1
|
Olin JA, Urakawa H, Frisk MG, Newton AL, Manz M, Fogg M, McMullen C, Crawford L, Shipley ON. DNA metabarcoding of cloacal swabs provides insight into diets of highly migratory sharks in the Mid-Atlantic Bight. JOURNAL OF FISH BIOLOGY 2023; 103:1409-1418. [PMID: 37640692 DOI: 10.1111/jfb.15543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
The abundances of migratory shark species observed throughout the Mid-Atlantic Bight (MAB) during productive summer months suggest that this region provides critical habitat and prey resources to these taxa. However, the principal prey assemblages sustaining migratory shark biomass in this region are poorly defined. We applied high-throughput DNA metabarcoding to shark feces derived from cloacal swabs across nine species of Carcharhinid and Lamnid sharks to (1) quantify the contribution of broad taxa (e.g., invertebrates, fishes) supporting shark biomass during seasonal residency in the MAB and (2) determine whether the species displayed distinct dietary preference indicative of resource partitioning. DNA metabarcoding resulted in high taxonomic (species-level) resolution of shark diets with actinopterygian and elasmobranch fishes as the dominant prey categories across the species. DNA metabarcoding identified several key prey groups consistent across shark taxa that are likely integral for sustaining their biomass in this region, including Atlantic menhaden (Brevoortia tyrannus), Atlantic mackerel (Scomber scombrus), and benthic elasmobranchs, including skates. Our results are consistent with previously published stomach content data for the shark species of similar size range in the Northwest Atlantic Ocean, supporting the efficacy of cloacal swab DNA metabarcoding as a minimally invasive diet reconstruction technique. The high reliance of several shark species on Atlantic menhaden could imply wasp-waist food-web conditions during the summer months, whereby high abundances of forage fishes sustain a diverse suite of migratory sharks within a complex, seasonal food web.
Collapse
Affiliation(s)
- Jill A Olin
- Department of Biological Sciences, Great Lakes Research Center, Michigan Technological University, Houghton, Michigan, USA
| | - Hidetoshi Urakawa
- Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Michael G Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Alisa L Newton
- New York Aquarium, Wildlife Conservation Society, Bronx, New York, USA
| | - Maria Manz
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Michael Fogg
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Colin McMullen
- Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Lisa Crawford
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Shipley ON, Matich P, Hussey NE, Brooks AML, Chapman D, Frisk MG, Guttridge AE, Guttridge TL, Howey LA, Kattan S, Madigan DJ, O'Shea O, Polunin NV, Power M, Smukall MJ, Schneider EVC, Shea BD, Talwar BS, Winchester M, Brooks EJ, Gallagher AJ. Energetic connectivity of diverse elasmobranch populations - implications for ecological resilience. Proc Biol Sci 2023; 290:20230262. [PMID: 37040803 PMCID: PMC10089721 DOI: 10.1098/rspb.2023.0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.
Collapse
Affiliation(s)
| | | | - Nigel E. Hussey
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Annabelle M. L. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Michael G. Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Lucy A. Howey
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sami Kattan
- Beneath The Waves, PO Box 126, Herndon, VA, USA
| | - Daniel J. Madigan
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Owen O'Shea
- The Center for Ocean Research and Education (CORE), Gregory Town, Eleuthera, The Bahamas
| | - Nicholas V. Polunin
- Department of Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Power
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | - Brendan D. Shea
- Beneath The Waves, PO Box 126, Herndon, VA, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Brendan S. Talwar
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | | | - Edward J. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
| | | |
Collapse
|
3
|
Balanin S, Hauser-Davis RA, Giareta E, Charvet P, Wosnick N. Almost nothing is known about the tiger shark in South Atlantic waters. PeerJ 2023; 11:e14750. [PMID: 36700003 PMCID: PMC9869778 DOI: 10.7717/peerj.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023] Open
Abstract
The tiger shark (Galeocerdo cuvier) has been relatively well assessed concerning biology and ecology aspects in both Atlantic and Pacific North America and in Caribbean waters. The amount of data in these regions has led to the species protection under capture quotas and with the creation of sanctuaries. The reality in developing countries, however, is the exact opposite, with scarce information on the species in the southern hemisphere, namely South American and African waters. In these regions, protection measures are insufficient, and studies on tiger shark biology and ecology are scarce, significantly hindering conservation and management efforts. Thus, the aim of this study was to compile scientific literature on the tiger shark in the South Atlantic and discuss the impact of these data (or lack thereof) distributed within a total of ten research categories for guiding management plans. In total, 41 scientific publications on different G. cuvier biology and ecology aspects were obtained. The most studied topics were Feeding Ecology (n = 12), followed by Human Interactions (n = 8), and Movements and Migration (n = 7). Northeastern Brazil (Southwest Atlantic) was the most researched area, probably due to the higher coastal abundance of tiger sharks in this area, alongside a high number of recorded attacks, justifying funding for studies in the region. No studies carried out in other South American or African countries were found. It is important to mention that even though some research topics are relatively well covered, a severe knowledge gap is noted for risk assessments and fisheries management, with a proposition for the implementation of sanctuaries noted. This is, however, particularly worrisome, as the South Atlantic is mostly unexplored in this regard for tiger sharks. It is also important to note how different the attention given to this species is in the North Atlantic when compared to the South region. Lastly, we highlight that the existence of sub-populations, the lack of migratory corridors geographically connecting distinct areas used by the species, and the lack of fisheries statistics on tiger shark landings, all increase the vulnerability of this species in the South Atlantic.
