1
|
Abramson L, Callaghan BL, Silvers JA, Choy T, VanTieghem M, Vannucci A, Fields A, Tottenham N. The effects of parental presence on amygdala and mPFC activation during fear conditioning: An exploratory study. Dev Sci 2024; 27:e13505. [PMID: 38549194 PMCID: PMC11436486 DOI: 10.1111/desc.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
Learning safe versus dangerous cues is crucial for survival. During development, parents can influence fear learning by buffering their children's stress response and increasing exploration of potentially aversive stimuli. Rodent findings suggest that these behavioral effects are mediated through parental presence modulation of the amygdala and medial prefrontal cortex (mPFC). Here, we investigated whether similar parental modulation of amygdala and mPFC during fear learning occurs in humans. Using a within-subjects design, behavioral (final N = 48, 6-17 years, mean = 11.61, SD = 2.84, 60% females/40% males) and neuroimaging data (final N = 39, 6-17 years, mean = 12.03, SD = 2.98, 59% females/41% males) were acquired during a classical fear conditioning task, which included a CS+ followed by an aversive noise (US; 75% reinforcement rate) and a CS-. Conditioning occurred once in physical contact with the participant's parent and once alone (order counterbalanced). Region of interest analyses examined the unconditioned stress response by BOLD activation to the US (vs. implicit baseline) and learning by activation to the CS+ (vs. CS-). Results showed that during US presentation, parental presence reduced the centromedial amygdala activity, suggesting buffering of the unconditioned stress response. In response to learned stimuli, parental presence reduced mPFC activity to the CS+ (relative to the CS-), although this result did not survive multiple comparisons' correction. These preliminary findings indicate that parents modulate amygdala and mPFC activity during exposure to unconditioned and conditioned fear stimuli, potentially providing insight into the neural mechanisms by which parents act as a social buffer during fear learning. RESEARCH HIGHLIGHTS: This study used a within-participant experimental design to investigate how parental presence (vs. absence) affects youth's neural responses in a classical fear conditioning task. Parental presence reduced the youth's centromedial amygdala activation to the unconditioned stimulus (US), suggesting parental buffering of the neural unconditioned response (UR). Parental presence reduced the youth's mPFC activation to a conditioned threat cue (CS+) compared to a safety cue (CS-), suggesting possible parental modulation of fear learning.
Collapse
Affiliation(s)
- Lior Abramson
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Bridget L. Callaghan
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Jennifer A. Silvers
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Tricia Choy
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Michelle VanTieghem
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Anna Vannucci
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Andrea Fields
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| |
Collapse
|
2
|
Zhang A, Zhang G, Cai B, Wilson TW, Stephen JM, Calhoun VD, Wang YP. A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Netw Neurosci 2024; 8:791-807. [PMID: 39355441 PMCID: PMC11349030 DOI: 10.1162/netn_a_00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Emotion perception is essential to affective and cognitive development which involves distributed brain circuits. Emotion identification skills emerge in infancy and continue to develop throughout childhood and adolescence. Understanding the development of the brain's emotion circuitry may help us explain the emotional changes during adolescence. In this work, we aim to deepen our understanding of emotion-related functional connectivity (FC) from association to causation. We proposed a Bayesian incorporated linear non-Gaussian acyclic model (BiLiNGAM), which incorporated association model into the estimation pipeline. Simulation results indicated stable and accurate performance over various settings, especially when the sample size was small. We used fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) to validate the approach. It included 855 individuals aged 8-22 years who were divided into five different adolescent stages. Our network analysis revealed the development of emotion-related intra- and intermodular connectivity and pinpointed several emotion-related hubs. We further categorized the hubs into two types: in-hubs and out-hubs, as the center of receiving and distributing information, respectively. In addition, several unique developmental hub structures and group-specific patterns were discovered. Our findings help provide a directed FC template of brain network organization underlying emotion processing during adolescence.
