1
|
Sychterz C, Shen H, Zhang Y, Sinz M, Rostami‐Hodjegan A, Schmidt BJ, Gaohua L, Galetin A. A close examination of BCRP's role in lactation and methods for predicting drug distribution into milk. CPT Pharmacometrics Syst Pharmacol 2024; 13:1856-1869. [PMID: 39292199 PMCID: PMC11578132 DOI: 10.1002/psp4.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Breastfeeding is the most complete nutritional method of feeding infants, but several impediments affect the decision to breastfeed, including questions of drug safety for medications needed during lactation. Despite recent FDA guidance, few labels provide clear dosing advice during lactation. Physiologically based pharmacokinetic modeling (PBPK) is well suited to mechanistically explore pharmacokinetics and dosing paradigms to fill gaps in the absence of extensive clinical studies and complement existing real-world data. For lactation-focused PBPK (Lact-PBPK) models, information on system parameters (e.g., expression of drug transporters in mammary epithelial cells) is sparse. The breast cancer resistance protein (BCRP) is expressed on the apical side of mammary epithelial cells where it actively transports drugs/substrates into milk (reported milk: plasma ratios range from 2 to 20). A critical review of BCRP and its role in lactation was conducted. Longitudinal changes in BCRP mRNA expression have been identified in women with a maximum reached around 5 months postpartum. Limited data are available on the ontogeny of BCRP in infant intestine; however, data indicate lower BCRP abundance in infants compared to adults. Current status of incorporation of drug transporter information in Lact-PBPK models to predict active secretion of drugs into breast milk and consequential exposure of breast-fed infants is discussed. In addition, this review highlights novel clinical tools for evaluation of BCRP activity, namely a potential non-invasive BCRP biomarker (riboflavin) and liquid biopsy that could be used to quantitatively elucidate the role of this transporter without the need for administration of drugs and to inform Lact-PBPK models.
Collapse
Affiliation(s)
- Caroline Sychterz
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Hong Shen
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | | - Amin Rostami‐Hodjegan
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Certara Predictive Technologies, Certara UKSheffieldUK
| | | | - Lu Gaohua
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
2
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJMW, van den Broek P, Stommel MWJ, de Boode W, Botden S, Bervoets S, O’Gorman L, Greupink R, Russel FGM, van de Steeg E, de Wildt SN. Enteroids to Study Pediatric Intestinal Drug Transport. Mol Pharm 2024; 21:4983-4994. [PMID: 39279643 PMCID: PMC11462498 DOI: 10.1021/acs.molpharmaceut.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Intestinal maturational changes after birth affect the pharmacokinetics (PK) of drugs, having major implications for drug safety and efficacy. However, little is known about ontogeny-related PK patterns in the intestine. To explore the accuracy of human enteroid monolayers for studying drug transport in the pediatric intestine, we compared the drug transporter functionality and expression in enteroid monolayers and tissue from pediatrics and adults. Enteroid monolayers were cultured of 14 pediatric [median (range) age: 44 weeks (2 days-13 years)] and 5 adult donors, in which bidirectional drug transport experiments were performed. In parallel, we performed similar experiments with tissue explants in Ussing chamber using 11 pediatric [median (range) age: 54 weeks (15 weeks-10 years)] and 6 adult tissues. Enalaprilat, propranolol, talinolol, and rosuvastatin were used to test paracellular, transcellular, and transporter-mediated efflux by P-gp and breast cancer resistance protein (BCRP), respectively. In addition, we compared the expression patterns of ADME-related genes in pediatric and adult enteroid monolayers with tissues using RNA sequencing. Efflux transport by P-gp and BCRP was comparable between the enteroids and tissue. Efflux ratios (ERs) of talinolol and rosuvastatin by P-gp and BCRP, respectively, were higher in enteroid monolayers compared to Ussing chamber, likely caused by experimental differences in model setup and cellular layers present. Explorative statistics on the correlation with age showed trends of increasing ER with age for P-gp in enteroid monolayers; however, it was not significant. In the Ussing chamber setup, lower enalaprilat and propranolol transport was observed with age. Importantly, the RNA sequencing pathway analysis revealed that age-related variation in drug metabolism between neonates and adults was present in both enteroids and intestinal tissue. Age-related differences between 0 and 6 months old and adults were observed in tissue as well as in enteroid monolayers, although to a lesser extent. This study provides the first data for the further development of pediatric enteroids as an in vitro model to study age-related variation in drug transport. Overall, drug transport in enteroids was in line with data obtained from ex vivo tissue (using chamber) experiments. Additionally, pathway analysis showed similar PK-related differences between neonates and adults in both tissue and enteroid monolayers. Given the challenge to elucidate the effect of developmental changes in the pediatric age range in human tissue, intestinal enteroids derived from pediatric patients could provide a versatile experimental platform to study pediatric phenotypes.
