1
|
Ålund M, Cenzer M, Bierne N, Boughman JW, Cerca J, Comerford MS, Culicchi A, Langerhans B, McFarlane SE, Möst MH, North H, Qvarnström A, Ravinet M, Svanbäck R, Taylor SA. Anthropogenic Change and the Process of Speciation. Cold Spring Harb Perspect Biol 2023; 15:a041455. [PMID: 37788888 PMCID: PMC10691492 DOI: 10.1101/cshperspect.a041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
Collapse
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Meredith Cenzer
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Nicolas Bierne
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier 34095, France
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Alessandro Culicchi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Brian Langerhans
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming 82071, USA
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Markus H Möst
- Research Department for Limnology, University of Innsbruck, Innsbruck 6020, Austria
| | - Henry North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Svanbäck
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
2
|
Gawrońska B, Marszałek M, Kosiński P, Podsiedlik M, Bednorz L, Zeyland J. No wonder, it is a hybrid. Natural hybridization between Jacobaea vulgaris and J. erucifolia revealed by molecular marker systems and its potential ecological impact. Ecol Evol 2023; 13:e10467. [PMID: 37664498 PMCID: PMC10468328 DOI: 10.1002/ece3.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Progressive changes in the environment are related to modifications of the habitat. Introducing exotic species, and interbreeding between species can lead to processes that in the case of rare species or small populations threatens their integrity. Given the declining trends of many populations due to increased hybridization, early recognition of hybrids becomes important in conservation management. Natural hybridization is prevalent in Jacobaea. There are many naturally occurring interspecific hybrids in this genus, including those between Jacobaea vulgaris and its relatives. Although Jacobaea erucifolia and J. vulgaris often co-occur and are considered closely related, apart from the few reports of German botanists on the existence of such hybrids, there is no information on research confirming hybridization between them. Morphologically intermediate individuals, found in the sympatric distributions of J. vulgaris and J. erucifolia, were hypothesized to be their hybrids. Two molecular marker systems (nuclear and chloroplast DNA markers) were employed to test this hypothesis and characterize putative hybrids. Nuclear and chloroplast DNA sequencing results and taxon-specific amplified fragment length polymorphism (AFLP) fragment distribution analysis confirmed the hybrid nature of all 25 putative hybrids. The AFLP patterns of most hybrids demonstrated a closer relationship to J. erucifolia, suggesting frequent backcrossing. Moreover, they showed that several individuals previously described as pure were probably also of hybrid origin, backcrosses to J. erucifolia and J. vulgaris. This study provides the first molecular confirmation that natural hybrids between J. vulgaris and J. erucifolia occur in Poland. Hybridization appeared to be bidirectional but asymmetrical with J. vulgaris as the usual maternal parent.
Collapse
Affiliation(s)
- Barbara Gawrońska
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Małgorzata Marszałek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Piotr Kosiński
- Department of Botany, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
| | - Marek Podsiedlik
- Natural History Collections, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Leszek Bednorz
- Department of Botany, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
3
|
Staude IR, Ebersbach J. Neophytes may promote hybridization and adaptations to a changing planet. Ecol Evol 2023; 13:e10405. [PMID: 37593753 PMCID: PMC10427993 DOI: 10.1002/ece3.10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Human activities erode geographic barriers, facilitating hybridization among previously isolated taxa. However, limited empirical research exists on the consequences of introduced species (neophytes) for hybridization and subsequent evolutionary outcomes. To address this knowledge gap, we employed a macroecological approach. First, we examined the spatial and phylogenetic overlap between neophytes and hybrids by integrating the Plants of the World Online database with the Global Naturalized Alien Flora database. Second, leveraging the largest dated plant phylogeny available, we compared diversification rates between genera containing hybrids and neophytes versus those without. Third, focusing on the extensively studied hybrid flora of Britain, we studied the spatial distributions of hybrids in relation to neophyte and native parents, assessing potential adaptations to anthropogenic disturbances and impacts on native species. Overall, our findings highlight positive ties between contemporary biodiversity redistribution and hybridization. Spatially (across countries) and phylogenetically (across genera), neophyte incidence was positively associated with hybrid incidence. Genera comprising both hybrids and neophytes displayed significantly higher diversification rates. Neophyte hybrids primarily occupied areas with a higher human footprint, with limited evidence of hybrids threatening native species throughout their range in more natural habitats. These results challenge the notion that species naturalizations and hybridizations exclusively yield negative outcomes for biodiversity. While it is conceivable that anthropogenic hybridization may facilitate recombination of genetic variation and contribute to conserving genetic diversity in disturbed environments, further research is needed to fully understand these processes.
