1
|
Makdissi R, Verdon SJ, Radford JQ, Bennett AF, Clarke MF. The impact of plant-derived fire management prescriptions on fire-responsive bird species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3036. [PMID: 39344180 DOI: 10.1002/eap.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
In fire-prone regions, the occurrence of some faunal species is contingent on the presence of resources that arise through post-fire plant succession. Through planned burning, managers can alter resource availability and aim to provide the conditions required to promote biodiversity. Understanding how species occurrence changes at different spatial and temporal scales after fire is essential to achieve this goal. However, many fire prescriptions are guided primarily by the responses of fire-sensitive plants when setting tolerable fire intervals. This approach assumes that maintaining floristic diversity will satisfy the requirements of fauna. We surveyed bird species in two semi-arid vegetation types across an environmental gradient in south-eastern Australia. We conducted four surveys at each of 253 sites across a 75-year chronosequence of time since fire and used generalized additive mixed models to examine changes in the occurrence of birds in response to time since fire. Model predictions were compared to plant-derived fire prescriptions currently guiding fire management in the region. Time since fire was a significant predictor for 18 of 28 species modeled, in at least one vegetation type, over a gradient of 1.3° of latitude. We detected considerable variation in the responses of some species, both between vegetation types and geographically within a vegetation type. Our evaluation of plant-derived fire prescriptions suggests that the intervals considered acceptable for maintaining floristic diversity may not be sustainable for populations of birds requiring longer unburnt vegetation, with 6 of the 12 species assessed attaining a mean occurrence probability of 20.3% by the minimum tolerable fire interval, and 57.3% by the maximum tolerable fire interval, in their respective vegetation types. Our findings highlight the potential vulnerability of fire-responsive bird species if fire prescriptions are applied in a manner that fails to account for the slow development of habitat resources needed by some species, and the variation detected within the responses of species. This highlights the need for species-specific data collected at an appropriate spatial scale to inform management plans.
Collapse
Affiliation(s)
- Rhys Makdissi
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Simon J Verdon
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - James Q Radford
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew F Bennett
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Michael F Clarke
- Department of Environment and Genetics, and Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Nzabanita D, Shen H, Grist S, Lewis PJ, Hampton JO, Firestone SM, Hufschmid J, Nugegoda D. Exposure to Persistent Organic Pollutants in Australian Waterbirds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:736-747. [PMID: 38085117 DOI: 10.1002/etc.5804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
There is growing worldwide recognition of the threat posed by persistent organic pollutants (POPs) to wildlife populations. We aimed to measure exposure levels to POPs in a Southern Hemisphere aquatic waterbird species, the nomadic gray teal (Anas gracilis), which is found across Australia. We collected wings from 39 ducks harvested by recreational hunters at two sites (one coastal, one inland) in Victoria, southeastern Australia, in 2021. We examined three groups of POPs: nine congeners of polychlorinated biphenyls (PCBs), 13 organochlorine pesticides (OCPs), and 12 polycyclic aromatic hydrocarbons (PAHs). The PCBs, OCPs, and PAHs were detected at quantifiable levels in 13%, 72%, and 100% of birds, respectively. Of the congeners we tested for in PCBs, OCPs, and PAHs, 33%, 38%, and 100% were detected at quantifiable levels, respectively. The highest levels of exposure to POPs that we found were to the PAH benzo[b]fluoranthene, occurring at a concentration range of 1.78 to 161.05 ng/g wet weight. There were some trends detected relating to differences between geographical sites, with higher levels of several PAHs at the coastal versus inland site. There were several strong, positive associations among PAHs found. We discuss potential sources for the POPs detected, including industrial and agricultural sources, and the likely role of large-scale forest fires in PAH levels. Our results confirm that while Australian waterbirds are exposed to a variety of POPs, exposure levels are currently relatively low. Additional future investigations are required to further characterize POPs within Australian waterbird species. Environ Toxicol Chem 2024;43:736-747. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Damien Nzabanita
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Hao Shen
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Stephen Grist
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Phoebe J Lewis
- Applied Sciences Division, Environment Protection Authority Victoria, Macleod, Victoria, Australia
| | - Jordan O Hampton
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Firestone
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Jasmin Hufschmid
- Faculty of Science, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | - Dayanthi Nugegoda
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Jones GM, Goldberg JF, Wilcox TM, Buckley LB, Parr CL, Linck EB, Fountain ED, Schwartz MK. Fire-driven animal evolution in the Pyrocene. Trends Ecol Evol 2023; 38:1072-1084. [PMID: 37479555 DOI: 10.1016/j.tree.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023]
Abstract
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.