Collapse
Affiliation(s)
- Samuel Balanin
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Zoologia—Universidade Federal do Paraná, Curitiba, Paraná
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção a Saúde Ambiental, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eloísa Giareta
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Zoologia—Universidade Federal do Paraná, Curitiba, Paraná
| | - Patricia Charvet
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Sistemática, Uso e Conservação da Biodiversidade—Universidade Federal do Ceará, Fortaleza, Brazil
| | - Natascha Wosnick
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Zoologia—Universidade Federal do Paraná, Curitiba, Paraná
| |
Collapse
|
4
|
Smukall MJ, Carlson J, Kessel ST, Guttridge TL, Dhellemmes F, Seitz AC, Gruber S. Thirty-five years of tiger shark Galeocerdo cuvier relative abundance near Bimini, The Bahamas, and the Southeastern United States with a comparison across jurisdictional bounds. JOURNAL OF FISH BIOLOGY 2022; 101:13-25. [PMID: 35446438 DOI: 10.1111/jfb.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Abundances of large sharks are reported to have declined worldwide, and in response various levels of fisheries management and conservation efforts have been established. For example, marine-protected areas have been suggested as a means to protect large expanses of ocean from fishing and other industrial activities (e.g., habitat destruction), and in 2011 The Commonwealth of The Bahamas established The Bahamas Shark Sanctuary. Nonetheless, assessing the effectiveness of conservation efforts is challenging because consistent long-term data sets of shark abundances are often lacking, especially throughout the Caribbean and The Bahamas. In this study, the authors investigated the catch rates and demographics of tiger sharks Galeocerdo cuvier caught in a fishery-independent survey near Bimini, The Bahamas, from 1984 to 2019 to assess relative abundance trends following the banning of longline fishing in 1993 and the subsequent establishment of the shark sanctuary. To contextualize the relative abundance trends near Bimini, the authors compared this to the relative abundance of tiger sharks in a fishery-dependent survey from the Southeastern USA (SE USA), conducted from 1994 to 2019. The data of this study suggest that local abundance of tiger sharks has been stable near Bimini since the 1980s, including after the ban of longline fishing and the implementation of the shark sanctuary. In comparison, the abundance near the SE USA has slowly increased in the past decade, following potential declines in the decade preceding the USA Shark Management Plan. The results of this study provide some optimism that current conservation efforts in The Bahamas have been effective to maintain local tiger shark abundance within the protected area. In addition, current fisheries management in the SE USA is allowing this species to recover within those waters.
Collapse
Affiliation(s)
- Matthew J Smukall
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, USA
| | - John Carlson
- National Oceanic and Atmospheric Administration, Panama City, Florida, USA
| | - Steven T Kessel
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Shedd Aquarium, Chicago, Illinois, USA
| | - Tristan L Guttridge
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Saving the Blue, Cooper City, Florida, USA
| | - Félicie Dhellemmes
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Andrew C Seitz
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, USA
| | - Samuel Gruber
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
| |
Collapse
|
5
|
Germanov ES, Pierce SJ, Marshall AD, Hendrawan IG, Kefi A, Bejder L, Loneragan N. Residency, movement patterns, behavior and demographics of reef manta rays in Komodo National Park. PeerJ 2022; 10:e13302. [PMID: 35602898 PMCID: PMC9119296 DOI: 10.7717/peerj.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/29/2022] [Indexed: 01/13/2023] Open
Abstract
Background The reef manta ray (Mobula alfredi) is a globally threatened species and an iconic tourist attraction for visitors to Indonesia's Komodo National Park (NP). In 2013, manta ray fishing was banned in Komodo NP and its surroundings, preceding the nationwide manta ray protection in 2014. Over a decade ago, a previous acoustic telemetry study demonstrated that reef manta rays had high fidelity to sites within the park, while more recent photo-identification data indicated that some individuals move up to 450 km elsewhere. Characterization of manta ray demographics, behavior, and a focused assessment on site use of popular tourism locations within the park is vital to assist the Komodo NP Management Authority formulate appropriate manta ray conservation and management policies. Methods This study uses a long-term library (MantaMatcher.org) of photo-identification data collected by researchers and citizen scientists to investigate manta ray demographics and habitat use within the park at four sites frequented by tour operators: Cauldron, Karang Makassar, Mawan, and Manta Alley. Residency and movements of manta rays were investigated with maximum likelihood analyses and Markov movement models. Results A total of 1,085 individual manta rays were identified from photographs dating from 2013 to 2018. In general, individual manta rays displayed a higher affinity to specific sites than others. The highest re-sighting probabilities came from the remote southern site, Manta Alley. Karang Makassar and Mawan are only ~5 km apart; however, manta rays displayed distinct site affinities. Exchange of individuals between Manta Alley and the two central sites (~35.5 km apart) occurred, particularly seasonally. More manta rays were recorded traveling from the south to the central area than vice versa. Female manta rays were more mobile than males. Similar demographic groups used Karang Makassar, Mawan, and Manta Alley for foraging, cleaning, cruising, or courtship activities. Conversely, a higher proportion of immature manta rays used the northern site, Cauldron, where foraging was commonly observed. Fishing gear-related injuries were noted on 56 individuals (~5%), and predatory injuries were present on 32 individuals (~3%). Tourism within the park increased from 2014 to 2017, with 34% more dive boats per survey at Karang Makassar and Mawan. Discussion The Komodo NP contains several distinct critical habitats for manta rays that encompass all demographics and accommodate seasonal manta ray movements. While the present study has not examined population trends, it does provide foundational data for such work. Continued research into manta ray abundance, long-range movements, and identifying and protecting other critical aggregation areas within the region is integral to securing the species' recovery. We provide management recommendations to limit undue pressure on manta rays and their critical habitats from tourism.
