1
|
Chen S, Xiao Y, Xiao Z, Li J, Herrera-Ulloa A. Global climate change impacts on the potential distribution of typical Trachinotus fishes and early warning assessment of invasions. ENVIRONMENTAL RESEARCH 2024; 263:120115. [PMID: 39369778 DOI: 10.1016/j.envres.2024.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Marine habitats and ecosystems are increasingly being impacted by global climate change and the global spread of captive breeding. In this study, we focused on five typical Trachinotus species (Trachinotus anak, Trachinotus blochii, Trachinotus mookalee, Trachinotus goreenisi, Trachinotus ovatus) as research subjects. We utilized species distribution models and ecological niche models to predict the present and future potential distribution of these species, as well as to assess ecological niche overlap and evaluate the early warning of invasion by Trachinotus species. T. ovatus stands out with its broad distribution range and high adaptability to different environments. It occupies 1.114% of medium-high suitable areas, spanning 100,147 km2. Our predictions also suggest that T. ovatus would undergo a significant expansion (approximately 55% of the total area) under both past and future environmental scenarios, demonstrating a higher tolerance and adaptability to changes in ambient temperatures. It can be discerned that T. ovatus exhibits strong environmental adaptability, which may potentially lead to biological invasion along the southeastern coast of China. The T. anak, on the other hand, showed a higher expansion trend under high carbon dioxide concentrations (RCP8.5), indicating a certain convergence with carbon dioxide concentration. Our models showed that under future climatic conditions, T. ovatus would become the dominant species, with increased competition with T. mookalee and decreased competition with T. goreenisi, T. mookalee, and T. anak. Based on our findings and the net-pen culture mode of T. ovatus, we identified the hotspot habitat of T. ovatus to be located in the Indo-Pacific convergence zone. However, there is a possibility of an expansion trend towards the southeast coast of China in the future. Therefore, it is crucial to provide an early warning for the potential biological invasion of T. ovatus.
Collapse
Affiliation(s)
- Shaohua Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Qingdao Agricultural University, College of Life Sciences, Qingdao, China.
| | - Yongshuang Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Qingdao, China, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | | |
Collapse
|
2
|
Eskuche-Keith P, Hill SL, López-López L, Rosenbaum B, Saunders RA, Tarling GA, O'Gorman EJ. Temperature alters the predator-prey size relationships and size-selectivity of Southern Ocean fish. Nat Commun 2024; 15:3979. [PMID: 38729972 PMCID: PMC11087476 DOI: 10.1038/s41467-024-48279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.
Collapse
Affiliation(s)
- Patrick Eskuche-Keith
- School of Life Sciences, University of Essex, Colchester, UK.
- British Antarctic Survey, Cambridge, UK.
| | | | - Lucía López-López
- Ecosystem Oceanography Group (GRECO), Oceanographic Centre of Santander (CN IEO, CSIC), Santander, Spain
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
3
|
Liu J, Zhu A, Wang X, Zhou X, Chen L. Predicting the current fishable habitat distribution of Antarctic toothfish ( Dissostichus mawsoni) and its shift in the future under climate change in the Southern Ocean. PeerJ 2024; 12:e17131. [PMID: 38563000 PMCID: PMC10984185 DOI: 10.7717/peerj.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Global warming continues to exert unprecedented impacts on marine habitats. Species distribution models (SDMs) are proven powerful in predicting habitat distribution for marine demersal species under climate change impacts. The Antarctic toothfish, Dissostichus mawsoni (Norman 1937), an ecologically and commercially significant species, is endemic to the Southern Ocean. Utilizing occurrence records and environmental data, we developed an ensemble model that integrates various modelling techniques. This model characterizes species-environment relationships and predicts current and future fishable habitats of D. mawsoni under four climate change scenarios. Ice thickness, depth and mean water temperature were the top three important factors in affecting the distribution of D. mawsoni. The ensemble prediction suggests an overall expansion of fishable habitats, potentially due to the limited occurrence records from fishery-dependent surveys. Future projections indicate varying degrees of fishable habitat loss in large areas of the Amery Ice Shelf's eastern and western portions. Suitable fishable habitats, including the spawning grounds in the seamounts around the northern Ross Sea and the coastal waters of the Bellingshausen Sea and Amundsen Sea, were persistent under present and future environmental conditions, highlighting the importance to protect these climate refugia from anthropogenic disturbance. Though data deficiency existed in this study, our predictions can provide valuable information for designing climate-adaptive development and conservation strategies in maintaining the sustainability of this species.