Collapse
Affiliation(s)
- Ingmar R. Staude
- Institute of BiologyLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Jana Ebersbach
- Institute of BiologyLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
4
|
Zbinden ZD, Douglas MR, Chafin TK, Douglas ME. A community genomics approach to natural hybridization. Proc Biol Sci 2023; 290:20230768. [PMID: 37192670 PMCID: PMC10188237 DOI: 10.1098/rspb.2023.0768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
Hybridization is a complicated, oft-misunderstood process. Once deemed unnatural and uncommon, hybridization is now recognized as ubiquitous among species. But hybridization rates within and among communities are poorly understood despite the relevance to ecology, evolution and conservation. To clarify, we examined hybridization across 75 freshwater fish communities within the Ozarks of the North American Interior Highlands (USA) by single nucleotide polymorphism (SNP) genotyping 33 species (N = 2865 individuals; double-digest restriction site-associated DNA sequencing (ddRAD)). We found evidence of hybridization (70 putative hybrids; 2.4% of individuals) among 18 species-pairs involving 73% (24/33) of study species, with the majority being concentrated within one family (Leuciscidae/minnows; 15 species; 66 hybrids). Interspecific genetic exchange-or introgression-was evident from 24 backcrossed individuals (10/18 species-pairs). Hybrids occurred within 42 of 75 communities (56%). Four selected environmental variables (species richness, protected area extent, precipitation (May and annually)) exhibited 73-78% accuracy in predicting hybrid occurrence via random forest classification. Our community-level assessment identified hybridization as spatially widespread and environmentally dependent (albeit predominantly within one diverse, omnipresent family). Our approach provides a more holistic survey of natural hybridization by testing a wide range of species-pairs, thus contrasting with more conventional evaluations.
Collapse
Affiliation(s)
- Zachery D. Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Marlis R. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Tyler K. Chafin
- Biomathematics and Statistics Scotland, Edinburgh, Scotland, UK
| | - Michael E. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
5
|
Touchard F, Simon A, Bierne N, Viard F. Urban rendezvous along the seashore: Ports as Darwinian field labs for studying marine evolution in the Anthropocene. Evol Appl 2023; 16:560-579. [PMID: 36793678 PMCID: PMC9923491 DOI: 10.1111/eva.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Humans have built ports on all the coasts of the world, allowing people to travel, exploit the sea, and develop trade. The proliferation of these artificial habitats and the associated maritime traffic is not predicted to fade in the coming decades. Ports share common characteristics: Species find themselves in novel singular environments, with particular abiotic properties-e.g., pollutants, shading, protection from wave action-within novel communities in a melting pot of invasive and native taxa. Here, we discuss how this drives evolution, including setting up of new connectivity hubs and gateways, adaptive responses to exposure to new chemicals or new biotic communities, and hybridization between lineages that would have never come into contact naturally. There are still important knowledge gaps, however, such as the lack of experimental tests to distinguish adaptation from acclimation processes, the lack of studies to understand the putative threats of port lineages to natural populations or to better understand the outcomes and fitness effects of anthropogenic hybridization. We thus call for further research examining "biological portuarization," defined as the repeated evolution of marine species in port ecosystems under human-altered selective pressures. Furthermore, we argue that ports act as giant mesocosms often isolated from the open sea by seawalls and locks and so provide replicated life-size evolutionary experiments essential to support predictive evolutionary sciences.