Collapse
Affiliation(s)
- Gavin M Jones
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA.
| | - Joshua F Goldberg
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA
| | - Taylor M Wilcox
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L3 5TR, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria 0028, South Africa; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Ethan B Linck
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Emily D Fountain
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Michael K Schwartz
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| |
Collapse
|
4
|
Marshall E, Elliot-Kerr S, McColl-Gausden SC, Penman TD. Costs of preventing and supressing wildfires in Victoria, Australia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118606. [PMID: 37454453 DOI: 10.1016/j.jenvman.2023.118606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Land managers around the world are increasingly under pressure to demonstrate that the actions being used to moderate wildfire risk are effective and cost-efficient. However, little research to date has focused on determining cost-efficiency of management actions or identified the factors which increase the costs of performing such actions. Here, we aimed to identify the key drivers of cost for fuel management (prescribed burning, mulching, and slashing), fuel breaks, and suppression using data from the state of Victoria, Australia. We utilise generalised additive models to understand how environmental factors, terrain, location, and management decisions influence the cost of implementing wildfire management efforts. These models show that cost per unit declines as the area treated or the area of the fire increases for all four management approaches. Therefore, preventative, and responsive management actions represent economies of scale that reduce in cost with larger treatments. We also found that there were regional differences in the cost of fuel management and fuel breaks, potentially related to the structure of resourcing treatments in each region and the availability of land on which it is feasible to implement management. Cost of suppression per fire increased with the number of fire fighters and when there were more fires occurring concurrently in the landscape. Identifying the key drivers of cost for preventative and responsive management actions could enable managers to allocate resources to these actions more efficiently in future. Understanding drivers of cost-efficiency could be critical for adapting management to shifts in wildfire risk, particularly given climate change will alter the window in which it is safe to apply some preventative fuel management actions and reduce suppression effectiveness.
Collapse
Affiliation(s)
- Erica Marshall
- University of Melbourne, School of Ecosystem and Forest Sciences, Melbourne, VIC, Australia.
| | - Shona Elliot-Kerr
- University of Melbourne, School of Ecosystem and Forest Sciences, Melbourne, VIC, Australia.
| | - Sarah C McColl-Gausden
- University of Melbourne, School of Ecosystem and Forest Sciences, Melbourne, VIC, Australia.
| | - Trent D Penman
- University of Melbourne, School of Ecosystem and Forest Sciences, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Collins L, Trouvé R, Baker PJ, Cirulus B, Nitschke CR, Nolan RH, Smith L, Penman TD. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118171. [PMID: 37245307 DOI: 10.1016/j.jenvman.2023.118171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Extreme fire events have increased across south-eastern Australia owing to warmer and drier conditions driven by anthropogenic climate change. Fuel reduction burning is widely applied to reduce the occurrence and severity of wildfires; however, targeted assessment of the effectiveness of this practice is limited, especially under extreme climatic conditions. Our study utilises fire severity atlases for fuel reduction burns and wildfires to examine: (i) patterns in the extent of fuel treatment within planned burns (i.e., burn coverage) across different fire management zones, and; (ii) the effect of fuel reduction burning on the severity of wildfires under extreme climatic conditions. We assessed the effect of fuel reduction burning on wildfire severity across temporal and spatial scales (i.e., point and local landscape), while accounting for burn coverage and fire weather. Fuel reduction burn coverage was substantially lower (∼20-30%) than desired targets in fuel management zones focused on asset protection, but within the desired range in zones that focus on ecological objectives. At the point scale, wildfire severity was moderated in treated areas for at least 2-3 years after fuel treatment in shrubland and 3-5 years in forests, relative to areas that did not receive fuel reduction treatments (i.e., unburnt patches). Fuel availability strongly limited fire occurrence and severity within the first 18 months of fuel reduction burning, irrespective of fire weather. Fire weather was the dominant driver of high severity canopy defoliating fire by ∼3-5 years after fuel treatment. At the local landscape scale (i.e., 250 ha), the extent of high canopy scorch decreased marginally as the extent of recently (<5 years) treated fuels increased, though there was a high level of uncertainty around the effect of recent fuel treatment. Our findings demonstrate that during extreme fire events, very recent (i.e., <3 years) fuel reduction burning can aid wildfire suppression locally (i.e., near assets) but will have a highly variable effect on the extent and severity of wildfires at larger scales. The patchy coverage of fuel reduction burns in the wildland-urban interface indicates that considerable residual fuel hazard will often be present within the bounds of fuel reduction burns.