Collapse
Affiliation(s)
- Jie Liu
- Planning and Sea Island Department, Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, Shandong, China
| | - Ancheng Zhu
- Planning and Sea Island Department, Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, Shandong, China
| | - Xitao Wang
- Planning and Sea Island Department, Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, Shandong, China
| | - Xiangjun Zhou
- Planning and Sea Island Department, Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, Shandong, China
| | - Lu Chen
- Planning and Sea Island Department, Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, Shandong, China
- Ocean University of China, College of Marine Life Sciences, Qingdao, Shandong, China
| |
Collapse
|
4
|
Liu S, Liu Y, Teschke K, Hindell MA, Downey R, Woods B, Kang B, Ma S, Zhang C, Li J, Ye Z, Sun P, He J, Tian Y. Incorporating mesopelagic fish into the evaluation of conservation areas for marine living resources under climate change scenarios. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:68-83. [PMID: 38433967 PMCID: PMC10902249 DOI: 10.1007/s42995-023-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 03/05/2024]
Abstract
Mesopelagic fish (meso-fish) are central species within the Southern Ocean (SO). However, their ecosystem role and adaptive capacity to climate change are rarely integrated into protected areas assessments. This is a pity given their importance as crucial prey and predators in food webs, coupled with the impacts of climate change. Here, we estimate the habitat distribution of nine meso-fish using an ensemble model approach (MAXENT, random forest, and boosted regression tree). Four climate model simulations were used to project their distribution under two representative concentration pathways (RCP4.5 and RCP8.5) for short-term (2006-2055) and long-term (2050-2099) periods. In addition, we assess the ecological representativeness of protected areas under climate change scenarios using meso-fish as indicator species. Our models show that all species shift poleward in the future. Lanternfishes (family Myctophidae) are predicted to migrate poleward more than other families (Paralepididae, Nototheniidae, Bathylagidae, and Gonostomatidae). In comparison, lanternfishes were projected to increase habitat area in the eastern SO but lose area in the western SO; the opposite was projected for species in other families. Important areas (IAs) of meso-fish are mainly distributed near the Antarctic Peninsula and East Antarctica. Negotiated protected area cover 23% of IAs at present and 38% of IAs in the future (RCP8.5, long-term future). Many IAs of meso-fish still need to be included in protected areas, such as the Prydz Bay and the seas around the Antarctic Peninsula. Our results provide a framework for evaluating protected areas incorporating climate change adaptation strategies for protected areas management. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00188-9.
Collapse
Affiliation(s)
- Shuhao Liu
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yang Liu
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Katharina Teschke
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg, Ammerländer Heerstraße 231, 23129 Oldenburg, Germany
| | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004 Australia
| | - Rachel Downey
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2602 Australia
| | - Briannyn Woods
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004 Australia
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shuyang Ma
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Chi Zhang
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jianchao Li
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Zhenjiang Ye
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Peng Sun
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jianfeng He
- Polar Research Institute of China, Shanghai, 200136 China
| | - Yongjun Tian
- Research Centre for Deep Sea and Polar Fisheries, and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| |
Collapse
|
5
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Green C, Green DB, Ratcliffe N, Thompson D, Lea M, Baylis AMM, Bond AL, Bost C, Crofts S, Cuthbert RJ, González‐Solís J, Morrison KW, Poisbleau M, Pütz K, Rey AR, Ryan PG, Sagar PM, Steinfurth A, Thiebot J, Tierney M, Whitehead TO, Wotherspoon S, Hindell MA. Potential for redistribution of post-moult habitat for Eudyptes penguins in the Southern Ocean under future climate conditions. GLOBAL CHANGE BIOLOGY 2023; 29:648-667. [PMID: 36278894 PMCID: PMC10099906 DOI: 10.1111/gcb.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071-2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.