Collapse
Affiliation(s)
| | - Alexis Simon
- ISEM, EPHE, IRDUniversité MontpellierMontpellierFrance
- Center of Population Biology and Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | | | | |
Collapse
|
6
|
Mitchell N, Luu H, Owens GL, Rieseberg LH, Whitney KD. Hybrid evolution repeats itself across environmental contexts in Texas sunflowers (Helianthus). Evolution 2022; 76:1512-1528. [PMID: 35665925 PMCID: PMC9544064 DOI: 10.1111/evo.14536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023]
Abstract
To what extent is evolution repeatable? Little is known about whether the evolution of hybrids is more (or less) repeatable than that of nonhybrids. We used field experimental evolution in annual sunflowers (Helianthus) in Texas to ask the extent to which hybrid evolution is repeatable across environments compared to nonhybrid controls. We created hybrids between Helianthus annuus (L.) and H. debilis (Nutt.) and grew plots of both hybrids and nonhybrid controls through eight generations at three sites in Texas. We collected seeds from each generation and grew each generation × treatment × home site combination at two final common gardens. We estimated the strength and direction of evolution in terms of fitness and 24 traits, tested for repeated versus nonrepeated evolution, and assessed overall phenotypic evolution across lineages and in relation to a locally adapted phenotype. Hybrids consistently evolved higher fitness over time, while controls did not, although trait evolution varied in strength across home sites. Repeated evolution was more evident in hybrids versus nonhybrid controls, and hybrid evolution was often in the direction of the locally adapted phenotype. Our findings have implications for both the nature of repeatability in evolution and the contribution of hybridization to evolution across environmental contexts.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA,Department of BiologyUniversity of Wisconsin – Eau ClaireEau ClaireWisconsinUSA
| | - Hoang Luu
- Department of Environmental and Plant BiologyOhio UniversityAthensOhioUSA
| | - Gregory L. Owens
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British ColumbiaBritish ColumbiaCanada
| | | |
Collapse
|
7
|
Stronen AV, Norman AJ, Vander Wal E, Paquet PC. The relevance of genetic structure in ecotype designation and conservation management. Evol Appl 2022; 15:185-202. [PMID: 35233242 PMCID: PMC8867706 DOI: 10.1111/eva.13339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The concept of ecotypes is complex, partly because of its interdisciplinary nature, but the idea is intrinsically valuable for evolutionary biology and applied conservation. The complex nature of ecotypes has spurred some confusion and inconsistencies in the literature, thereby limiting broader theoretical development and practical application. We provide suggestions for how incorporating genetic analyses can ease confusion and help define ecotypes. We approach this by systematically reviewing 112 publications across taxa that simultaneously mention the terms ecotype, conservation and management, to examine the current use of the term in the context of conservation and management. We found that most ecotype studies involve fish, mammals and plants with a focus on habitat use, which at 60% was the most common criterion used for categorization of ecotypes. Only 53% of the studies incorporated genetic analyses, and major discrepancies in available genomic resources among taxa could have contributed to confusion about the role of genetic structure in delineating ecotypes. Our results show that the rapid advances in genetic methods, also for nonmodel organisms, can help clarify the spatiotemporal distribution of adaptive and neutral genetic variation and their relevance to ecotype designations. Genetic analyses can offer empirical support for the ecotype concept and provide a timely measure of evolutionary potential, especially in changing environmental conditions. Genetic variation that is often difficult to detect, including polygenic traits influenced by small contributions from several genes, can be vital for adaptation to rapidly changing environments. Emerging ecotypes may signal speciation in progress, and findings from genome-enabled organisms can help clarify important selective factors driving ecotype development and persistence, and thereby improve preservation of interspecific genetic diversity. Incorporation of genetic analyses in ecotype studies will help connect evolutionary biology and applied conservation, including that of problematic groups such as natural hybrid organisms and urban or anthropogenic ecotypes.