Collapse
Affiliation(s)
- Eva J. Streekstra
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department
of Metabolic Health Research, Netherlands
Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
| | - Marit Keuper-Navis
- Department
of Metabolic Health Research, Netherlands
Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Jeroen J. M. W. van den Heuvel
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Petra van den Broek
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Martijn W. J. Stommel
- Department
of Surgery, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Willem de Boode
- Department
of Pediatrics, Division of Neonatology, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen 6525GA, The Netherlands
| | - Sanne Botden
- Department
of Surgery, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sander Bervoets
- Radboudumc
Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Luke O’Gorman
- Radboudumc
Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Rick Greupink
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Frans G. M. Russel
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Evita van de Steeg
- Department
of Metabolic Health Research, Netherlands
Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
| | - Saskia N. de Wildt
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department
of Intensive Care, Radboud University Medical
Center, Nijmegen 6525GA, The Netherlands
- Department
of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
3
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJMW, van den Broek P, Stommel MWJ, Bervoets S, O'Gorman L, Greupink R, Russel FGM, van de Steeg E, de Wildt SN. Human enteroid monolayers as a potential alternative for Ussing chamber and Caco-2 monolayers to study passive permeability and drug efflux. Eur J Pharm Sci 2024; 201:106877. [PMID: 39154715 DOI: 10.1016/j.ejps.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
After oral administration, the intestine is the first site of drug absorption, making it a key determinant of the bioavailability of a drug, and hence drug efficacy and safety. Existing non-clinical models of the intestinal barrier in vitro often fail to mimic the barrier and absorption of the human intestine. We explore if human enteroid monolayers are a suitable tool for intestinal absorption studies compared to primary tissue (Ussing chamber) and Caco-2 cells. Bidirectional drug transport was determined in enteroid monolayers, fresh tissue (Ussing chamber methodology) and Caco-2 cells. Apparent permeability (Papp) and efflux ratios for enalaprilat (paracellular), propranolol (transcellular), talinolol (P-glycoprotein (P-gp)) and rosuvastatin (Breast cancer resistance protein (BCRP)) were determined and compared between all three methodologies and across intestinal regions. Bulk RNA sequencing was performed to compare gene expression between enteroid monolayers and primary tissue. All three models showed functional efflux transport by P-gp and BCRP with higher basolateral to apical (B-to-A) transport compared to apical-to-basolateral (A-to-B). B-to-A Papp values were similar for talinolol and rosuvastatin in tissue and enteroids. Paracellular transport of enalaprilat was lower and transcellular transport of propranolol was higher in enteroids compared to tissue. Enteroids appeared show more region- specific gene expression compared to tissue. Fresh tissue and enteroid monolayers both show active efflux by P-gp and BCRP in jejunum and ileum. Hence, the use of enteroid monolayers represents a promising and versatile experimental platform to complement current in vitro models.