Collapse
Affiliation(s)
- Elitza S. Germanov
- Marine Megafauna Foundation, West Palm Beach, Florida, United States of America,Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia,Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Simon J. Pierce
- Marine Megafauna Foundation, West Palm Beach, Florida, United States of America
| | - Andrea D. Marshall
- Marine Megafauna Foundation, West Palm Beach, Florida, United States of America
| | - I. Gede Hendrawan
- Faculty of Marine Sciences and Fisheries, Universitas Udayana, Denpassar, Bali, Indonesia
| | - Ande Kefi
- Komodo National Park, Labuan Bajo, Flores, Indonesia
| | - Lars Bejder
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia,Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia,Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Neil Loneragan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia,Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia,Faculty of Fisheries and Marine Science, Bogor Institute of Agriculture, Bogor, West Java, Indonesia
| |
Collapse
|
6
|
Barnett A, Fitzpatrick R, Bradley M, Miller I, Sheaves M, Chin A, Smith B, Diedrich A, Yick JL, Lubitz N, Crook K, Mattone C, Bennett MB, Wojtach L, Abrantes K. Scientific response to a cluster of shark bites. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Adam Barnett
- Biopixel Oceans Foundation Cairns Qld Australia
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Richard Fitzpatrick
- Biopixel Oceans Foundation Cairns Qld Australia
- College of Science and Engineering James Cook University Cairns Qld Australia
| | - Michael Bradley
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Ingo Miller
- College of Science and Engineering James Cook University Cairns Qld Australia
- Environmental Biochemistry, Institute for Chemistry and Biology of the Marine Environment Carl‐von‐Ossietzky University of Oldenburg Wilhelmshaven Germany
| | - Marcus Sheaves
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Andrew Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering James Cook University Townsville Qld Australia
| | - Bethany Smith
- College of Science and Engineering James Cook University Cairns Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering James Cook University Townsville Qld Australia
| | - Amy Diedrich
- College of Science and Engineering James Cook University Cairns Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering James Cook University Townsville Qld Australia
| | | | - Nicolas Lubitz
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Kevin Crook
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Carlo Mattone
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Mike B. Bennett
- School of Biomedical Sciences The University of Queensland St Lucia Qld Australia
| | - Leah Wojtach
- College of Science and Engineering James Cook University Cairns Qld Australia
| | - Kátya Abrantes
- Biopixel Oceans Foundation Cairns Qld Australia
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| |
Collapse
|
7
|
Hammerschlag N, McDonnell LH, Rider MJ, Street GM, Hazen EL, Natanson LJ, McCandless CT, Boudreau MR, Gallagher AJ, Pinsky ML, Kirtman B. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). GLOBAL CHANGE BIOLOGY 2022; 28:1990-2005. [PMID: 35023247 PMCID: PMC9305416 DOI: 10.1111/gcb.16045] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 12/12/2021] [Indexed: 05/07/2023]
Abstract
Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Laura H. McDonnell
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Mitchell J. Rider
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | - Elliott L. Hazen
- Environmental Research DivisionNOAA Southwest Fisheries Science CenterMontereyCaliforniaUSA
| | - Lisa J. Natanson
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Camilla T. McCandless
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Melanie R. Boudreau
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Ben Kirtman
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
8
|
Drivers of variation in occurrence, abundance, and behaviour of sharks on coral reefs. Sci Rep 2022; 12:728. [PMID: 35031666 PMCID: PMC8760336 DOI: 10.1038/s41598-021-04024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
Quantifying the drivers of population size in reef sharks is critical for the development of appropriate conservation strategies. In north-west Australia, shark populations inhabit coral reefs that border growing centres of human population, industry, and tourism. However, we lack baseline data on reef sharks at large spatial scales (hundreds of km) that might enable managers to assess the status of shark populations in the face of future development in this region. Here, we examined the occurrence, abundance and behaviour of apex (Galeocerdo cuvier, Carcharhinus plumbeus) and reef (C. amblyrhynchos, C. melanopterus, Triaenodon obesus) sharks using > 1200 deployments of baited remote underwater stereo-video systems (stereo-BRUVs) across > 500 km of coastline. We found evidence for species-specific influences of habitat and fishing activities on the occurrence (probability of observation), abundance (MaxN) and behaviour of sharks (time of arrival to the stereo-BRUVs and likelihood of feeding). Although the presence of management zoning (No-take areas) made little difference to most species, C. amblyrhynchos were more common further from boat ramps (a proxy of recreational fishing pressure). Time of arrival for all species was also influenced by distance to boat ramp, although patterns varied among species. Our results demonstrate the capacity for behavioural metrics to complement existing measures of occurrence and abundance in assessing the potential impact of human activities on shark populations.