Collapse
Affiliation(s)
- Cara‐Paige Green
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - David B. Green
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
- ARC Australian Centre for Excellence in Antarctic ScienceInstitute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
| | | | - David Thompson
- National Institute of Water and Atmospheric Research Ltd.HataitaiWellingtonNew Zealand
| | - Mary‐Anne Lea
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
- ARC Australian Centre for Excellence in Antarctic ScienceInstitute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
| | - Alastair M. M. Baylis
- South Atlantic Environmental Research InstituteStanleyFalkland Islands
- Macquarie UniversitySydneyNew South WalesAustralia
| | - Alexander L. Bond
- RSPB Centre for Conservation ScienceRoyal Society for the Protection of BirdsThe LodgeSandyUK
- Bird GroupNatural History MuseumTingUK
| | - Charles‐André Bost
- Centre d'Etudes Biologiques de ChizéUMR7372 CNRS‐La Rochelle UniversitéVilliers en BoisFrance
| | | | - Richard J. Cuthbert
- Royal Society for the Protection of BirdsCentre for Conservation ScienceCambridgeUK
- World Land TrustBlyth HouseHalesworthUK
| | - Jacob González‐Solís
- Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia EvolutivaEcologia i Ciències AmbientalsUniversitat de BarcelonaBarcelonaSpain
| | - Kyle W. Morrison
- National Institute of Water and Atmospheric Research Ltd.HataitaiWellingtonNew Zealand
| | - Maud Poisbleau
- Behavioural Ecology and Ecophysiology GroupDepartment of BiologyUniversity of AntwerpWilrijkBelgium
| | | | | | - Peter G. Ryan
- FitzPatrick Institute of African OrnithologyDST‐NRF Centre of ExcellenceUniversity of Cape TownRondeboschSouth Africa
| | - Paul M. Sagar
- National Institute of Water and Atmospheric Research Ltd.HataitaiWellingtonNew Zealand
| | - Antje Steinfurth
- Royal Society for the Protection of BirdsCentre for Conservation ScienceCambridgeUK
| | - Jean‐Baptiste Thiebot
- National Institute of Water and Atmospheric Research Ltd.ChristchurchNew Zealand
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Megan Tierney
- South Atlantic Environmental Research InstituteStanleyFalkland Islands
- Joint Nature Conservation CommitteePeterboroughUK
| | - Thomas Otto Whitehead
- FitzPatrick Institute of African OrnithologyDST‐NRF Centre of ExcellenceUniversity of Cape TownRondeboschSouth Africa
| | - Simon Wotherspoon
- Australian Antarctic DivisionDepartment of Agriculture, Water and the EnvironmentAustralian Antarctic DivisionKingstonTasmaniaAustralia
| | - Mark A. Hindell
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
- ARC Australian Centre for Excellence in Antarctic ScienceInstitute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
7
|
Abstract
AbstractDespite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
Collapse
|
8
|
Woods B, Trebilco R, Walters A, Hindell M, Duhamel G, Flores H, Moteki M, Pruvost P, Reiss C, Saunders RA, Sutton C, Gan YM, Van de Putte A. Myctobase, a circumpolar database of mesopelagic fishes for new insights into deep pelagic prey fields. Sci Data 2022; 9:404. [PMID: 35831309 PMCID: PMC9279341 DOI: 10.1038/s41597-022-01496-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The global importance of mesopelagic fish is increasingly recognised, but they remain poorly studied. This is particularly true in the Southern Ocean, where mesopelagic fishes are both key predators and prey, but where the remote environment makes sampling challenging. Despite this, multiple national Antarctic research programs have undertaken regional sampling of mesopelagic fish over several decades. However, data are dispersed, and sampling methodologies often differ precluding comparisons and limiting synthetic analyses. We identified potential data holders by compiling a metadata catalogue of existing survey data for Southern Ocean mesopelagic fishes. Data holders contributed 17,491 occurrence and 11,190 abundance records from 4780 net hauls from 72 different research cruises. Data span across 37 years from 1991 to 2019 and include trait-based information (length, weight, maturity). The final dataset underwent quality control processes and detailed metadata was provided for each sampling event. This dataset can be accessed through Zenodo. Myctobase will enhance research capacity by providing the broadscale baseline data necessary for observing and modelling mesopelagic fishes. Measurement(s) | Abundance • Standard length • Wet weight | Technology Type(s) | Trawl net • ruler-based body length measuring method • Motion compensated balance | Sample Characteristic - Organism | Actinopteri • Cephalopoda | Sample Characteristic - Environment | oceanic pelagic zone biome | Sample Characteristic - Location | Southern Ocean |
Collapse
Affiliation(s)
- Briannyn Woods
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, Australia.
| | - Rowan Trebilco
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, Australia.,CSIRO, Oceans and Atmosphere, Hobart, 7004, Australia
| | - Andrea Walters
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, Australia
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, Australia
| | - Guy Duhamel
- Laboratoire BORA (UMR 8067), Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Hauke Flores
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar und Meeresforschung (AWI), Bremerhaven, 27570, Germany
| | - Masato Moteki
- Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.,National Institute of Polar Science, Tokyo, 190-8518, Japan
| | - Patrice Pruvost
- Laboratoire BORA (UMR 8067), Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Christian Reiss
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, La Jolla, California, 92037, USA
| | | | | | - Yi-Ming Gan
- Royal Belgian Institute for Natural Sciences, Brussel, B-1000, Belgium
| | - Anton Van de Putte
- Royal Belgian Institute for Natural Sciences, Brussel, B-1000, Belgium. .,Université Libre de Bruxelles, Brussel, B-1000, Belgium.