Collapse
Affiliation(s)
- L Collins
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, 3086, Australia.
| | - R Trouvé
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - P J Baker
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - B Cirulus
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, 3363, Australia
| | - C R Nitschke
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - R H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia; NSW Bushfire Risk Management Research Hub, Wollongong, New South Wales, Australia
| | - L Smith
- Forest Fire and Regions, Department of Energy, Environment and Climate Action, 1 Licola Rd, Heyfield, Victoria, 3858, Australia
| | - T D Penman
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Victoria, 3363, Australia
| |
Collapse
|
6
|
Zhang X, Fan J, Zhou J, Gui L, Bi Y. Mapping Fire Severity in Southwest China Using the Combination of Sentinel 2 and GF Series Satellite Images. SENSORS (BASEL, SWITZERLAND) 2023; 23:2492. [PMID: 36904694 PMCID: PMC10007207 DOI: 10.3390/s23052492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Fire severity mapping can capture heterogeneous fire severity patterns over large spatial extents. Although numerous remote sensing approaches have been established, regional-scale fire severity mapping at fine spatial scales (<5 m) from high-resolution satellite images is challenging. The fire severity of a vast forest fire that occurred in Southwest China was mapped at 2 m spatial resolution by random forest models using Sentinel 2 and GF series remote sensing images. This study demonstrated that using the combination of Sentinel 2 and GF series satellite images showed some improvement (from 85% to 91%) in global classification accuracy compared to using only Sentinel 2 images. The classification accuracy of unburnt, moderate, and high severity classes was significantly higher (>85%) than the accuracy of low severity classes in both cases. Adding high-resolution GF series images to the training dataset reduced the probability of low severity being under-predicted and improved the accuracy of the low severity class from 54.55% to 72.73%. RdNBR was the most important feature, and the red edge bands of Sentinel 2 images had relatively high importance. Additional studies are needed to explore the sensitivity of different spatial scales satellite images for mapping fire severity at fine spatial scales across various ecosystems.
Collapse
Affiliation(s)
- Xiyu Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianrong Fan
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun Zhou
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Linhua Gui
- Sichuan Forestry and Grassland Inventory and Planning Institute, Chengdu 610081, China
| | - Yongqing Bi
- Sichuan Chuanjian Geotechnical Survey Design Institute Co., Ltd., Chengdu 610000, China
| |
Collapse
|
7
|
Santos JL, Hradsky BA, Keith DA, Rowe KC, Senior KL, Sitters H, Kelly LT. Beyond inappropriate fire regimes: A synthesis of fire‐driven declines of threatened mammals in Australia. Conserv Lett 2022. [DOI: 10.1111/conl.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Julianna L. Santos
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Australia
| | - Bronwyn A. Hradsky
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Australia
| | - David A. Keith
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney Australia
- New South Wales Department of Planning Infrastructure and Environment Parramatta Australia
| | - Kevin C. Rowe
- Sciences Department Museums Victoria Melbourne Australia
- School of BioSciences The University of Melbourne Parkville Australia
| | - Katharine L. Senior
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Australia
| | - Holly Sitters
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Australia
| | - Luke T. Kelly
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Australia
| |
Collapse
|
8
|
Comparing Fire Extent and Severity Mapping between Sentinel 2 and Landsat 8 Satellite Sensors. REMOTE SENSING 2022. [DOI: 10.3390/rs14071661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mapping of fire extent and severity across broad landscapes and timeframes using remote sensing approaches is valuable to inform ecological research, biodiversity conservation and fire management. Compiling imagery from various satellite sensors can assist in long-term fire history mapping; however, inherent sensor differences need to be considered. The New South Wales Fire Extent and Severity Mapping (FESM) program uses imagery from Sentinel and Landsat satellites, along with supervised classification algorithms, to produce state-wide fire maps over recent decades. In this study, we compared FESM outputs from Sentinel 2 and Landsat 8 sensors, which have different spatial and spectral resolutions. We undertook independent accuracy assessments of both Sentinel 2 and Landsat 8 sensor algorithms using high-resolution aerial imagery from eight training fires. We also compared the FESM outputs from both sensors across 27 case study fires. We compared the mapped areas of fire severity classes between outputs and assessed the classification agreement at random sampling points. Our independent accuracy assessment demonstrated very similar levels of accuracy for both sensor algorithms. We also found that there was substantial agreement between the outputs from the two sensors. Agreement on the extent of burnt versus unburnt areas was very high, and the severity classification of burnt areas was typically either in agreement between the sensors or in disagreement by only one severity class (e.g., low and moderate severity or high and extreme severity). Differences between outputs are likely partly due to differences in sensor resolution (10 m and 30 m pixel sizes for Sentinel 2 and Landsat 8, respectively) and may be influenced by landscape complexity, such as terrain roughness and foliage cover. Overall, this study supports the combined use of both sensors in remote sensing applications for fire extent and severity mapping.
