOI: 10.1186/s42358-022-00268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To evaluate the disease activity before and after COVID-19 and risk factors associated with outcomes, including hospitalization, intensive care unit (ICU) admission, mechanical ventilation (MV) and death in patients with spondylarthritis (SpA). METHODS ReumaCoV Brazil is a multicenter prospective cohort of immune-mediated rheumatic diseases (IMRD) patients with COVID-19 (case group), compared to a control group of IMRD patients without COVID-19. SpA patients enrolled were grouped as axial SpA (axSpA), psoriatic arthritis (PsA) and enteropathic arthritis, according to usual classification criteria. RESULTS 353 SpA patients were included, of whom 229 (64.9%) were axSpA, 118 (33.4%) PsA and 6 enteropathic arthritis (1.7%). No significant difference was observed in disease activity before the study inclusion comparing cases and controls, as well no worsening of disease activity after COVID-19. The risk factors associated with hospitalization were age over 60 years (OR = 3.71; 95% CI 1.62-8.47, p = 0.001); one or more comorbidities (OR = 2.28; 95% CI 1.02-5.08, p = 0.001) and leflunomide treatment (OR = 4.46; 95% CI 1.33-24.9, p = 0.008). Not having comorbidities (OR = 0.11; 95% CI 0.02-0.50, p = 0.001) played a protective role for hospitalization. In multivariate analysis, leflunomide treatment (OR = 8.69; CI = 95% 1.41-53.64; p = 0.023) was associated with hospitalization; teleconsultation (OR = 0.14; CI = 95% 0.03-0.71; p = 0.01) and no comorbidities (OR = 0.14; CI = 95% 0.02-0.76; p = 0.02) remained at final model as protective factor. CONCLUSIONS Our results showed no association between pre-COVID disease activity or that SARS-CoV-2 infection could trigger disease activity in patients with SpA. Teleconsultation and no comorbidities were associated with a lower hospitalization risk. Leflunomide remained significantly associated with higher risk of hospitalization after multiple adjustments.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Pamplona Bueno de Andrade
- grid.8532.c0000 0001 2200 7498Hospital de Clínicas de Porto Alegre – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrea T. Dantas
- grid.411227.30000 0001 0670 7996Hospital das Clínicas – Universidade Federal de Pernambuco, Recife, Brazil
| | - Guilherme D. Mota
- grid.411249.b0000 0001 0514 7202Universidade Federal de São Paulo, Rua Borges Lagoa, 913/ 51-53, Vila Clementino, São Paulo, SP CEP: 04038-034 Brazil
| | - Gustavo G. Resende
- grid.8430.f0000 0001 2181 4888Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Danielle Angelieri
- grid.414644.70000 0004 0411 4654Hospital dos Servidores de São Paulo – IAMSPE, São Paulo, Brazil
| | - Danieli Andrade
- grid.11899.380000 0004 1937 0722Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Francinne M. Ribeiro
- grid.412211.50000 0004 4687 5267Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Abraão, Brazil
| | - Felipe Omura
- Clínica Omura Medicina Diagnóstica, São Paulo, Brazil
| | - Nilzio A. Silva
- grid.411195.90000 0001 2192 5801Faculdade de Medicina da Universidade Federal de Goiás, Goiânia, Brazil
| | - Laurindo Rocha Junior
- grid.419095.00000 0004 0417 6556Instituto de Medicina Integral Professor Fernando Figueira -IMIP, Recife, Brazil
| | - Danielle E. Brito
- grid.411216.10000 0004 0397 5145Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Diana C. Fernandino
- grid.411198.40000 0001 2170 9332Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Michel A. Yazbek
- grid.411087.b0000 0001 0723 2494Hospital de Clínicas da Universidade Estadual de Campinas- UNICAMP, Campinas, Brazil
| | - Mariana P. G. Souza
- grid.415169.e0000 0001 2198 9354Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Ana Silvia S. Martins
- grid.411284.a0000 0004 4647 6936Hospital de Clínicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Glaucio Ricardo W. Castro
- grid.413214.10000 0004 0504 2293Hospital Governador Celso Ramos – Santa Catarina, Florianópolis, Brazil
| | | | | | - Adriana M. Kakehasi
- grid.8430.f0000 0001 2181 4888Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Edgard Torres Reis Neto
- grid.411249.b0000 0001 0514 7202Universidade Federal de São Paulo, Rua Borges Lagoa, 913/ 51-53, Vila Clementino, São Paulo, SP CEP: 04038-034 Brazil
| | - Gecilmara S. Pileggi
- grid.411249.b0000 0001 0514 7202Universidade Federal de São Paulo, Rua Borges Lagoa, 913/ 51-53, Vila Clementino, São Paulo, SP CEP: 04038-034 Brazil
| | - Gilda A. Ferreira
- grid.8430.f0000 0001 2181 4888Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Licia Maria H. Mota
- grid.7632.00000 0001 2238 5157Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília (PPGCM-FM-UnB), Brazil, Brasília, DF Brazil ,grid.411215.2Hospital Universitário de Brasília (HUB-UnB-EBSERH), Brasília, DF Brazil
