1
|
Łaska G, Sieniawska E, Świątek Ł, Czapiński J, Rivero-Müller A, Kiercul S, Tekwani BL, Pasco DS, Balachandran P. Evaluating the impact of Xanthoparmelia conspersa extracts on signaling in HeLa cells and exploring their diverse biological activities. Sci Rep 2024; 14:28531. [PMID: 39557857 PMCID: PMC11574082 DOI: 10.1038/s41598-024-73599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024] Open
Abstract
Xanthoparmelia conspersa is rich in specific secondary metabolites but an unexplored lichen species. This work determined the chemical composition and biological activities (anti-microbial, anti-protozoal, and cytotoxic) of its methanolic and hexane extracts. Additionally, we evaluated the potential of these extracts in modulating cancer signaling pathways in HeLa cells. The phytochemical analysis revealed that usnic acid was the predominant constituent in the hexane extract, while stictic acid was in the methanolic one. Among tested cell lines (VERO, FaDu, SCC-25, HeLa), cytotoxic selectivity was detected for X. conspersa hexane extract against the FaDu (SI 7.36) and HeLa (SI 2.19) cells. A noticeably better anti-microbial potential was found for hexane extract, however, the overall anti-microbial activity was relatively weak (28, 21, and 20% inhibition of Candida glabrata, Cryptococcus neoformans, and Escherichia coli, respectively). On the contrary, the anti-parasitic action of hexane extract was significant, with an IC50 value of 2.64 µg/mL against Leishmania donovani - amastigote and 7.18 µg/mL against Trypanosoma brucei. The detailed evaluation of the cancer-related signaling pathways in HeLa cells, done by two distinct methodologies (luciferase reporter tests), revealed that especially the hexane extract and usnic acid exhibited selective inhibition of Stat3, Smad, NF-κB, cMYC, and Notch pathways.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, 20-093, Poland.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Lublin, 20-093, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Sylwia Kiercul
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Babu Lal Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - David S Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
2
|
Senos R, Chen MTY, Panse I, Stella JJ, Hankenson KD. An Intact Periosteum is Required for Recombinant Human Jagged1 Guided Bone Regeneration in Calvaria Critical-size Defect Healing. J Craniofac Surg 2024; 35:1585-1590. [PMID: 38864638 DOI: 10.1097/scs.0000000000010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
The need to promote calvaria bone healing as a consequence of injury or craniotomy is a major clinical issue. Previous reports tested recombinant human Jagged1 (rhJagged1) treatment for critical-size calvaria defects in the absence of periosteum, and this resulted in significant new bone formation. As the periosteum contributes to healing by serving as a source of progenitor cells, the present study aimed to examine whether significantly more bone is formed when the periosteum is intact for using rhJagged1 to treat critical-size parietal bone defects in mice. Fifteen healthy adult mice, 34 to 65 weeks of age, 26.9 to 48.2 g, were divided into different groups that compared the critical-size defects treated with either phosphate-buffered saline or rhJagged1 protein in either the presence or absence of periosteum. The results indicated that more bone was formed in the presence of periosteum when rhJagged1 is delivered [35% bone volume per tissue volume (BV/TV); P = 0.02] relative to nonperiosteum. Recombinant human Jagged1 protein delivered in the absence of periosteum had the next most new bone formed (25% BV/TV). Defects with phosphate-buffered saline delivered in the absence or presence of periosteum had the least new bone formed (15% and 18% BV/TV, respectively; P = 0.48). The results also show that rhJagged1 does not form ectopic or hypertrophic bone. The usage of rhJagged1 to treat critical-size defects in calvaria is promising clinically, but to maximize clinical efficacy it will require that the periosteum be intact on the noninjured portions of calvaria.
Collapse
Affiliation(s)
- Rafael Senos
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | | | - Isabella Panse
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI
| | | | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Niederhuber MJ, Leatham-Jensen M, McKay DJ. The SWI/SNF nucleosome remodeler constrains enhancer activity during Drosophila wing development. Genetics 2024; 226:iyad196. [PMID: 37949841 PMCID: PMC10847718 DOI: 10.1093/genetics/iyad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
5
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
6
|
Suarez Rodriguez F, Sanlidag S, Sahlgren C. Mechanical regulation of the Notch signaling pathway. Curr Opin Cell Biol 2023; 85:102244. [PMID: 37783031 DOI: 10.1016/j.ceb.2023.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/13/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023]
Abstract
The mechanical regulation of Notch signaling is an emerging area of interest in cell biology. Notch is essential in many physiological processes in which mechanical stress plays an important role. This review provides an overview of the mechanoregulation of Notch signaling in multiple steps of the pathway. First, we discuss the current knowledge on the direct mechanoregulation of Notch receptor maturation and localization to the membrane and the effect of mechanical stress on the Notch components. Next, we explore how ligand-receptor interactions and membrane dynamics are possible subjects to mechano-regulation, emphasizing the role of cytoskeletal interactions, membrane stiffness, and endocytic complex formation. We further delve into the necessity of tension generation for negative regulatory region (NRR) domain unfolding, facilitated by ligand endocytosis and other microforces. Additionally, we examine the indirect mechano-regulation of S2 and S3 cleavages. Finally, we discuss the mechanoregulation of the Notch intracellular domain (NICD) trafficking and nuclear entry and the impact of mechanical stress on heterochromatin dynamics and nuclear NICD interactions. This review aims to draw attention to the intricate interplay between mechanical cues and Notch signaling regulation, offering novel insights into the multifaceted nature of cellular mechanobiology.