Collapse
Affiliation(s)
- Eva J Streekstra
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands; Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen J M W van den Heuvel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Petra van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Bervoets
- Radboudumc Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luke O'Gorman
- Radboudumc Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands; Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJWM, van den Broek P, Greupink R, Stommel MWJ, de Boode WP, Botden SMBI, Russel FGM, van de Steeg E, de Wildt SN. The potential of enteroids derived from children and adults to study age-dependent differences in intestinal CYP3A4/5 metabolism. Eur J Pharm Sci 2024; 201:106868. [PMID: 39084538 DOI: 10.1016/j.ejps.2024.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug metabolism in the intestinal wall affects bioavailability of orally administered drugs and is influenced by age. Hence, it is important to fully understand the drug metabolizing capacity of the gut to predict systemic exposure. The aim of this study was to investigate the potential of enteroids as a tool to study CYP3A4/5 -mediated metabolism in both children and adults. Bioconversion of midazolam, a CYP3A4/5 model substrate, was studied using enteroid monolayers as well as tissue explants in the Ussing chamber, both derived from pediatric [median (range age): 54 weeks (2 days - 13 years), n = 21] and adult (n = 5) tissue. Caco-2 cellular monolayers were employed as controls. In addition, mRNA expression of CYP3A4 was determined in enteroid monolayers (n = 11), tissue (n = 23) and Caco-2 using RT-qPCR. Midazolam metabolism was successfully detected in all enteroid monolayers, as well as in all tissue explants studied in the Ussing chamber, whereas Caco-2 showed no significant metabolite formation. The extracted fraction of midazolam was similar between enteroid monolayers and tissue. The fraction of midazolam extracted increased with age in enteroid monolayers derived from 0 to 70 week old donors. No statistically significant correlation was observed in tissue likely due to high variability observed and the smaller donor numbers included in the study. At the level of gene expression, CYP3A4 increased with age in tissues (n = 32), while this was not reflected in enteroid monolayers (n = 16). Notably, asymmetric metabolite formation was observed in enteroids and tissue, with higher metabolite formation on the luminal side of the barrier. In summary, we demonstrated that enteroids can be used to measure CYP3A4/5 midazolam metabolism, which we show is similar as observed in fresh isolated tissue. This was the case both in children and adults, indicating the potential of enteroids to predict intestinal metabolism. This study provides promising data to further develop enteroids to study drug metabolism in vitro and potentially predict oral absorption for special populations as an alternative to using fresh tissue.
Collapse
Affiliation(s)
- Eva J Streekstra
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen J W M van den Heuvel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Petra van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem P de Boode
- Department of Pediatrics, Division of Neonatology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Sanne M B I Botden
- Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Streekstra EJ, Scheer-Weijers T, Bscheider M, Fuerst-Recktenwald S, Roth A, van Ijzendoorn SCD, Botden S, de Boode W, Stommel MWJ, Greupink R, Russel FGM, van de Steeg E, de Wildt SN. Age-Specific ADME Gene Expression in Infant Intestinal Enteroids. Mol Pharm 2024; 21:4347-4355. [PMID: 39120063 PMCID: PMC11372835 DOI: 10.1021/acs.molpharmaceut.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In childhood, developmental changes and environmental interactions highly affect orally dosed drug disposition across the age range. To optimize dosing regimens and ensure safe use of drugs in pediatric patients, understanding this age-dependent biology is necessary. In this proof-of-concept study, we aimed to culture age-specific enteroids from infant tissue which represent its original donor material, specifically for drug transport and metabolism. Enteroid lines from fresh infant tissues (n = 8, age range: 0.3-45 postnatal weeks) and adult tissues (n = 3) were established and expanded to 3D self-organizing enteroids. The gene expression of drug transporters P-gp (ABCB1), BCRP (ABCG2), MRP2 (ABCC2), and PEPT1 (SLC15A1) and drug metabolizing enzymes CYP3A4, CYP2C18, and UGT1A1 was determined with RT-qPCR in fresh tissue and its derivative differentiated enteroids. Expression levels of P-gp, BCRP, MRP2, and CYP3A4 were similar between tissues and enteroids. PEPT1 and CYP2C18 expression was lower in enteroids compared to that in the tissue. The expression of UGT1A1 in the tissue was lower than that in enteroids. The gene expression did not change with the enteroid passage number for all genes studied. Similar maturational patterns in tissues and enteroids were visually observed for P-gp, PEPT1, MRP2, CYP3A4, CYP2C18, and VIL1. In this explorative study, interpatient variability was high, likely due to the diverse patient characteristics of the sampled population (e.g., disease, age, and treatment). To summarize, maturational patterns of clinically relevant ADME genes in tissue were maintained in enteroids. These findings are an important step toward the potential use of pediatric enteroids in pediatric drug development, which in the future may lead to improved pediatric safety predictions during drug development. We reason that such an approach can contribute to a potential age-specific platform to study and predict drug exposure and intestinal safety in pediatrics.