Collapse
|
9
|
Abstract
Over the past decade, drones have become a popular tool for wildlife management and research. Drones have shown significant value for animals that were often difficult or dangerous to study using traditional survey methods. In the past five years drone technology has become commonplace for shark research with their use above, and more recently, below the water helping to minimise knowledge gaps about these cryptic species. Drones have enhanced our understanding of shark behaviour and are critically important tools, not only due to the importance and conservation of the animals in the ecosystem, but to also help minimise dangerous encounters with humans. To provide some guidance for their future use in relation to sharks, this review provides an overview of how drones are currently used with critical context for shark monitoring. We show how drones have been used to fill knowledge gaps around fundamental shark behaviours or movements, social interactions, and predation across multiple species and scenarios. We further detail the advancement in technology across sensors, automation, and artificial intelligence that are improving our abilities in data collection and analysis and opening opportunities for shark-related beach safety. An investigation of the shark-based research potential for underwater drones (ROV/AUV) is also provided. Finally, this review provides baseline observations that have been pioneered for shark research and recommendations for how drones might be used to enhance our knowledge in the future.
Collapse
|
10
|
Shipley ON, Lee CS, Fisher NS, Sternlicht JK, Kattan S, Staaterman ER, Hammerschlag N, Gallagher AJ. Metal concentrations in coastal sharks from The Bahamas with a focus on the Caribbean Reef shark. Sci Rep 2021; 11:218. [PMID: 33420176 PMCID: PMC7794238 DOI: 10.1038/s41598-020-79973-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
Over the last century anthropogenic activities have rapidly increased the influx of metals and metalloids entering the marine environment, which can bioaccumulate and biomagnify in marine top consumers. This may elicit sublethal effects on target organisms, having broad implications for human seafood consumers. We provide the first assessment of metal (Cd, Pb, Cr, Mn, Co, Cu, Zn, As, Ag, and THg) and metalloid (As) concentrations in the muscle tissue of coastal sharks from The Bahamas. A total of 36 individual sharks from six species were evaluated, spanning two regions/study areas, with a focus on the Caribbean reef shark (Carcharhinus perezi), and to a lesser extent the tiger shark (Galeocerdo cuvier). This is due their high relative abundance and ecological significance throughout coastal Bahamian and regional ecosystems. Caribbean reef sharks exhibited some of the highest metal concentrations compared to five other species, and peaks in the concentrations of Pb, Cr, Cu were observed as individuals reached sexual maturity. Observations were attributed to foraging on larger, more piscivorous prey, high longevity, as well a potential slowing rate of growth. We observed correlations between some metals, which are challenging to interpret but may be attributed to trophic level and ambient metal conditions. Our results provide the first account of metal concentrations in Bahamian sharks, suggesting individuals exhibit high concentrations which may potentially cause sublethal effects. Finally, these findings underscore the potential toxicity of shark meat and have significant implications for human consumers.
Collapse
Affiliation(s)
- Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Cheng-Shiuan Lee
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami Kattan
- Beneath the Waves, PO Box 126, Herndon, VA, USA
| | | | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | | |
Collapse
|
11
|
Ajemian MJ, Drymon JM, Hammerschlag N, Wells RJD, Street G, Falterman B, McKinney JA, Driggers WB, Hoffmayer ER, Fischer C, Stunz GW. Movement patterns and habitat use of tiger sharks (Galeocerdo cuvier) across ontogeny in the Gulf of Mexico. PLoS One 2020; 15:e0234868. [PMID: 32667920 PMCID: PMC7363083 DOI: 10.1371/journal.pone.0234868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The tiger shark (Galeocerdo cuvier) is globally distributed with established coastal and open-ocean movement patterns in many portions of its range. While all life stages of tiger sharks are known to occur in the Gulf of Mexico (GoM), variability in habitat use and movement patterns over ontogeny have never been quantified in this large marine ecosystem. To address this data gap we fitted 56 tiger sharks with Smart Position and Temperature transmitting tags between 2010 and 2018 and examined seasonal and spatial distribution patterns across the GoM. Additionally, we analyzed overlap of core habitats (i.e., 50% kernel density estimates) among individuals relative to large benthic features (oil and gas platforms, natural banks, bathymetric breaks). Our analyses revealed significant ontogenetic and seasonal differences in distribution patterns as well as across-shelf (i.e., regional) and sex-linked variability in movement rates. Presumably sub-adult and adult sharks achieved significantly higher movement rates and used off-shelf deeper habitats at greater proportions than juvenile sharks, particularly during the fall and winter seasons. Further, female maximum rate of movement was higher than males when accounting for size. Additionally, we found evidence of core regions encompassing the National Oceanographic and Atmospheric Administration designated Habitat Areas of Particular Concern (i.e., shelf-edge banks) during cooler months, particularly by females, as well as 2,504 oil and gas platforms. These data provide a baseline for future assessments of environmental impacts, such as climate variability or oil spills, on tiger shark movements and distribution in the region. Future research may benefit from combining alternative tracking tools, such as acoustic telemetry and genetic approaches, which can facilitate long-term assessment of the species’ movement dynamics and better elucidate the ecological significance of the core habitats identified here.