| | - Ricardo M. Xavier
- grid.8532.c0000 0001 2200 7498Hospital de Clínicas de Porto Alegre – Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo de Medeiros Pinheiro
- grid.411249.b0000 0001 0514 7202Universidade Federal de São Paulo, Rua Borges Lagoa, 913/ 51-53, Vila Clementino, São Paulo, SP CEP: 04038-034 Brazil
| | | |
Collapse
|
5
|
Santhanakrishnan K, Yonan N, Iyer K, Callan P, Al-Aloul M, Venkateswaran R. Management of ganciclovir resistance cytomegalovirus infection with CMV hyperimmune globulin and leflunomide in seven cardiothoracic transplant recipients and literature review. Transpl Infect Dis 2021; 24:e13733. [PMID: 34534396 DOI: 10.1111/tid.13733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) disease caused by genetically resistant CMV poses a major challenge in solid organ transplant recipients, and the development of resistance is associated with increased morbidity and mortality. Antiviral resistance affects 5%-12% of patients following ganciclovir (GCV) therapy, but is more common in individuals with specific underlying risk factors. These include the CMV D+R- serostatus, type of transplanted organ, dose and duration of (Val)GCV ([V]GCV) prophylaxis, peak viral loads, and the intensity of immunosuppressive therapy. Guideline recommendations for the management of GCV resistance (GanR) in solid organ transplant recipients are based on expert opinion as there is a lack of data from controlled trials. Second-line options to treat GanR include foscarnet (FOS) and cidofovir (CDV), but these drugs are often poorly tolerated due to high rates of toxicity, such as renal dysfunction and neutropenia. Here, we report seven cardiothoracic transplant recipients with GCV resistance CMV infection from our centre treated with CMV immunoglobulin (CMVIG) +/- leflunomide (LEF) and reviewed the literature on the use of these agents in this therapeutic setting.
Collapse
Affiliation(s)
- Karthik Santhanakrishnan
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nizar Yonan
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kapil Iyer
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul Callan
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mohamed Al-Aloul
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rajamiyer Venkateswaran
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Kaur H, Sarma P, Bhattacharyya A, Sharma S, Chhimpa N, Prajapat M, Prakash A, Kumar S, Singh A, Singh R, Avti P, Thota P, Medhi B. Efficacy and safety of dihydroorotate dehydrogenase (DHODH) inhibitors "leflunomide" and "teriflunomide" in Covid-19: A narrative review. Eur J Pharmacol 2021; 906:174233. [PMID: 34111397 PMCID: PMC8180448 DOI: 10.1016/j.ejphar.2021.174233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/12/2023]
Abstract
Dihydroorotate dehydrogenase (DHODH) is rate-limiting enzyme in biosynthesis of pyrimidone which catalyzes the oxidation of dihydro-orotate to orotate. Orotate is utilized in the biosynthesis of uridine-monophosphate. DHODH inhibitors have shown promise as antiviral agent against Cytomegalovirus, Ebola, Influenza, Epstein Barr and Picornavirus. Anti-SARS-CoV-2 action of DHODH inhibitors are also coming up. In this review, we have reviewed the safety and efficacy of approved DHODH inhibitors (leflunomide and teriflunomide) against COVID-19. In target-centered in silico studies, leflunomide showed favorable binding to active site of MPro and spike: ACE2 interface. In artificial-intelligence/machine-learning based studies, leflunomide was among the top 50 ligands targeting spike: ACE2 interaction. Leflunomide is also found to interact with differentially regulated pathways [identified by KEGG (Kyoto Encyclopedia of Genes and Genomes) and reactome pathway analysis of host transcriptome data] in cogena based drug-repurposing studies. Based on GSEA (gene set enrichment analysis), leflunomide was found to target pathways enriched in COVID-19. In vitro, both leflunomide (EC50 41.49 ± 8.8 μmol/L) and teriflunomide (EC50 26 μmol/L) showed SARS-CoV-2 inhibition. In clinical studies, leflunomide showed significant benefit in terms of decreasing the duration of viral shredding, duration of hospital stay and severity of infection. However, no advantage was seen while combining leflunomide and IFN alpha-2a among patients with prolonged post symptomatic viral shredding. Common adverse effects of leflunomide were hyperlipidemia, leucopenia, neutropenia and liver-function alteration. Leflunomide/teriflunomide may serve as an agent of importance to achieve faster virological clearance in COVID-19, however, findings needs to be validated in bigger sized placebo controlled studies.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Rahul Singh
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Prasad Thota
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India.