Collapse
Affiliation(s)
- Astrid V. Stronen
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Department of Biotechnology and Life SciencesInsubria UniversityVareseItaly
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Anita J. Norman
- Department of Fish, Wildlife and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Eric Vander Wal
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| | - Paul C. Paquet
- Department of GeographyUniversity of VictoriaVictoriaBCCanada
- Raincoast Conservation FoundationSidneyBCCanada
| |
Collapse
|
8
|
Köhler M, Oakley LJ, Font F, Peñas MLL, Majure LC. On the continuum of evolution: a putative new hybrid speciation event in Opuntia (Cactaceae) between a native and an introduced species in southern South America. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1967510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Matias Köhler
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| | - Luis J. Oakley
- Cátedra de Botánica, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
- Red List Authority Coordinator for the Temperate South American Plant Specialist Groups – International Union for Conservation of Nature (IUCN), Gland, Switzerland
| | - Fabián Font
- Herbario Museo de Farmacobotánica “Juan A. Domínguez” (BAF), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Laura Las Peñas
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Facultas de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba – CONICET, Córdoba, Argentina
| | - Lucas C. Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
9
|
Guo Q, Cen X, Song R, McKinney ML, Wang D. Worldwide effects of non-native species on species-area relationships. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:711-721. [PMID: 32557812 DOI: 10.1111/cobi.13573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Non-native species have invaded most parts of the world, and the invasion process is expected to continue and accelerate. Because many invading non-native species are likely to become permanent inhabitants, future consideration of species-area relationships (SARs) should account for non-native species, either separately or jointly with native species. If non-native species occupy unused niches and space in invaded areas and extinction rate of native species remains low (especially for plants), the resultant SARs (with both native and non-native species) will likely be stronger. We used published and newly compiled data (35 data sets worldwide) to examine how species invasions affect SARs across selected taxonomic groups and diverse ecosystems around the world. We first examined the SARs for native, non-native, and all species. We then investigated with linear regression analyses and paired or unpaired t tests how degree of invasion (proportion of non-native species) affected postinvasion SARs. Postinvasion SARs for all species (native plus non-native) became significantly stronger as degree of invasion increased (r2 = 0.31, p = 0.0006), thus, reshaping SARs worldwide. Overall, native species still showed stronger and less variable SARs. Also, slopes for native species were steeper than for non-native species (0.298 vs. 0.153). There were some differences among non-native taxonomic groups in filling new niches (especially for birds) and between islands and mainland ecosystems. We also found evidence that invasions may increase equilibrial diversity. Study of such changing species-area curves may help determine the probability of future invasions and have practical implications for conservation.
Collapse
Affiliation(s)
- Qinfeng Guo
- USDA FS, Eastern Forest Environmental Threat Assessment Center, RTP, NC, 27709, USA
| | - Xiaoyu Cen
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Ruiyan Song
- Department of Statistics and Operational Research, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael L McKinney
- Department of Earth & Planetary Sciences, University of Tennesse, Knoxville, TN, 37996, USA
| | - Deli Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, and Institute of Grassland Science/School of Environment, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
10
|
Wang Z, Jiang Y, Bi H, Lu Z, Ma Y, Yang X, Chen N, Tian B, Liu B, Mao X, Ma T, DiFazio SP, Hu Q, Abbott RJ, Liu J. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. MOLECULAR PLANT 2021; 14:208-222. [PMID: 33220509 DOI: 10.1016/j.molp.2020.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 11/13/2020] [Indexed: 05/21/2023]
Abstract
It is increasingly realized that homoploid hybrid speciation (HHS), which involves no change in chromosome number, is an important mechanism of speciation. HHS will likely increase in frequency as ecological and geographical barriers between species are continuing to be disrupted by human activities. HHS requires the establishment of reproductive isolation between a hybrid and its parents, but the underlying genes and genetic mechanisms remain largely unknown. In this study, we reveal by integrated approaches that reproductive isolation originates in one homoploid hybrid plant species through the inheritance of alternate alleles at genes that determine parental premating isolation. The parent species of this hybrid species are reproductively isolated by differences in flowering time and survivorship on soils containing high concentrations of iron. We found that the hybrid species inherits alleles of parental isolating major genes related to flowering time from one parent and alleles of major genes related to iron tolerance from the other parent. In this way, it became reproductively isolated from one parent by the difference in flowering time and from the other by habitat adaptation (iron tolerance). These findings and further modeling results suggest that HHS may occur relatively easily via the inheritance of alternate parental premating isolating genes and barriers.