Collapse
Affiliation(s)
- Matthew J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- * E-mail:
| | - J. Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, Mississippi, United States of America
- Mississippi-Alabama Sea Grant, Ocean Springs, Mississippi, United States of America
| | - Neil Hammerschlag
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Causeway, Miami, Florida, United States of America
- Abess Center for Ecosystem Science & Policy, University of Miami, Miami, Florida, United States of America
| | - R. J. David Wells
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Garrett Street
- Quantitative Ecology & Spatial Technologies Laboratory, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Brett Falterman
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - Jennifer A. McKinney
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - William B. Driggers
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | - Eric R. Hoffmayer
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | | | - Gregory W. Stunz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| |
Collapse
|
12
|
Salinas-de-León P, Fierro-Arcos D, Suarez-Moncada J, Proaño A, Guachisaca-Salinas J, Páez-Rosas D. A matter of taste: Spatial and ontogenetic variations on the trophic ecology of the tiger shark at the Galapagos Marine Reserve. PLoS One 2019; 14:e0222754. [PMID: 31539419 PMCID: PMC6754146 DOI: 10.1371/journal.pone.0222754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Sharks are top predators across ocean food webs and have a major ecological role in marine ecosystems. Investigating the trophic ecology of this group of species is thus essential to understand ecosystem functioning and inform specific management actions aimed at shark conservation. The Galapagos Islands represent one of the last ocean wildernesses, where populations of sharks and other top marine predators come close to a pristine status. Here we provide the first study on the trophic ecology of the tiger shark (Galeocerdo cuvier) within the Galapagos Marine Reserve (GMR), using a combination of stable isotope analysis, satellite tracking, and passive acoustic telemetry to investigate ontogenetic and spatial variations at two regions. The mean estimated δ13C and δ15N at Isabela island (western region) were -13.9 ± 0.5‰ and 13.7 ± 0.7‰; and for Santa Cruz island (central region) were -13.8 ± 0.3‰ and 13.4 ± 0.7‰, respectively. Green sea turtles (Chelonia mydas) were the main prey item for large tiger sharks (>280 cm TL), while smaller sharks mainly fed on squid and pelagic fish. Tiger sharks exhibited a high degree of philopatry around green sea-turtle nesting areas, with the majority of sharks detected around green sea-turtle nesting areas for at least 10 months after their capture date, and some individuals were even present during the entire three-year study period. Although we did not report statistically significant differences between the two regions, isotopic and electronic tagging data suggest that tiger sharks in the Galapagos could be segregated into specific populations separated by geographical scales of <100 km. The high productivity of the archipelago, along with the protection from industrial fishing granted by the GMR, result in abundant and predictable sources of prey. This high food abundance, combined with the presence of suitable habitats throughout the tiger shark life cycle, might result in a reduction of migratory behaviours when compared to movement patterns of tiger sharks in other ocean basins. Additional studies using genetic tools could provide further evidence on the presence of separate management units, as it has been recently revealed for other shark species inhabiting the GMR.
Collapse
Affiliation(s)
- Pelayo Salinas-de-León
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
- * E-mail:
| | - Denisse Fierro-Arcos
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
| | | | - Alberto Proaño
- Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
| | | | - Diego Páez-Rosas
- Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
- Universidad San Francisco de Quito, Galapagos Science Center, Isla San Cristóbal, Galapagos Islands, Ecuador
| |
Collapse
|
13
|
Letessier TB, Mouillot D, Bouchet PJ, Vigliola L, Fernandes MC, Thompson C, Boussarie G, Turner J, Juhel JB, Maire E, Caley MJ, Koldewey HJ, Friedlander A, Sala E, Meeuwig JJ. Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol 2019; 17:e3000366. [PMID: 31386657 PMCID: PMC6684043 DOI: 10.1371/journal.pbio.3000366] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required to travel further afield for fishing opportunities. Technological advancements and fishery subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes, and other predators. Wilderness refuges, defined here as areas beyond the detectable range of human influence, are therefore increasingly rare. In order to achieve marine resources sustainability, large no-take marine protected areas (MPAs) with pelagic components are being implemented. However, such conservation efforts require knowledge of the critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to survey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key predator community attributes: vertebrate species richness, mean maximum body size, and shark abundance as a function of geomorphology, environmental conditions, and human pressures. All attributes were primarily driven by geomorphology (35%-62% variance explained) and environmental conditions (14%-49%). While human pressures had no influence on species richness, both body size and shark abundance responded strongly to distance to human markets (12%-20%). Refuges were identified at more than 1,250 km from human markets for body size and for shark abundance. These refuges were identified as remote and shallow seabed features, such as seamounts, submerged banks, and reefs. Worryingly, hotpots of large individuals and of shark abundance are presently under-represented within no-take MPAs that aim to effectively protect marine predators, such as the British Indian Ocean Territory. Population recovery of predators is unlikely to occur without strategic placement and effective enforcement of large no-take MPAs in both coastal and remote locations.