Collapse
Affiliation(s)
- Eva J Streekstra
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
| | - Tom Scheer-Weijers
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | | | | | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Basel CH-4070, Switzerland
| | - Sven C D van Ijzendoorn
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, The Netherlands
| | - Sanne Botden
- Department of Pediatric Surgery, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen 6525GA, The Netherlands
| | - Willem de Boode
- Department of Pediatrics, Division of Neonatology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen 6525GA, The Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Rick Greupink
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department of Intensive Care, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam 3015GD, The Netherlands
| |
Collapse
|
6
|
de Waal T, Handin N, Brouwers J, Miserez M, Hoffman I, Rayyan M, Artursson P, Augustijns P. Expression of intestinal drug transporter proteins and metabolic enzymes in neonatal and pediatric patients. Int J Pharm 2024; 654:123962. [PMID: 38432450 DOI: 10.1016/j.ijpharm.2024.123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The development of pediatric oral drugs is hampered by a lack of predictive simulation tools. These tools, in turn, require data on the physiological variables that influence oral drug absorption, including the expression of drug transporter proteins (DTPs) and drug-metabolizing enzymes (DMEs) in the intestinal tract. The expression of hepatic DTPs and DMEs shows age-related changes, but there are few data on protein levels in the intestine of children. In this study, tissue was collected from different regions of the small and large intestine from neonates (i.e., surgically removed tissue) and from pediatric patients (i.e., gastroscopic duodenal biopsies). The protein expression of clinically relevant DTPs and DMEs was determined using a targeted mass spectrometry approach. The regional distribution of DTPs and DMEs was similar to adults. Most DTPs, with the exception of MRP3, MCT1, and OCT3, and all DMEs showed the highest protein expression in the proximal small intestine. Several proteins (i.e., P-gp, ASBT, CYP3A4, CYP3A5, CYP2C9, CYP2C19, and UGT1A1) showed an increase with age. Such increase appeared to be even more pronounced for DMEs. This exploratory study highlights the developmental changes in DTPs and DMEs in the intestinal tract of the pediatric population. Additional evaluation of protein function in this population would elucidate the implications of the presented changes in protein expression on absorption of orally administered drugs in neonates and pediatric patients.
Collapse
Affiliation(s)
- Tom de Waal
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Marc Miserez
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ilse Hoffman
- Pediatric Gastroenterology, Hepatology and Nutrition, University Hospitals Leuven, Leuven, Belgium
| | - Maissa Rayyan
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
7
|
Watanabe H, Nagano N, Tsuji Y, Noto N, Ayusawa M, Morioka I. Challenges of pediatric pharmacotherapy: A narrative review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Eur J Clin Pharmacol 2024; 80:203-221. [PMID: 38078929 DOI: 10.1007/s00228-023-03598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Personalized pharmacotherapy, including for the pediatric population, provides optimal treatment and has emerged as a major trend owing to advanced drug therapeutics and diversified drug selection. However, it is essential to understand the growth and developmental characteristics of this population to provide appropriate drug therapy. In recent years, clinical pharmacogenetics has accumulated knowledge in pediatric pharmacotherapy, and guidelines from professional organizations, such as the Clinical Pharmacogenetics Implementation Consortium, can be consulted to determine the efficacy of specific drugs and the risk of adverse effects. However, the existence of a large knowledge gap hinders the use of these findings in clinical practice. METHODS We provide a narrative review of the knowledge gaps in pharmacokinetics (PK) and pharmacodynamics (PD) in the pediatric population, focusing on the differences from the perspective of growth and developmental characteristics. In addition, we explored PK/PD in relation to pediatric clinical pharmacogenetics. RESULTS The lack of direct and indirect biomarkers for more accurate assessment of the effects of drug administration limits the current knowledge of PD. In addition, incorporating pharmacogenetic insights as pivotal covariates is indispensable in this comprehensive synthesis for precision therapy; therefore, we have provided recommendations regarding the current status and challenges of personalized pediatric pharmacotherapy. The integration of clinical pharmacogenetics with the health care system and institution of educational programs for health care providers is necessary for its safe and effective implementation. A comprehensive understanding of the physiological and genetic complexities of the pediatric population will facilitate the development of effective and personalized pharmacotherapeutic strategies.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yasuhiro Tsuji
- Laboratory of Clinical Pharmacometrics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Nobutaka Noto
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Mamoru Ayusawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Kami-cho Ooyaguchi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
8
|
de Waal T, Brouwers J, Rayyan M, Stillhart C, Vinarova L, Vinarov Z, Augustijns P. Characterization of neonatal and infant enterostomy fluids - Part II: Drug solubility. Int J Pharm 2023:123141. [PMID: 37321462 DOI: 10.1016/j.ijpharm.2023.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Previous research revealed marked differences in the composition of intestinal fluids between infants and adults. To explore the impact on the solubilization of orally administered drugs, the present study assessed the solubility of five poorly water-soluble, lipophilic drugs in intestinal fluid pools from 19 infant enterostomy patients (infant HIF). For some but not all drugs, the average solubilizing capacity of infant HIF was similar to that of HIF obtained from adults (adult HIF) in fed conditions. Commonly used fed state simulated intestinal fluids (FeSSIF(-V2)) predicted fairly well drug solubility in the aqueous fraction of infant HIF, but did not account for the substantial solubilization by the lipid phase of infant HIF. Despite similarities in the average solubilities of some drugs in infant HIF and adult HIF or SIF, the underlying solubilization mechanisms likely differ, considering important compositional differences (e.g., low bile salt levels). Finally, the huge variability in composition of infant HIF pools resulted in a highly variable solubilizing capacity, potentially causing variations in drug bioavailability. The current study warrants future research focusing on (i) understanding the mechanisms underlying drug solubilization in infant HIF and (ii) evaluating the sensitivity of oral drug products to interpatient variations in drug solubilization.