Collapse
Affiliation(s)
- Zefu Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Bi
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqiang Lu
- State Key Laboratory of Grassland Agro-Ecosystem, Innovation Institute of Ecology and Life Sciences, Lanzhou University, Lanzhou 730000, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Yazhen Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoyue Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Innovation Institute of Ecology and Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ningning Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Tian
- State Key Laboratory of Grassland Agro-Ecosystem, Innovation Institute of Ecology and Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xingxing Mao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 25606, USA
| | - Quanjun Hu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK.
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Grassland Agro-Ecosystem, Innovation Institute of Ecology and Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Coppi A, Baker AJM, Bettarini I, Colzi I, Echevarria G, Pazzagli L, Gonnelli C, Selvi F. Population Genetics of Odontarrhena (Brassicaceae) from Albania: The Effects of Anthropic Habitat Disturbance, Soil, and Altitude on a Ni-Hyperaccumulator Plant Group from a Major Serpentine Hotspot. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1686. [PMID: 33271845 PMCID: PMC7759883 DOI: 10.3390/plants9121686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Albanian taxa and populations of the genus Odontarrhena are most promising candidates for research on metal tolerance and Ni-agromining, but their genetic structure remains unknown. We investigated phylogenetic relationships and genetic differentiation in relation to distribution and ploidy of the taxa, anthropic site disturbance, elevation, soil type, and trace metals at each population site. After performing DNA sequencing of selected accessions, we applied DNA-fingerprinting to analyze the genetic structure of 32 populations from ultramafic and non-ultramafic outcrops across Albania. Low sequence divergence resulted in poorly resolved phylograms, but supported affinity between the two diploid serpentine endemics O. moravensis and O. rigida. Analysis of molecular variance (AMOVA) revealed significant population differentiation, but no isolation by distance. Among-population variation was higher in polyploids than in diploids, in which genetic distances were lower. Genetic admixing at population and individual level occurred especially in the polyploids O. chalcidica, O. decipiens, and O. smolikana. Admixing increased with site disturbance. Outlier loci were higher in serpentine populations but decreased along altitude with lower drought and heat stress. Genetic variability gained by gene flow and hybridization at contact zones with "resident" species of primary ultramafic habitats promoted expansion of the tetraploid O. chalcidica across anthropogenic sites.
Collapse
Affiliation(s)
- Andrea Coppi
- Department of Biology, University of Firenze, 50121 Firenze, Italy;
| | - Alan J. M. Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane QLD 4072, Australia; (A.J.M.B.); (G.E.)
- Laboratoire Sols et Environnement, Université de Lorraine/INRA, F-54000 Vandoeuvre-lès-Nancy, France
| | - Isabella Bettarini
- Department of Biomedical Experimental and Clinical Sciences, University of Firenze, 50121 Firenze, Italy; (I.B.); (L.P.)
| | - Ilaria Colzi
- Department of Biology, University of Firenze, 50121 Firenze, Italy;
| | - Guillaume Echevarria
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane QLD 4072, Australia; (A.J.M.B.); (G.E.)