Collapse
Affiliation(s)
- Tom B. Letessier
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
| | - David Mouillot
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Phil J. Bouchet
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
- School of Ocean Sciences, Bangor University, Menai Bridge, Wales
| | - Laurent Vigliola
- Institut de Recherche pour le Développement, UMR ENTROPIE, LABEX Corail, Nouméa, New Caledonia
| | - Marjorie C. Fernandes
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
| | - Chris Thompson
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
| | - Germain Boussarie
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut de Recherche pour le Développement, UMR ENTROPIE, LABEX Corail, Nouméa, New Caledonia
| | - Jemma Turner
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
| | - Jean-Baptiste Juhel
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut de Recherche pour le Développement, UMR ENTROPIE, LABEX Corail, Nouméa, New Caledonia
- Université de la Nouvelle-Calédonie, BPR4, Noumea, New Caledonia
| | - Eva Maire
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - M. Julian Caley
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Heather J. Koldewey
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
- Conservation Programmes, Zoological Society of London, London, United Kingdom
| | - Alan Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
- Fisheries Ecology Research Lab, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Enric Sala
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
| | - Jessica J. Meeuwig
- School of Biological Sciences and The UWA Oceans Institute, University of Western Australia, (M092), Crawley, Australia
| |
Collapse
|
14
|
Kock AA, Photopoulou T, Durbach I, Mauff K, Meÿer M, Kotze D, Griffiths CL, O’Riain MJ. Summer at the beach: spatio-temporal patterns of white shark occurrence along the inshore areas of False Bay, South Africa. MOVEMENT ECOLOGY 2018; 6:7. [PMID: 29796280 PMCID: PMC5963061 DOI: 10.1186/s40462-018-0125-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Understanding white shark (Carcharodon carcharias) habitat use in coastal areas adjacent to large cities, is an important step when formulating potential solutions to the conservation conflict that exists between humans and large predatory sharks. In this study, we present the findings of a 2.5-year study of white shark occurrence and movement patterns adjacent to the City of Cape Town in False Bay, South Africa, with a focus on spring and summer months. Fifty-one white sharks were monitored annually at three offshore and twelve inshore sites by VR2 acoustic receivers, over 975 days from 1 May 2005 to 31 December 2007. RESULTS Occurrence patterns at inshore sites during spring and summer were analysed using a generalized additive mixed model (GAMM) with a spatial term (longitude, latitude), time of day and year included as explanatory variables for site use. We found that sharks occurred more frequently at inshore sites along the northern and northwestern shores, compared to the rest of the bay, and they transitioned most frequently between four adjacent beach sites that encompass the most popular recreational water use areas in Cape Town. There was significant diel variation, with higher shark occurrence around midday, and a peak in shark occurrence in 2005, when human-shark interactions also peaked. However, we found no effect of shark size on occurrence patterns at inshore sites. CONCLUSIONS White sharks showed the highest levels of occurrence at specific inshore sites between Muizenberg and Strandfontein beach, and thus inclusion of these sites within False Bay's marine protected area (MPA) network or recognition as Ecological or Biological Significant Areas (EBSAs) should be a future consideration. These insights into white shark habitat use at inshore sites in False Bay are important for successfully applying the principles of marine spatial planning (MSP) and for making science-based policy decisions. Furthermore, this information can be used to reduce potential shark-human conflict by incorporating it into future shark safety education campaigns.
Collapse
Affiliation(s)
- Alison A. Kock
- South African National Parks, Cape Research Centre, Cape Town, 8000 South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown, 6140 South Africa
- Shark Spotters, P. O. Box 22581, Fish Hoek, 7974 South Africa
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa
| | - Theoni Photopoulou
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela Metropolitan University, Port Elizabeth, 6031 South Africa
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, 7701 South Africa
| | - Ian Durbach
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, 7701 South Africa
- African Institute for Mathematical Sciences, Cape Town, 8000 South Africa
| | - Katya Mauff
- Department of Statistical Sciences, University of Cape Town, Rondebosch, 7701 South Africa
| | - Michael Meÿer
- Department of Environmental Affairs, Oceans and Coasts Branch, Cape Town, 8000 South Africa
| | - Deon Kotze
- Department of Environmental Affairs, Oceans and Coasts Branch, Cape Town, 8000 South Africa
| | - Charles L. Griffiths
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Rondebosch, 7701 South Africa
| | - M. Justin O’Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa
| |
Collapse
|
15
|
Daly R, Smale MJ, Singh S, Anders D, Shivji M, K. Daly CA, Lea JSE, Sousa LL, Wetherbee BM, Fitzpatrick R, Clarke CR, Sheaves M, Barnett A. Refuges and risks: Evaluating the benefits of an expanded MPA network for mobile apex predators. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ryan Daly
- Save Our Seas Foundation - D'Arros Research Centre (SOSF-DRC); Genève Switzerland
- Port Elizabeth Museum at Bayworld; Port Elizabeth South Africa
| | - Malcolm J. Smale
- Port Elizabeth Museum at Bayworld; Port Elizabeth South Africa
- Department of Zoology and Institute for Coastal and Marine Research; Nelson Mandela Metropolitan University; Port Elizabeth South Africa
| | - Sarika Singh
- Department of Environmental Affairs; Government of South Africa; Cape Town South Africa
| | - Darrell Anders
- Department of Environmental Affairs; Government of South Africa; Cape Town South Africa
| | - Mahmood Shivji
- Department of Biological Sciences; The Guy Harvey Research Institute; Nova Southeastern University; Dania Beach FL USA
| | - Clare A. K. Daly
- Save Our Seas Foundation - D'Arros Research Centre (SOSF-DRC); Genève Switzerland
| | | | - Lara L. Sousa
- Wildlife Conservation Research Unit; Department of Zoology; University of Oxford; Recanati-Kaplan Centre; Tubney UK
| | - Bradley M. Wetherbee
- Department of Biological Sciences; The Guy Harvey Research Institute; Nova Southeastern University; Dania Beach FL USA
- Department of Biological Sciences; University of Rhode Island; Kingston RI USA
| | - Richard Fitzpatrick
- College of Science & Engineering; James Cook University; Cairns QLD Australia
| | | | - Marcus Sheaves
- College of Science & Engineering; James Cook University; Cairns QLD Australia
| | - Adam Barnett
- College of Science & Engineering; James Cook University; Cairns QLD Australia
| |
Collapse
|
16
|
Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef. PLoS One 2017; 12:e0188598. [PMID: 29161314 PMCID: PMC5697833 DOI: 10.1371/journal.pone.0188598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
The world’s coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0ʹN; 93°50ʹW) from 2010–2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS.