Collapse
Affiliation(s)
- Freddy Suarez Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, FI-20520, Turku, Finland; Turku Bioscience, Åbo Akademi University and University of Turku, Tykistökatu 6, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University and University of Turku, Turku, Finland
| | - Sami Sanlidag
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, FI-20520, Turku, Finland; Turku Bioscience, Åbo Akademi University and University of Turku, Tykistökatu 6, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, FI-20520, Turku, Finland; Turku Bioscience, Åbo Akademi University and University of Turku, Tykistökatu 6, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University and University of Turku, Turku, Finland; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Ceres, Building Number 7, De Zaale, 5612 AJ, Eindhoven, the Netherlands.
| |
Collapse
|
7
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
McCracken IR, Baker AH, Smart N, De Val S. Transcriptional regulators of arterial and venous identity in the developing mammalian embryo. CURRENT OPINION IN PHYSIOLOGY 2023; 35:None. [PMID: 38328689 PMCID: PMC10844100 DOI: 10.1016/j.cophys.2023.100691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process.
Collapse
Affiliation(s)
- Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Sarah De Val
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| |
Collapse
|
9
|
Lampada A, Taylor V. Notch signaling as a master regulator of adult neurogenesis. Front Neurosci 2023; 17:1179011. [PMID: 37457009 PMCID: PMC10339389 DOI: 10.3389/fnins.2023.1179011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Neurogenesis ceases in most regions of the mammalian brain before or shortly after birth, however, in a few restricted brain regions, the production of new neurons proceeds into adulthood. Neural stem cells (NSCs) in these neurogenic zones are integrated into niches that control their activity and fate. Most stem cells in the adult brain are mitotically inactive and these cells can remain quiescent for months or even years. One of the key questions is what are the molecular mechanisms that regulate NSC maintenance and differentiation. Notch signaling has been shown to be a critical regulator of stem cell activity and maintenance in many tissues including in the nervous system. In this mini-review we discuss the roles of Notch signaling and the functions of the different Notch receptors and ligands in regulating neurogenesis in the adult murine brain. We review the functions of Notch signaling components in controlling NSC quiescence and entry into cell cycle and neurogenesis.
Collapse
|
10
|
Melnick A, Liang S, Liu Y, Wang Q, Dean N, Choe E, Kunnath N, Bodanapu G, Mullin C, Akter F, Lin K, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525059. [PMID: 36711472 PMCID: PMC9882378 DOI: 10.1101/2023.01.22.525059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.
Collapse
|
11
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
12
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
13
|
Zhang H, Wang W, Wu Z, Zheng Y, Li X, Han S, Wang J, Zhang C. Effect of Notch Signal Pathway on Steroid Synthesis Enzymes in TM3 Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1771-1779. [PMID: 37106514 DOI: 10.2174/1871530323666230418113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Studies have indicated that the conservative Notch pathway contributes to steroid hormone synthesis in the ovaries; however, its role in hormone synthesis of the testis remains unclear. We have previously reported Notch 1, 2, and 3 to be expressed in murine Leydig cells and that inhibition of Notch signaling caused G0/G1 arrest in TM3 Leydig cells. METHODS In this study, we have further explored the effect of different Notch signal pathways on key steroidogenic enzymes in murine Leydig cells. TM3 cells were treated with Notch signaling pathway inhibitor MK-0752, and different Notch receptors were also overexpressed in TM3 cells. RESULTS We evaluated the expression of key enzymes of steroid synthesis, including p450 cholesterol side-chain cleavage enzyme (P450Scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and steroidogenic acute regulatory protein (StAR), and key transcriptional factors for steroid synthesis, including steroidogenic factor 1 (SF1), GATA-binding protein 4 (GATA4) and GATA6. CONCLUSION We found the level of P450Scc, 3β-HSD, StAR and SF1 to be decreased after treatment with MK-0752, while overexpression of Notch1 up-regulated the expression of 3β-HSD, P450Scc, StAR and SF1. MK-0752 and overexpression of different Notch members had no influence on the expression of GATA4 and GATA6. In conclusion, Notch1 signaling may contribute to the steroid synthesis in Leydig cells through regulating SF1 and downstream steroidogenic enzymes (3β-HSD, StAR and P450Scc).