| |
Collapse
|
9
|
Population characteristics of benthopelagic Gymnoscopelus nicholsi (Pisces: Myctophidae) on the continental shelf of South Georgia (Southern Ocean) during austral summer. Polar Biol 2022. [DOI: 10.1007/s00300-022-03033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSouthern Ocean myctophid fish (Family Myctophidae) are an important conduit of energy through foodwebs and between the surface layers and mesopelagic depths. Species that reside in both pelagic and near-bottom environments of continental shelves, such as Gymnoscopelus nicholsi and Gymnoscopelus bolini, may also be important in benthopelagic coupling, although their ecology and role in such processes remain unresolved. Here, we examined inter-annual variation in the depth of occurrence, biomass and population dynamics of benthopelagic G. nicholsi on the South Georgia shelf (100–350 m) using bottom trawl data collected between 1987 and 2019. Gymnoscopelus nicholsi was a regular component of the local benthopelagic community, particularly northwest of South Georgia, but was patchily distributed. It appeared to enter a benthopelagic phase at ~ 3 years, with annual growth and recruitment of year classes between ~ 3 and 5 years. However, transition of cohorts into the benthopelagic zone was not annual. There was clear inter-annual variation in G. nicholsi biomass and depth of occurrence. Shallower depth of occurrence was significantly (P < 0.05) correlated with years of warmer summer sea surface temperatures, suggesting that inter-annual variation in local environmental conditions has an important influence on its migration behaviour and ecology. Our data also suggest that Antarctic krill is an important dietary component of the older G. nicholsi cohorts (~ 5 years) in the benthopelagic zone. We note that Gymnoscopelus bolini is rare in bottom trawl catches between 100 and 350 m, although Antarctic krill appears to dominate its diet from the available data. Our study provides important information on understudied myctophid species in a poorly investigated region of the water column that is relevant for Southern Ocean ecosystem studies, particularly in relation to understanding trophic connectivity between the pelagic and near-bottom realms.
Collapse
|
10
|
Reisinger RR, Corney S, Raymond B, Lombard AT, Bester MN, Crawford RJM, Davies D, Bruyn PJN, Dilley BJ, Kirkman SP, Makhado AB, Ryan PG, Schoombie S, Stevens KL, Tosh CA, Wege M, Whitehead TO, Sumner MD, Wotherspoon S, Friedlaender AS, Cotté C, Hindell MA, Ropert‐Coudert Y, Pistorius PA. Habitat model forecasts suggest potential redistribution of marine predators in the southern Indian Ocean. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ryan R. Reisinger
- School of Ocean and Earth Science University of SouthamptonNational Oceanography Centre Southampton Southampton UK
- Institute for Marine Sciences University of California Santa Cruz Santa Cruz California USA
- Centre d’Etudes Biologiques de Chizé UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
- Sorbonne UniversitésUPMC University, UMR 7159 CNRS‐IRD‐MNHN, LOCEAN‐IPSL Paris France
- Department of Zoology and Institute for Coastal and Marine Research DST/NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology Nelson Mandela University Gqeberha South Africa
| | - Stuart Corney
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Ben Raymond
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and the Environment Kingston Tasmania Australia
| | - Amanda T. Lombard
- Institute for Coastal and Marine ResearchNelson Mandela University Gqeberha South Africa
| | - Marthán N. Bester
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Hatfield South Africa
| | | | - Delia Davies
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - P. J. Nico Bruyn
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Hatfield South Africa
| | - Ben J. Dilley
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - Stephen P. Kirkman
- Institute for Coastal and Marine ResearchNelson Mandela University Gqeberha South Africa
- Department of Forestry, Fisheries and the Environment Cape Town South Africa
| | - Azwianewi B. Makhado
- Department of Forestry, Fisheries and the Environment Cape Town South Africa
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - Peter G. Ryan
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - Stefan Schoombie
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - Kim L. Stevens
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - Cheryl A. Tosh
- Research Office Faculty of Health Sciences University of Pretoria Pretoria South Africa
| | - Mia Wege
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Hatfield South Africa
| | - T. Otto Whitehead
- FitzPatrick Institute of African Ornithology DST‐NRF Centre of Excellence University of Cape Town Rondebosch South Africa
| | - Michael D. Sumner
- Australian Antarctic DivisionDepartment of Agriculture, Water and the Environment Kingston Tasmania Australia
| | - Simon Wotherspoon
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and the Environment Kingston Tasmania Australia
| | - Ari S. Friedlaender
- Institute for Marine Sciences University of California Santa Cruz Santa Cruz California USA
| | - Cedric Cotté
- Sorbonne UniversitésUPMC University, UMR 7159 CNRS‐IRD‐MNHN, LOCEAN‐IPSL Paris France
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Yan Ropert‐Coudert
- Centre d’Etudes Biologiques de Chizé UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - Pierre A. Pistorius
- Department of Zoology and Institute for Coastal and Marine Research DST/NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology Nelson Mandela University Gqeberha South Africa
| |
Collapse
|
11
|
McCormack SA, Melbourne-Thomas J, Trebilco R, Griffith G, Hill SL, Hoover C, Johnston NM, Marina TI, Murphy EJ, Pakhomov EA, Pinkerton M, Plagányi É, Saravia LA, Subramaniam RC, Van de Putte AP, Constable AJ. Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graphical AbstractGraphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.