Collapse
|
17
|
Niella YV, Afonso AS, Hazin FHV. Bioecology and movements of bull sharks, Carcharhinus leucas , caught in a long-term longline survey off northeastern Brazil. NEOTROPICAL ICHTHYOLOGY 2017. [DOI: 10.1590/1982-0224-20170106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT A robust understanding of habitat usage by coastal shark species, and how it overlaps with human presence in densely-populated regions is needed to inform the development of efficient conservation strategies for these important top predators. An intensive longline survey conducted in nearshore waters off northeastern Brazil from 2004 through 2014 caught a total of 18 bull sharks (Carcharhinus leucas) (male-female ratio = 0.63:1), which can be dangerous to humans. Although most sharks were sexually mature, there was no evidence that this region could be used as a parturition or nursery area. Prey items identified in the guts of the sharks comprised teleosts, mollusks and elasmobranchs. Additionally, one satellite-tagged bull shark covered a great distance (> 3,000 km) in 75 days at liberty, making most use of shallow waters (< 20 m depth) and presumably also entering an estuarine area. Although bull sharks are not an important fishery resource in this region, such a reduced abundance coupled with its affinity for coastal and inshore habitats highlights the potential vulnerability of C. leucas to deleterious anthropic interferences off northeastern Brazil.
Collapse
Affiliation(s)
- Yuri V. Niella
- Universidade Federal de Pernambuco, Brazil; Universidade Federal Rural de Pernambuco, Brazil
| | | | | |
Collapse
|
18
|
Tiger sharks can connect equatorial habitats and fisheries across the Atlantic Ocean basin. PLoS One 2017; 12:e0184763. [PMID: 28926627 PMCID: PMC5604974 DOI: 10.1371/journal.pone.0184763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/30/2017] [Indexed: 12/02/2022] Open
Abstract
Increasing our knowledge about the spatial ecology of apex predators and their interactions with diverse habitats and fisheries is necessary for understanding the trophic mechanisms that underlie several aspects of marine ecosystem dynamics and for guiding informed management policies. A preliminary assessment of tiger shark (Galeocerdo cuvier) population structure off the oceanic insular system of Fernando de Noronha (FEN) and the large-scale movements performed by this species in the equatorial Atlantic Ocean was conducted using longline and handline fishing gear and satellite telemetry. A total of 25 sharks measuring 175–372 cm in total length (TL) were sampled. Most sharks were likely immature females ranging between 200 and 260 cm TL, with few individuals < 200 cm TL being caught. This contrasts greatly with the tiger shark size-distribution previously reported for coastal waters off the Brazilian mainland, where most individuals measured < 200 cm TL. Also, the movements of 8 individuals measuring 202–310 cm TL were assessed with satellite transmitters for a combined total of 757 days (mean = 94.6 days∙shark-1; SD = 65.6). These sharks exhibited a considerable variability in their horizontal movements, with three sharks showing a mostly resident behavior around FEN during the extent of the respective tracks, two sharks traveling west to the South American continent, and two sharks moving mostly along the middle of the oceanic basin, one of which ending up in the northern hemisphere. Moreover, one shark traveled east to the African continent, where it was eventually caught by fishers from Ivory Coast in less than 474 days at liberty. The present results suggest that young tiger sharks measuring < 200 cm TL make little use of insular oceanic habitats from the western South Atlantic Ocean, which agrees with a previously-hypothesized ontogenetic habitat shift from coastal to oceanic habitats experienced by juveniles of this species in this region. In addition, this study adds evidence that tiger sharks are able to connect marine trophic webs from the neritic provinces of the eastern and western margins of the Atlantic Ocean across the equatorial basin and that they may experience mortality induced by remote fisheries. All this information is extremely relevant for understanding the energetic balance of marine ecosystems as much as the exposure of this species to fishing pressure in this yet poorly-known region.