Collapse
Affiliation(s)
- Aiying Zhang
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Gemeng Zhang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Biao Cai
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
3
|
Meredith WJ, Silvers JA. Experience-dependent neurodevelopment of self-regulation in adolescence. Dev Cogn Neurosci 2024; 66:101356. [PMID: 38364507 PMCID: PMC10878838 DOI: 10.1016/j.dcn.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Adolescence is a period of rapid biobehavioral change, characterized in part by increased neural maturation and sensitivity to one's environment. In this review, we aim to demonstrate that self-regulation skills are tuned by adolescents' social, cultural, and socioeconomic contexts. We discuss adjacent literatures that demonstrate the importance of experience-dependent learning for adolescent development: environmental contextual influences and training paradigms that aim to improve regulation skills. We first highlight changes in prominent limbic and cortical regions-like the amygdala and medial prefrontal cortex-as well as structural and functional connectivity between these areas that are associated with adolescents' regulation skills. Next, we consider how puberty, the hallmark developmental milestone in adolescence, helps instantiate these biobehavioral adaptations. We then survey the existing literature demonstrating the ways in which cultural, socioeconomic, and interpersonal contexts drive behavioral and neural adaptation for self-regulation. Finally, we highlight promising results from regulation training paradigms that suggest training may be especially efficacious for adolescent samples. In our conclusion, we highlight some exciting frontiers in human self-regulation research as well as recommendations for improving the methodological implementation of developmental neuroimaging studies and training paradigms.
Collapse
Affiliation(s)
- Wesley J Meredith
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA, USA.
| | - Jennifer A Silvers
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA, USA
| |
Collapse
|
4
|
Giacometti C, Autran-Clavagnier D, Dureux A, Viñales L, Lamberton F, Procyk E, Wilson CRE, Amiez C, Hadj-Bouziane F. Differential functional organization of amygdala-medial prefrontal cortex networks in macaque and human. Commun Biol 2024; 7:269. [PMID: 38443489 PMCID: PMC10914752 DOI: 10.1038/s42003-024-05918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Over the course of evolution, the amygdala (AMG) and medial frontal cortex (mPFC) network, involved in behavioral adaptation, underwent structural changes in the old-world monkey and human lineages. Yet, whether and how the functional organization of this network differs remains poorly understood. Using resting-state functional magnetic resonance imagery, we show that the functional connectivity (FC) between AMG nuclei and mPFC regions differs between humans and awake macaques. In humans, the AMG-mPFC FC displays U-shaped pattern along the corpus callosum: a positive FC with the ventromedial prefrontal (vmPFC) and anterior cingulate cortex (ACC), a negative FC with the anterior mid-cingulate cortex (MCC), and a positive FC with the posterior MCC. Conversely, in macaques, the negative FC shifted more ventrally at the junction between the vmPFC and the ACC. The functional organization divergence of AMG-mPFC network between humans and macaques might help understanding behavioral adaptation abilities differences in their respective socio-ecological niches.
Collapse
Affiliation(s)
- Camille Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Delphine Autran-Clavagnier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Inovarion, 75005, Paris, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL); Université Lyon 1, 69500, Bron, France
| | - Laura Viñales
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Franck Lamberton
- La Structure Fédérative de Recherche Santé Lyon-Est, CNRS UAR 3453, INSERM US7, Lyon 1 University, 69008, Lyon, France
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), 69677, Bron, France
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL); Université Lyon 1, 69500, Bron, France.
| |
Collapse
|
5
|
Nguyen GH, Oh S, Schneider C, Teoh JY, Engstrom M, Santana-Gonzalez C, Porter D, Quevedo K. Neurofeedback and Affect Regulation Circuitry in Depressed and Healthy Adolescents. BIOLOGY 2023; 12:1399. [PMID: 37997998 PMCID: PMC10669603 DOI: 10.3390/biology12111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Neurodevelopmental psychopathology seeks to understand higher-order emotion regulation circuitry to develop new therapies for adolescents with depression. Depressed (N = 34) and healthy youth (N = 19) completed neurofeedback (NF) training and exhibited increased bilateral amygdala and hippocampus activity in the region of interest (ROI) analyses by recalling positive autobiographical memories. We tested factors supportive of the engagement of emotion regulation's neural areas during NF (i.e., parental support, medication, and gender effects upon anterior cingulate cortex (ACC) engagement). Whole-brain analyses yielded effects of NF vs. control condition and effects of diagnosis. Youth showed higher amygdala and hippocampus (AMYHIPPO) activity during the NF vs. control condition, particularly in the left hippocampus. ACC's activity was also higher during NF vs. control. Higher average ACC activity was linked to better parental support, absent depression, female gender, and absent medication. Control youth showed higher average AMYHIPPO and ACC activity throughout the task and a faster decline in activity vs. depressed youths. Whole-brain level analyses showed higher activity in the frontotemporal network during the NF vs. control conditions, suggesting targeting their connectivity in future neurofeedback trials.