| |
Collapse
|
7
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
8
|
Koker O, Demirkan FG, Kayaalp G, Cakmak F, Tanatar A, Karadag SG, Sonmez HE, Omeroglu R, Aktay Ayaz N. Does immunosuppressive treatment entail an additional risk for children with rheumatic diseases? A survey-based study in the era of COVID-19. Rheumatol Int 2020; 40:1613-1623. [PMID: 32743705 PMCID: PMC7395897 DOI: 10.1007/s00296-020-04663-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
The aim of the research was to further extend current knowledge of whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease 2019 (COVID-19) entails a risk for children with various rheumatic diseases under immunosuppressive treatment. Telephone survey was administered by conducting interviews with the parents from May 1, 2020 to May 20, 2020. A message containing a link to the actual questionnaire was sent to their phones simultaneously. The medical records of the patients were reviewed for gathering information about demographic data, clinical follow-up, and treatments. Patients who were followed-up under immunosuppressive treatment (n = 439) were attempted to be contacted. The diagnostic distribution of patients (n = 414) eligible for the study was as follows: juvenile idiopathic arthritis (JIA) (n = 243, 58.7%), autoinflammatory diseases (n = 109, 26.3%), connective tissue diseases (n = 51, 12.3%), and vasculitis (n = 11, 2.7%). In the entire cohort, the mean age was 12 ± 4.7 years, and 54.1% (n = 224) were female. Nine patients have attended the hospital for COVID-19 evaluation, 6 of whom were in close contact with confirmed cases. One patient with seronegative polyarticular JIA, previously prescribed methotrexate and receiving leflunomide during pandemic was identified to be diagnosed with COVID-19. None, including the confirmed case, had any severe symptoms. More than half of the patients with household exposure did not require hospitalization as they were asymptomatic. Although circumstances such as compliance in social distancing policy, transmission patterns, attitude following contact may have influenced the results, immunosuppressive treatment does not seem to pose an additional risk in terms of COVID-19.
Collapse
Affiliation(s)
- Oya Koker
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey
| | - Fatma Gul Demirkan
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey
| | - Gulsah Kayaalp
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey
| | - Figen Cakmak
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey
| | - Ayse Tanatar
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey
| | - Serife Gul Karadag
- Department of Paediatric Rheumatology, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Hafize Emine Sonmez
- Department of Paediatric Rheumatology, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Rukiye Omeroglu
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Department of Paediatric Rheumatology, Istanbul Faculty of Medical School, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
9
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
10
|
Wang J, Sun J, Hu J, Wang C, Prinz RA, Peng D, Liu X, Xu X. A77 1726, the active metabolite of the anti-rheumatoid arthritis drug leflunomide, inhibits influenza A virus replication in vitro and in vivo by inhibiting the activity of Janus kinases. FASEB J 2020; 34:10132-10145. [PMID: 32598086 DOI: 10.1096/fj.201902793rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
The newly reassorted IAV subtypes from zoonotic reservoirs respond poorly to current vaccines and antiviral therapy. There is an unmet need in developing novel antiviral drugs for better control of IAV infection. The cellular factors that are crucial for virus replication have been sought as novel molecular targets for antiviral therapy. Recent studies have shown that Janus kinases (JAK), JAK1, and JAK2, play an important role in IAV replication. Leflunomide is an anti-inflammatory drug primarily used for treating rheumatoid arthritis (RA). Prior studies suggest that A77 1726, the active metabolite of leflunomide, inhibits the activity of JAK1 and JAK3. Our current study aims to determine if A77 1726 can function as a JAK inhibitor to control IAV infection. Here, we report that A77 1726 inhibited the replication of three IAV subtypes(H5N1, H1N1, H9N2)in three cell types (chicken embryonic fibroblasts, A549, and MDCK). A77 1726 inhibited JAK1, JAK2, and STAT3 tyrosine phosphorylation. Similar observations were made with Ruxolitinib (Rux), a JAK-specific inhibitor. JAK2 overexpression enhanced H5N1 virus replication and compromised the antiviral activity of A77 1726. Leflunomide inhibited virus replication in the lungs of IAV-infected mice, alleviated their body weight loss, and prolonged their survival. Our study demonstrates for the first time the ability of A77 1726 to inhibit JAK2 activity and suggests that inhibition of JAK activity contributes to its antiviral activity.