- Laboratoire Sols et Environnement, Université de Lorraine/INRA, F-54000 Vandoeuvre-lès-Nancy, France
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Firenze, 50121 Firenze, Italy; (I.B.); (L.P.)
| | | | - Federico Selvi
- Department of Agriculture, Food, Environment and Forestry, Laboratories of Botany, 50121 Firenze, Italy;
| |
Collapse
|
12
|
Factors Influencing the Distribution of Invasive Hybrid (Myriophyllum Spicatum x M. Sibiricum) Watermilfoil and Parental Taxa in Minnesota. DIVERSITY 2020. [DOI: 10.3390/d12030120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Eurasian watermilfoil (Myriophyllum spicatum L.) hybridizes with the native northern watermilfoil (M. sibiricum Kom.), which raises new issues regarding management strategies to control infestations. To determine the distribution of hybrid (and coincidentally Eurasian and northern) watermilfoil in Minnesota, we sampled lakes across the state during 2017–2018 for watermilfoil. A total of 62 lakes were sampled, spanning a range of sizes and duration of invasion. Forty-three lakes contained Eurasian, 28 contained hybrid and 21 contained northern watermilfoil. Eurasian watermilfoil populations were widespread throughout the state. Hybrid populations were more commonly found in lakes in the seven county Twin Cities Metro and northern watermilfoil populations were more commonly found in lakes outside of the Metro area. We found no evidence that hybrid watermilfoil occurred in lakes environmentally different than those with Eurasian and northern watermilfoil, suggesting that hybrid watermilfoil is not associated with a unique niche. Hybrid watermilfoil presence was significantly associated with the Metro area, which may likely be due to spatial and temporal factors associated with hybrid formation and spread. Hybrid watermilfoil presence was also significantly associated with lakes that had more parking spaces and older infestations, but this relationship was not significant when the effect of region was considered. Hybrid watermilfoil populations were the result of both in situ hybridization and clonal spread and continued assessment is needed to determine if particularly invasive or herbicide-resistant genotypes develop.
Collapse
|
13
|
Mitchell N, Campbell LG, Ahern JR, Paine KC, Giroldo AB, Whitney KD. Correlates of hybridization in plants. Evol Lett 2019; 3:570-585. [PMID: 31867119 PMCID: PMC6906982 DOI: 10.1002/evl3.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023] Open
Abstract
Hybridization is a biological phenomenon increasingly recognized as an important evolutionary process in both plants and animals, as it is linked to speciation, radiation, extinction, range expansion and invasion, and allows for increased trait diversity in agricultural and horticultural systems. Estimates of hybridization frequency vary across taxonomic groups, but causes of this variation are unknown. Here, we ask on a global scale whether hybridization is linked to any of 11 traits related to plant life history, reproduction, genetic predisposition, and environment or opportunity. Given that hybridization is not evenly distributed across the plant tree of life, we use phylogenetic generalized least squares regression models and phylogenetic path analysis to detect statistical associations between hybridization and plant traits at both the family and genus levels. We find that perenniality and woodiness are each weakly associated with an increased frequency of hybridization in univariate analyses, but path analysis suggests that the direct linkage is between perenniality and increased hybridization (with woodiness having only an indirect relationship with hybridization via perenniality). Weak associations between higher rates of hybridization and higher outcrossing rates, abiotic pollination syndromes, vegetative reproductive modes, larger genomes, and less variable genome sizes are detectable in some cases but not others. We argue that correlational evidence at the global scale, such as that presented here, provides a robust framework for forming hypotheses to examine and test drivers of hybridization at a more mechanistic level.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico87131
- Department of BiologyUniversity of Wisconsin–Eau ClaireEau ClaireWisconsin54701
| | - Lesley G. Campbell
- Department of Chemistry and BiologyRyerson UniversityTorontoOntarioM5B 2K3Canada
| | - Jeffrey R. Ahern
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico87131
| | - Kellen C. Paine
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico87131
| | - Aelton B. Giroldo
- Departamento de EnsinoInstituto Federal de Educação, Ciência e Tecnologia do Ceará – Campus Crateús, CrateúsBrazil
| | | |
Collapse
|
14
|
Müller M, Gailing O. Abiotic genetic adaptation in the Fagaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:783-795. [PMID: 31081234 DOI: 10.1111/plb.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change-related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.