Collapse
Affiliation(s)
- Giang H. Nguyen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Sewon Oh
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29208, USA;
| | - Corey Schneider
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Jia Y. Teoh
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Maggie Engstrom
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Carmen Santana-Gonzalez
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - David Porter
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| | - Karina Quevedo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA; (G.H.N.); (C.S.); (J.Y.T.); (M.E.); (C.S.-G.); (D.P.)
| |
Collapse
|
6
|
Jopling E, Rnic K, Jameson T, Tracy A, LeMoult J. Discordance Indices of Stress Sensitivity and Trajectories of Internalizing Symptoms in Adolescence. Res Child Adolesc Psychopathol 2023; 51:1521-1533. [PMID: 37329401 DOI: 10.1007/s10802-023-01095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Psychiatric illness in adolescence is associated with long-term impairments, making it critical to identify predictors of adolescent psychiatric distress. Individual differences in stress sensitivity could be associated with longitudinal trajectories of internalizing symptoms. Historically, researchers have operationalized stress sensitivity by assessing either objective or subjective responses to stress. However, we posit that the relative discordance between subjective and objective responses to stress is a critical metric of stress sensitivity. We examined whether two discordance-based indices of stress sensitivity were related to one another and to trajectories of internalizing psychopathology among a sample of 101 adolescent youths (Mage = 12.80 at baseline; 55% males) across two successive stressors: the high school transition and the COVID-19 pandemic. Using latent growth curve modeling, we found that greater discordance between subjective (i.e., affective) and objective (i.e., cortisol) responses to a social-evaluative stressor was associated with higher internalizing symptoms at baseline and an accelerated symptom growth trajectory across the first year of the pandemic. In contrast, early life stress sensitivity was not associated with internalizing symptoms. Findings suggest that the discordance between objective and subjective experiences of social-evaluative stress predicts a pernicious growth trajectory of internalizing symptoms during adolescence. This work advances current methodologies, contributes to theoretical models of internalizing psychopathology, and with replication could have implications for policy and practice by identifying a key vulnerability factor that increases adolescents' psychiatric distress over time.
Collapse
Affiliation(s)
- Ellen Jopling
- University of British Columbia, Vancouver, Canada.
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T1Z4, Canada.
| | | | | | - Alison Tracy
- University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
7
|
Klune CB, Goodpaster CM, Gongwer MW, Gabriel CJ, Chen R, Jones NS, Schwarz LA, DeNardo LA. Developmentally distinct architectures in top-down circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.555010. [PMID: 37693480 PMCID: PMC10491090 DOI: 10.1101/2023.08.27.555010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in learning, mood and decision making, including in how individuals respond to threats 1-6 . mPFC undergoes a uniquely protracted development, with changes in synapse density, cortical thickness, long-range connectivity, and neuronal encoding properties continuing into early adulthood 7-21 . Models suggest that before adulthood, the slow-developing mPFC cannot adequately regulate activity in faster-developing subcortical centers 22,23 . They propose that during development, the enhanced influence of subcortical systems underlies distinctive behavioural strategies of juveniles and adolescents and that increasing mPFC control over subcortical structures eventually allows adult behaviours to emerge. Yet it has remained unclear how a progressive strengthening of top-down control can lead to nonlinear changes in behaviour as individuals mature 24,25 . To address this discrepancy, here we monitored and manipulated activity in the developing brain as animals responded to threats, establishing direct causal links between frontolimbic circuit activity and the behavioural strategies of juvenile, adolescent and adult mice. Rather than a linear strengthening of mPFC synaptic connectivity progressively regulating behaviour, we uncovered multiple developmental switches in the behavioural roles of mPFC circuits targeting the basolateral amygdala (BLA) and nucleus accumbens (NAc). We show these changes are accompanied by axonal pruning coinciding with functional strengthening of synaptic connectivity in the mPFC-BLA and mPFC-NAc pathways, which mature at different rates. Our results reveal how developing mPFC circuits pass through distinct architectures that may make them optimally adapted to the demands of age-specific challenges.