Collapse
|
19
|
Acuña-Marrero D, Smith ANH, Hammerschlag N, Hearn A, Anderson MJ, Calich H, Pawley MDM, Fischer C, Salinas-de-León P. Residency and movement patterns of an apex predatory shark (Galeocerdo cuvier) at the Galapagos Marine Reserve. PLoS One 2017; 12:e0183669. [PMID: 28829820 PMCID: PMC5567640 DOI: 10.1371/journal.pone.0183669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022] Open
Abstract
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.
Collapse
Affiliation(s)
- David Acuña-Marrero
- Charles Darwin Research Station, Puerto Ayora, Islas Galápagos, Ecuador
- Institute of Natural and Mathematical Sciences (INMS), Massey University, Albany Campus, Auckland, New Zealand
- * E-mail:
| | - Adam N. H. Smith
- Institute of Natural and Mathematical Sciences (INMS), Massey University, Albany Campus, Auckland, New Zealand
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, United States of America
- Abess Center for Ecosystem Science & Policy, University of Miami, Miami, United States of America
| | - Alex Hearn
- Universidad San Francisco de Quito, Quito, Ecuador
| | - Marti J. Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
| | - Hannah Calich
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, United States of America
| | - Matthew D. M. Pawley
- Institute of Natural and Mathematical Sciences (INMS), Massey University, Albany Campus, Auckland, New Zealand
| | | | | |
Collapse
|
20
|
Gallagher AJ, Skubel RA, Pethybridge HR, Hammerschlag N. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids. CONSERVATION PHYSIOLOGY 2017; 5:cox002. [PMID: 28852506 PMCID: PMC5570055 DOI: 10.1093/conphys/cox002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 05/30/2023]
Abstract
Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species (n = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.
Collapse
Affiliation(s)
- Austin J. Gallagher
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
- Beneath the Waves, Inc., Miami, FL, USA
| | - Rachel A. Skubel
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, USA
| | | | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
21
|
Shipley ON, Howey LA, Tolentino ER, Jordan LKB, Ruppert JLW, Brooks EJ. Horizontal and vertical movements of Caribbean reef sharks ( Carcharhinus perezi): conservation implications of limited migration in a marine sanctuary. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28386422 DOI: 10.5061/dryad.cm184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.
Collapse
Affiliation(s)
- Oliver N Shipley
- Shark Research and Conservation Program, The Cape Eleuthera Institute, PO Box EL-26029, Rock Sound, Eleuthera, The Bahamas; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lucy A Howey
- Microwave Telemetry, Inc. , 8835 Columbia 100 Parkway, Suites K & L, Columbia, MD 21045 , USA
| | - Emily R Tolentino
- Microwave Telemetry, Inc. , 8835 Columbia 100 Parkway, Suites K & L, Columbia, MD 21045 , USA
| | - Lance K B Jordan
- Microwave Telemetry, Inc. , 8835 Columbia 100 Parkway, Suites K & L, Columbia, MD 21045 , USA
| | - Jonathan L W Ruppert
- Department of Renewable Resources , University of Alberta , Edmonton, Alberta , Canada T6G 2H1
| | - Edward J Brooks
- Shark Research and Conservation Program , The Cape Eleuthera Institute , PO Box EL-26029, Rock Sound, Eleuthera , The Bahamas
| |
Collapse
|
22
|
Shipley ON, Howey LA, Tolentino ER, Jordan LKB, Ruppert JLW, Brooks EJ. Horizontal and vertical movements of Caribbean reef sharks ( Carcharhinus perezi): conservation implications of limited migration in a marine sanctuary. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160611. [PMID: 28386422 PMCID: PMC5367288 DOI: 10.1098/rsos.160611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/18/2017] [Indexed: 06/03/2023]
Abstract
Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.
Collapse
Affiliation(s)
- Oliver N. Shipley
- Shark Research and Conservation Program, The Cape Eleuthera Institute, PO Box EL-26029, Rock Sound, Eleuthera, The Bahamas
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lucy A. Howey
- Microwave Telemetry, Inc., 8835 Columbia 100 Parkway, Suites K & L, Columbia, MD 21045, USA
| | - Emily R. Tolentino
- Microwave Telemetry, Inc., 8835 Columbia 100 Parkway, Suites K & L, Columbia, MD 21045, USA
| | - Lance K. B. Jordan
- Microwave Telemetry, Inc., 8835 Columbia 100 Parkway, Suites K & L, Columbia, MD 21045, USA
| | - Jonathan L. W. Ruppert
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, CanadaT6G 2H1
| | - Edward J. Brooks
- Shark Research and Conservation Program, The Cape Eleuthera Institute, PO Box EL-26029, Rock Sound, Eleuthera, The Bahamas
| |
Collapse
|
23
|
Shiffman DS, Hammerschlag N. Shark conservation and management policy: a review and primer for non-specialists. Anim Conserv 2016. [DOI: 10.1111/acv.12265] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- D. S. Shiffman
- Leonard and Jayne Abess Center for Ecosystem Science and Policy; University of Miami; Coral Gables FL USA
| | - N. Hammerschlag
- Leonard and Jayne Abess Center for Ecosystem Science and Policy; University of Miami; Coral Gables FL USA
- Rosenstiel School of Marine and Atmospheric Science; University of Miami; Miami FL USA
| |
Collapse
|