Collapse
|
12
|
Caccavo JA, Christiansen H, Constable AJ, Ghigliotti L, Trebilco R, Brooks CM, Cotte C, Desvignes T, Dornan T, Jones CD, Koubbi P, Saunders RA, Strobel A, Vacchi M, van de Putte AP, Walters A, Waluda CM, Woods BL, Xavier JC. Productivity and Change in Fish and Squid in the Southern Ocean. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
Collapse
|
13
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
14
|
Steen VA, Tingley MW, Paton PWC, Elphick CS. Spatial thinning and class balancing: Key choices lead to variation in the performance of species distribution models with citizen science data. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Valerie A. Steen
- Ecology & Evolutionary Biology University of Connecticut Storrs CT USA
- Department of Natural Resources Science University of Rhode Island Kingston RI USA
| | - Morgan W. Tingley
- Ecology & Evolutionary Biology University of Connecticut Storrs CT USA
- Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Peter W. C. Paton
- Department of Natural Resources Science University of Rhode Island Kingston RI USA
| | - Chris S. Elphick
- Ecology & Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
15
|
|
16
|
Saunders RA, Lourenço S, Vieira RP, Collins MA, Assis CA, Xavier JC. Age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean. JOURNAL OF FISH BIOLOGY 2020; 96:364-377. [PMID: 31729022 DOI: 10.1111/jfb.14206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
This study examines age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni from the Scotia Sea in the Southern Ocean, through the analysis of annual growth increments deposited on sagittal otoliths. Otolith pairs from 177 G. braueri and 118 K. anderssoni were collected in different seasons from the region between 2004 and 2009. Otolith-edge analysis suggested a seasonal change in opaque and hyaline depositions, indicative of an annual growth pattern, although variation within the populations of both species was apparent. Age estimates varied from 1 to 6 years for G. braueri (40 to 139 mm standard length; LS ) and from 0 to 2 years for K. anderssoni (26 to 70 mm LS ). Length-at-age data were broadly consistent with population cohort parameters identified in concurrent length-frequency data from the region for both species. The estimated values of von Bertalanffy growth curves for G. braueri were L∞ = 133.22 mm, k = 0.29 year-1 and t0 = -0.21 year and the values for K. anderssoni were L∞ = 68.60 mm, k = 0.71 year-1 and t0 = -0.49 year. There were no significant (P > 0.05) differences in growth between sexes for either species, suggesting that males and females have similar growth and development trajectories in the Scotia Sea. A positive allometric relationship between LS and wet mass was found for each species, as well as a significant (P < 0.0001) linear relationship between otolith size and LS . Growth performance (Ф') was similar between the two species and congruent with other myctophid species across the Southern Ocean. This study provides important parameters for future Southern Ocean ecosystem studies in a resource management context.
Collapse
Affiliation(s)
- Ryan A Saunders
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Silvia Lourenço
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Rui P Vieira
- Centre for Environment Fisheries and Aquaculture Sciences, Lowestoft, UK
| | - Martin A Collins
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Carlos A Assis
- MARE-ULisboa - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Jose C Xavier
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Department of Life Sciences, MARE-UC, University of Coimbra, Coimbra, Portugal
| |
Collapse
|