Collapse
Affiliation(s)
- M Müller
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
| | - O Gailing
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
15
|
Yang R, Folk R, Zhang N, Gong X. Homoploid hybridization of plants in the Hengduan mountains region. Ecol Evol 2019; 9:8399-8410. [PMID: 31380098 PMCID: PMC6662326 DOI: 10.1002/ece3.5393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 04/24/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
The Hengduan Mountains Region (HMR) is a major global biodiversity hotspot. Complex tectonic and historical climatic conditions created opportunities for natural interspecific hybridization. Likewise, anthropogenic disturbance potentially raises the frequency of hybridization. Among species studies to date, the frequency of homoploid hybridization appears in the HMR. Of nine taxa in which natural hybridization has been detected, three groups are involved in homoploid hybrid speciation, and species pairs from the remaining six genera suggest that continuous gene flow occurs in hybrid zones. Reproductive isolation may greatly affect the dynamic and architecture of hybrid zones in the HMR. Asymmetrical hybridization and introgression can primarily be attributed to both prezygotic and postzygotic barriers. The frequent observation of such asymmetry may imply that reproductive barrier contributes to maintaining species boundaries in the alpine region. Ecological isolations with environmental disturbance may promote breeding barriers between parental species and hybrids. Hybrid zones may be an important phase for homoploid hybrid speciation. Hybrid zones potentially provided abundant genetic resources for the diversification of the HMR flora. The ecological and molecular mechanisms of control and mediation for natural hybridization will help biologists to understand the formation of biodiversity in the HMR. More researches from ecological and molecular aspects were required in future studies.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ryan Folk
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| | - Ningning Zhang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Yunnan Key Laboratory for Wild Plant ResourcesKunmingChina
| |
Collapse
|
16
|
A Subcontinental Analysis of Forest Fragmentation Effects on Insect and Disease Invasion. FORESTS 2018. [DOI: 10.3390/f9120744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influences of human and physical factors on species invasions have been extensively examined by ecologists across many regions. However, how habitat fragmentation per se may affect forest insect and disease invasion has not been well studied, especially the related patterns over regional or subcontinental scales. Here, using national survey data on forest pest richness and fragmentation data across United States forest ecosystems, we examine how forest fragmentation and edge types (neighboring land cover) may affect pest richness at the county level. Our results show that habitat fragmentation and edge types both affected pest richness. In general, specialist insects and pathogens were more sensitive to fragmentation and edge types than generalists, while pathogens were much less sensitive to fragmentation and edge types than insect pests. Most importantly, the developed land edge type contributed the most to the richness of nonnative insects and diseases, whether measured by the combination of all pest species or by separate guilds or species groups (i.e., generalists vs. specialists, insects vs. pathogens). This observation may largely reflect anthropogenic effects, including propagule pressure associated with human activities. These results shed new insights into the patterns of forest pest invasions, and it may have significant implications for forest restoration and management.
Collapse
|
17
|
Ortego J, Gugger PF, Sork VL. Impacts of human-induced environmental disturbances on hybridization between two ecologically differentiated Californian oak species. THE NEW PHYTOLOGIST 2017; 213:942-955. [PMID: 27621132 DOI: 10.1111/nph.14182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/04/2016] [Indexed: 05/15/2023]
Abstract
Natural hybridization, which can be involved in local adaptation and in speciation processes, has been linked to different sources of anthropogenic disturbance. Here, we use genotypic data to study range-wide patterns of genetic admixture between the serpentine-soil specialist leather oak (Quercus durata) and the widespread Californian scrub oak (Quercus berberidifolia). First, we estimated hybridization rates and the direction of gene flow. Second, we tested the hypothesis that genetic admixture increases with different sources of environmental disturbance, namely anthropogenic destruction of natural habitats and wildfire frequency estimated from long-term records of fire occurrence. Our analyses indicate considerable rates of hybridization (> 25%), asymmetric gene flow from Q. durata into Q. berberidifolia, and a higher occurrence of hybrids in areas where both species live in close parapatry. In accordance with the environmental disturbance hypothesis, we found that genetic admixture increases with wildfire frequency, but we did not find a significant effect of other sources of human-induced habitat alteration (urbanization, land clearing for agriculture) or a suite of ecological factors (climate, elevation, soil type). Our findings highlight that wildfires constitute an important source of environmental disturbance, promoting hybridization between two ecologically well-differentiated native species.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD, 21532, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
18
|
Molecular evidence for hybridization between invasive Solidago canadensis and native S. virgaurea. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1213-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Glotzbecker GJ, Walters DM, Blum MJ. Rapid movement and instability of an invasive hybrid swarm. Evol Appl 2016; 9:741-55. [PMID: 27330551 PMCID: PMC4908461 DOI: 10.1111/eva.12371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 02/08/2016] [Indexed: 12/15/2022] Open
Abstract
Unstable hybrid swarms that arise following the introduction of non‐native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here, we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non‐native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hot spot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.