Collapse
|
8
|
Giacometti C, Amiez C, Hadj-Bouziane F. Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100103. [PMID: 37601951 PMCID: PMC10432920 DOI: 10.1016/j.crneur.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023] Open
Abstract
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data.
Collapse
Affiliation(s)
- C. Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - C. Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - F. Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France
| |
Collapse
|
9
|
Caballero C, Nook EC, Gee DG. Managing fear and anxiety in development: A framework for understanding the neurodevelopment of emotion regulation capacity and tendency. Neurosci Biobehav Rev 2023; 145:105002. [PMID: 36529313 DOI: 10.1016/j.neubiorev.2022.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
How we manage emotional responses to environmental threats is central to mental health, as difficulties regulating threat-related distress can blossom into symptoms of anxiety disorders. Given that anxiety disorders emerge early in the lifespan, it is crucial we understand the multi-level processes that support effective regulation of distress. Scholars have given increased attention to behavioral and neural development of emotion regulation abilities, particularly cognitive reappraisal capacity (i.e., how strongly one can down-regulate negative affect by reinterpreting a situation to change one's emotions). However, this work has not been well integrated with research on regulatory tendency (i.e., how often one spontaneously regulates emotion in daily life). Here, we review research on the development of both emotion regulation capacity and tendency. We then propose a framework for testing hypotheses and eventually constructing a neurodevelopmental model of both dimensions of emotion regulation. Clarifying how the brain supports both effective and frequent regulation of threat-related distress across development is crucial to identifying multi-level signs of dysregulation and developing interventions that support youth mental health.
Collapse
Affiliation(s)
- Camila Caballero
- Department of Psychology, Yale University, Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520, USA
| | - Erik C Nook
- Department of Psychology, Yale University, Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, Kirtland Hall, 2 Hillhouse Ave, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Gee DG. Neurodevelopmental mechanisms linking early experiences and mental health: Translating science to promote well-being among youth. AMERICAN PSYCHOLOGIST 2022; 77:1033-1045. [PMID: 36595400 PMCID: PMC9875304 DOI: 10.1037/amp0001107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Early experiences can have profound and lasting effects on mental health. Delineating neurodevelopmental pathways related to risk and resilience following adversity exposure is critical for promoting well-being and targeting interventions. A rapidly growing cross-species literature has facilitated advances in identifying neural and behavioral mechanisms linking early experiences with mental health, highlighting a central role of corticolimbic circuitry involved in learning and emotion regulation. Building upon knowledge of corticolimbic development related to stress and buffering factors, we describe the importance of the developmental timing and experiential elements of adversity in mental health outcomes. Finally, we discuss opportunities to translate knowledge of the developing brain and early experiences to optimize interventions for youth with psychopathology and to inform policy that promotes healthy development at the societal level. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
11
|
Wade M, Wright L, Finegold KE. The effects of early life adversity on children's mental health and cognitive functioning. Transl Psychiatry 2022; 12:244. [PMID: 35688817 PMCID: PMC9187770 DOI: 10.1038/s41398-022-02001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence suggests that partially distinct mechanisms may underlie the association between different dimensions of early life adversity (ELA) and psychopathology in children and adolescents. While there is minimal evidence that different types of ELA are associated with specific psychopathology outcomes, there are partially unique cognitive and socioemotional consequences of specific dimensions of ELA that increase transdiagnostic risk of mental health problems across the internalizing and externalizing spectra. The current review provides an overview of recent findings examining the cognitive (e.g., language, executive function), socioemotional (e.g., attention bias, emotion regulation), and mental health correlates of ELA along the dimensions of threat/harshness, deprivation, and unpredictability. We underscore similarities and differences in the mechanisms connecting different dimensions of ELA to particular mental health outcomes, and identify gaps and future directions that may help to clarify inconsistencies in the literature. This review focuses on childhood and adolescence, periods of exquisite neurobiological change and sensitivity to the environment. The utility of dimensional models of ELA in better understanding the mechanistic pathways towards the expression of psychopathology is discussed, with the review supporting the value of such models in better understanding the developmental sequelae associated with ELA. Integration of dimensional models of ELA with existing models focused on psychiatric classification and biobehavioral mechanisms may advance our understanding of the etiology, phenomenology, and treatment of mental health difficulties in children and youth.
Collapse
Affiliation(s)
- Mark Wade
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada.
| | - Liam Wright
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
| | - Katherine E Finegold
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
| |
Collapse
|