Collapse
|
9
|
Jolly CJ, Dickman CR, Doherty TS, van Eeden LM, Geary WL, Legge SM, Woinarski JCZ, Nimmo DG. Animal mortality during fire. GLOBAL CHANGE BIOLOGY 2022; 28:2053-2065. [PMID: 34989061 DOI: 10.1111/gcb.16044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Earth's rapidly warming climate is propelling us towards an increasingly fire-prone future. Currently, knowledge of the extent and characteristics of animal mortality rates during fire remains rudimentary, hindering our ability to predict how animal populations may be impacted in the future. To address this knowledge gap, we conducted a global systematic review of the direct effects of fire on animal mortality rates, based on studies that unequivocally determined the fate of animals during fire. From 31 studies spanning 1984-2020, we extracted data on the direct impacts of fire on the mortality of 31 species from 23 families. From these studies, there were 43 instances where direct effects were measured by reporting animal survival from pre- to post-fire. Most studies were conducted in North America (52%) and Oceania (42%), focused largely on mammals (53%) and reptiles (30%), and reported mostly on animal survival in planned (82%) and/or low severity (70%) fires. We found no studies from Asia, Europe or South America. Although there were insufficient data to conduct a formal meta-analysis, we tested the effect of fire type, fire severity, fire regime, animal body mass, ecological attributes and class on survival. Only fire severity affected animal mortality, with a higher proportion of animals being killed by high than low severity fires. Recent catastrophic fires across the globe have drawn attention to the plight of animals exposed to wildfire. Yet, our systematic review suggests that a relatively low proportion of animals (mean predicted mortality [95% CI] = 3% [1%-9%]) are killed during fire. However, our review also underscores how little we currently know about the direct effects of fire on animal mortality, and highlights the critical need to understand the effects of high severity fire on animal populations.
Collapse
Affiliation(s)
- Chris J Jolly
- Institute for Land, Water and Society, School of Environmental Science, Charles Sturt University, Albury, New South Wales, Australia
| | - Chris R Dickman
- National Environmental Science Program Threatened Species Recovery Hub, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tim S Doherty
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lily M van Eeden
- Department of Environment Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - William L Geary
- Department of Environment, Land, Water and Planning, Biodiversity Strategy and Knowledge Branch, Biodiversity Division, East Melbourne, Victoria, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sarah M Legge
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland, Australia
- Fenner School of Environment and Society, The Australian National University, Australian Capital Territory, Canberra, Australia
| | - John C Z Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Dale G Nimmo
- Institute for Land, Water and Society, School of Environmental Science, Charles Sturt University, Albury, New South Wales, Australia
| |
Collapse
|
10
|
Nimmo DG, Andersen AN, Archibald S, Boer MM, Brotons L, Parr CL, Tingley MW. Fire ecology for the 21st century: Conserving biodiversity in the age of megafire. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Dale G. Nimmo
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences Charles Sturt University Albury New South Wales Australia
| | - Alan N. Andersen
- Research Institute for the Environment and Livelihoods Charles Darwin University Ellengown Drive Brinkin Northern Territory Australia
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Matthias M. Boer
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| | - Lluís Brotons
- CTFC Solsona Spain
- CREAF Cerdanyola del Vallès Spain
- CSIC Cerdanyola del Vallès Spain
| | - Catherine L. Parr
- School of Environmental Sciences University of Liverpool Liverpool UK
- Department of Zoology & Entomology University of Pretoria Pretoria South Africa
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits South Africa
| | - Morgan W. Tingley
- Ecology and Evolutionary Biology University of California – Los Angeles Los Angeles CA USA
| |
Collapse
|
11
|
Southwell D, Legge S, Woinarski J, Lindenmayer D, Lavery T, Wintle B. Design considerations for rapid biodiversity reconnaissance surveys and long‐term monitoring to assess the impact of wildfire. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Darren Southwell
- National Environmental Science Program Threatened Species Recovery Hub School of Ecosystem and Forest Sciences, University of Melbourne Parkville VIC Australia
| | - Sarah Legge
- National Environmental Science Program Threatened Species Recovery Hub Fenner School of Environment and Society The Australian National University Canberra ACT Australia
- National Environmental Science Program Threatened Species Recovery Hub Centre for Biodiversity and Conservation Science University of Queensland St Lucia QLD Australia
| | - John Woinarski
- National Environmental Science Program Threatened Species Recovery Hub School of Ecosystem and Forest Sciences, University of Melbourne Parkville VIC Australia
- National Environmental Science Program Threatened Species Recovery Hub Charles Darwin University Darwin NT Australia
| | - David Lindenmayer
- National Environmental Science Program Threatened Species Recovery Hub Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| | - Tyrone Lavery
- National Environmental Science Program Threatened Species Recovery Hub Fenner School of Environment and Society The Australian National University Canberra ACT Australia
| | - Brendan Wintle
- National Environmental Science Program Threatened Species Recovery Hub School of Ecosystem and Forest Sciences, University of Melbourne Parkville VIC Australia
| |
Collapse
|