Collapse
Affiliation(s)
- Jiongjiong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Daxin Peng
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Santos CAQ, Rhee Y, Czapka MT, Kazi AS, Proia LA. Make Sure You Have a Safety Net: Updates in the Prevention and Management of Infectious Complications in Stem Cell Transplant Recipients. J Clin Med 2020; 9:jcm9030865. [PMID: 32245201 PMCID: PMC7141503 DOI: 10.3390/jcm9030865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplant recipients are at increased risk of infection and immune dysregulation due to reception of cytotoxic chemotherapy; development of graft versus host disease, which necessitates treatment with immunosuppressive medications; and placement of invasive catheters. The prevention and management of infections in these vulnerable hosts is of utmost importance and a key “safety net” in stem cell transplantation. In this review, we provide updates on the prevention and management of CMV infection; invasive fungal infections; bacterial infections; Clostridium difficile infection; and EBV, HHV-6, adenovirus and BK infections. We discuss novel drugs, such as letermovir, isavuconazole, meropenem-vaborbactam and bezlotoxumab; weigh the pros and cons of using fluoroquinolone prophylaxis during neutropenia after stem cell transplantation; and provide updates on important viral infections after hematopoietic stem cell transplant (HSCT). Optimizing the prevention and management of infectious diseases by using the best available evidence will contribute to better outcomes for stem cell transplant recipients, and provide the best possible “safety net” for these immunocompromised hosts.
Collapse
|
12
|
Munro M, Yadavalli T, Fonteh C, Arfeen S, Lobo-Chan AM. Cytomegalovirus Retinitis in HIV and Non-HIV Individuals. Microorganisms 2019; 8:microorganisms8010055. [PMID: 31905656 PMCID: PMC7022607 DOI: 10.3390/microorganisms8010055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus retinitis (CMVR) is a severe, vision-threatening disease that primarily affects immunosuppressed patients. CMVR is the most common ocular opportunistic infection in human immunodeficiency virus (HIV) infected patients and is the leading cause of blindness in this group; however, the incidence of CMVR in HIV patients has dramatically decreased with antiretroviral therapy. Other causes of immunosuppression, including organ transplantation, hematologic malignancies, and iatrogenic immunosuppression, can also lead to the development of CMVR. Herein, we describe the pathogenesis of CMVR and compare clinical features, epidemiology, and risk factors in HIV and non-HIV infected individuals with CMVR.
Collapse
Affiliation(s)
- Monique Munro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cheryl Fonteh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Safa Arfeen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ann-Marie Lobo-Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
13
|
Meesing A, Razonable RR. New Developments in the Management of Cytomegalovirus Infection After Transplantation. Drugs 2019; 78:1085-1103. [PMID: 29961185 DOI: 10.1007/s40265-018-0943-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) continues to be one of the most important pathogens that universally affect solid organ and allogeneic hematopoietic stem cell transplant recipients. Lack of effective CMV-specific immunity is the common factor that predisposes to the risk of CMV reactivation and clinical disease after transplantation. Antiviral drugs are the cornerstone for prevention and treatment of CMV infection and disease. Over the years, the CMV DNA polymerase inhibitor, ganciclovir (and valganciclovir), have served as the backbone for management, while foscarnet and cidofovir are reserved for the management of CMV infection that is refractory or resistant to ganciclovir treatment. In this review, we highlight the role of the newly approved drug, letermovir, a viral terminase inhibitor, for CMV prevention after allogeneic hematopoietic stem cell transplantation. Advances in immunologic monitoring may allow for an individualized approach to management of CMV after transplantation. Specifically, the potential role of CMV-specific T-cell measurements in guiding the need for the treatment of asymptomatic CMV infection and the duration of treatment of CMV disease is discussed. The role of adoptive immunotherapy, using ex vivo-generated CMV-specific T cells, is highlighted. This article provides a review of novel drugs, tests, and strategies in optimizing our current approaches to prevention and treatment of CMV in transplant recipients.
Collapse
Affiliation(s)
- Atibordee Meesing
- Division of Infectious Diseases, Mayo Clinic, Mayo Clinic College of Medicine and Science, Marian Hall 5, 200 First Street SW, Rochester, MN, 55905, USA
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Raymund R Razonable
- Division of Infectious Diseases, Mayo Clinic, Mayo Clinic College of Medicine and Science, Marian Hall 5, 200 First Street SW, Rochester, MN, 55905, USA.
- William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
14
|
Meesing A, Razonable RR. Pharmacologic and immunologic management of cytomegalovirus infection after solid organ and hematopoietic stem cell transplantation. Expert Rev Clin Pharmacol 2018; 11:773-788. [DOI: 10.1080/17512433.2018.1501557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Atibordee Meesing
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| | - Raymund R. Razonable
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| |
Collapse
|
15
|
Joye A, Gonzales J. Cytomegalovirus Keratouveitis: Charted and Uncharted Territory. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|