Collapse
Affiliation(s)
| | - David M Walters
- U.S. Geological Survey Fort Collins Science Center Fort Collins CO USA
| | - Michael J Blum
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA; Tulane - Xavier Center for Bioenvironmental ResearchTulane UniversityNew OrleansLAUSA
| |
Collapse
|
20
|
Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA, Caseys C, Bock DG, Rieseberg LH. Hybridization and extinction. Evol Appl 2016; 9:892-908. [PMID: 27468307 PMCID: PMC4947151 DOI: 10.1111/eva.12367] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/28/2016] [Indexed: 01/29/2023] Open
Abstract
Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization‐induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization‐prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.
Collapse
Affiliation(s)
- Marco Todesco
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Mariana A Pascual
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Katherine L Ostevik
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Brook T Moyers
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada; Department of Bioagricultural Sciences and Pest Management Colorado State University Ft Collins CO USA
| | - Sariel Hübner
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Sylvia M Heredia
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Min A Hahn
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Celine Caseys
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada; Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
21
|
Bouchemousse S, Lévêque L, Dubois G, Viard F. Co-occurrence and reproductive synchrony do not ensure hybridization between an alien tunicate and its interfertile native congener. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9788-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Cannon CH, Lerdau M. Variable mating behaviors and the maintenance of tropical biodiversity. Front Genet 2015; 6:183. [PMID: 26042148 PMCID: PMC4437050 DOI: 10.3389/fgene.2015.00183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/30/2015] [Indexed: 12/25/2022] Open
Abstract
Current theoretical studies on mechanisms promoting species co-existence in diverse communities assume that species are fixed in their mating behavior. Each species is a discrete evolutionary unit, even though most empirical evidence indicates that inter-specific gene flow occurs in plant and animal groups. Here, in a data-driven meta-community model of species co-existence, we allow mating behavior to respond to local species composition and abundance. While individuals primarily out-cross, species maintain a diminished capacity for selfing and hybridization. Mate choice is treated as a variable behavior, which responds to intrinsic traits determining mate choice and the density and availability of sympatric inter-fertile individuals. When mate choice is strongly limited, even low survivorship of selfed offspring can prevent extinction of rare species. With increasing mate choice, low hybridization success rates maintain community level diversity for extended periods of time. In high diversity tropical tree communities, competition among sympatric congeneric species is negligible, because direct spatial proximity with close relatives is infrequent. Therefore, the genomic donorship presents little cost. By incorporating variable mating behavior into evolutionary models of diversification, we also discuss how participation in a syngameon may be selectively advantageous. We view this behavior as a genomic mutualism, where maintenance of genomic structure and diminished inter-fertility, allows each species in the syngameon to benefit from a greater effective population size during episodes of selective disadvantage. Rare species would play a particularly important role in these syngameons as they are more likely to produce heterospecific crosses and transgressive phenotypes. We propose that inter-specific gene flow can play a critical role by allowing genomic mutualists to avoid extinction and gain local adaptations.
Collapse
Affiliation(s)
- Charles H. Cannon
- Key Lab in Tropical Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Manuel Lerdau
- Key Lab in Tropical Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- Departments of Environmental Sciences and Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|