Collapse
Affiliation(s)
- Tom de Waal
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maissa Rayyan
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | | | - Liliya Vinarova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
10
|
Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, Haimhoffer Á, Vasvári G. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods. Pharmaceutics 2023; 15:pharmaceutics15041146. [PMID: 37111632 PMCID: PMC10144798 DOI: 10.3390/pharmaceutics15041146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Bioavailability assessment in the development phase of a drug product is vital to reveal the disadvantageous properties of the substance and the possible technological interventions. However, in vivo pharmacokinetic studies provide strong evidence for drug approval applications. Human and animal studies must be designed on the basis of preliminary biorelevant experiments in vitro and ex vivo. In this article, the authors have reviewed the recent methods and techniques from the last decade that are in use for assessing the bioavailability of drug molecules and the effects of technological modifications and drug delivery systems. Four main administration routes were selected: oral, transdermal, ocular, and nasal or inhalation. Three levels of methodologies were screened for each category: in vitro techniques with artificial membranes; cell culture, including monocultures and co-cultures; and finally, experiments where tissue or organ samples were used. Reproducibility, predictability, and level of acceptance by the regulatory organizations are summarized for the readers.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Réka Révész
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
11
|
Nagar S, Radice C, Tuohy R, Stevens R, Bennyhoff D, Korzekwa K. The Rat Continuous Intestine Model Predicts the Impact of Particle Size and Transporters on the Oral Absorption of Glyburide. Mol Pharm 2023; 20:219-231. [PMID: 36541850 DOI: 10.1021/acs.molpharmaceut.2c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oral drug absorption is known to be impacted by the physicochemical properties of drugs, properties of oral formulations, and physiological characteristics of the intestine. The goal of the present study was to develop a mathematical model to predict the impact of particle size, feeding time, and intestinal transporter activity on oral absorption. A previously published rat continuous intestine absorption model was extended for solid drug absorption. The impact of active pharmaceutical ingredient particle size was evaluated with glyburide (GLY) as a model drug. Two particle size suspensions of glyburide were prepared with average particle sizes of 42.7 and 4.1 μm. Each suspension was dosed as a single oral gavage to male Sprague Dawley rats, and concentration-time (C-t) profiles of glyburide were measured with liquid chromatography coupled with tandem mass spectrometry. A continuous rat intestine absorption model was extended to include drug dissolution and was used to predict the absorption kinetics of GLY depending on particle size. Additional literature datasets of rat GLY formulations with particle sizes ranging from 0.25 to 4.0 μm were used for model predictions. The model predicted reasonably well the absorption profiles of GLY based on varying particle size and varying feeding time. The model predicted inhibition of intestinal uptake or efflux transporters depending on the datasets. The three datasets used formulations with different excipients, which may impact the transporter activity. Model simulations indicated that the model provides a facile framework to predict the impact of transporter inhibition on drug C-t profiles. Model simulations can also be conducted to evaluate the impact of an altered intestinal lumen environment. In conclusion, the rat continuous intestine absorption model may provide a useful tool to predict the impact of varying drug formulations on rat oral absorption profiles.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Casey Radice
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| | - Robert Tuohy
- Pace Analytical Life Sciences LLC, Norristown, Pennsylvania19401, United States
| | - Raymond Stevens
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Dale Bennyhoff
- Particle Solutions LLC, West Chester, Pennsylvania19382, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania19140, United States
| |
Collapse
|