Collapse
Affiliation(s)
- Hongdan Zhang
- Department of Microbiology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Wei Wang
- Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Zaichao Wu
- Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Yuxiang Zheng
- Second Clinical Medical College, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Xiao Li
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Suo Han
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Jing Wang
- Department of Microbiology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Martinez MAQ, Mullarkey AA, Yee C, Zhao CZ, Zhang W, Shen K, Matus DQ. Reevaluating the relationship between EGL-43 (EVI1) and LIN-12 (Notch) during C. elegans anchor cell invasion. Biol Open 2022; 11:bio059668. [PMID: 36445013 PMCID: PMC9751802 DOI: 10.1242/bio.059668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Development of the Caenorhabditis elegans reproductive tract is orchestrated by the anchor cell (AC). This occurs in part through a cell invasion event that connects the uterine and vulval tissues. Several key transcription factors regulate AC invasion, such as EGL-43, HLH-2, and NHR-67. Specifically, these transcription factors function together to maintain the post-mitotic state of the AC, a requirement for AC invasion. Recently, a mechanistic connection has been made between loss of EGL-43 and AC cell-cycle entry. The current model states that EGL-43 represses LIN-12 (Notch) expression to prevent AC proliferation, suggesting that Notch signaling has mitogenic effects in the invasive AC. To reexamine the relationship between EGL-43 and LIN-12, we first designed and implemented a heterologous co-expression system called AIDHB that combines the auxin-inducible degron (AID) system of plants with a live cell-cycle sensor based on human DNA helicase B (DHB). After validating AIDHB using AID-tagged GFP, we sought to test it by using AID-tagged alleles of egl-43 and lin-12. Auxin-induced degradation of either EGL-43 or LIN-12 resulted in the expected AC phenotypes. Lastly, we seized the opportunity to pair AIDHB with RNAi to co-deplete LIN-12 and EGL-43, respectively, which revealed that LIN-12 is not required for AC proliferation following loss of EGL-43.
Collapse
Affiliation(s)
- Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Angelina A. Mullarkey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chris Z. Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
15
|
Fechner J, Ketelhut M, Maier D, Preiss A, Nagel AC. The Binding of CSL Proteins to Either Co-Activators or Co-Repressors Protects from Proteasomal Degradation Induced by MAPK-Dependent Phosphorylation. Int J Mol Sci 2022; 23:ijms232012336. [PMID: 36293193 PMCID: PMC9604145 DOI: 10.3390/ijms232012336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The primary role of Notch is to specify cellular identities, whereby the cells respond to amazingly small changes in Notch signalling activity. Hence, dosage of Notch components is crucial to regulation. Central to Notch signal transduction are CSL proteins: together with respective cofactors, they mediate the activation or the silencing of Notch target genes. CSL proteins are extremely similar amongst species regarding sequence and structure. We noticed that the fly homologue suppressor of hairless (Su(H)) is stabilised in transcription complexes. Using specific transgenic fly lines and HeLa RBPJKO cells we provide evidence that Su(H) is subjected to proteasomal degradation with a half-life of about two hours if not protected by binding to co-repressor hairless or co-activator Notch. Moreover, Su(H) stability is controlled by MAPK-dependent phosphorylation, matching earlier data for RBPJ in human cells. The homologous murine and human RBPJ proteins, however, are largely resistant to degradation in our system. Mutating presumptive protein contact sites, however, sensitised RBPJ for proteolysis. Overall, our data highlight the similarities in the regulation of CSL protein stability across species and imply that turnover of CSL proteins may be a conserved means of regulating Notch signalling output directly at the level of transcription.
Collapse
|
16
|
Niu Y, Liu Z, Wang M, Du K, Chang K, Ding Y. TMT-based quantitative proteomics analysis reveals the role of Notch signaling in FAdV-4-infected LMH cell. Front Microbiol 2022; 13:988259. [PMID: 36187945 PMCID: PMC9520525 DOI: 10.3389/fmicb.2022.988259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is recognized as a pathogen that causes hydropericardium syndrome. Irrespective of the pathway used by the virus to invade the chicken, the pathological characteristics of the disease include degeneration and necrosis of hepatocytes, formation of intranuclear inclusions, as well as inflammatory cell infiltration. Liver dysfunction constitutes one of the critical factors leading to death. Therefore, it is vital to investigate the virus-mediated severe pathological liver damage to further understand the pathogenesis of FAdV-4. Here, proteomics, a tandem mass tag (TMT)-based approach to directly analyze protein expression, was used to determine the protein expression during FAdV-4 proliferation in leghorn male hepatoma (LMH) cells. We identified 177 differentially expressed proteins associated with various biological processes and pathways. The functional enrichment analysis revealed that FAdV-4 could downregulate some signaling pathways in LMH cells, including NOD-like receptor signaling, RIG-I-like receptor signaling, NF-κB signaling, TNF signaling pathway, and Notch signaling, FoxO signaling, PI3K-Akt signaling, and autophagy. The results of proteomics screening suggested an association between FAdV-4 infection and Notch signaling in LMH in vitro, indicating that Notch signaling regulated the expression of inflammatory cytokines and interferons but not viral replication in LMH cells. These data contributed to the understanding of the immunopathogenesis and inflammopathogenesis of FAdV-4 infection and also provided valuable information for the further analysis of the molecular mechanisms underlying viral pathogenesis.
Collapse
|
17
|
Kałafut J, Czapiński J, Przybyszewska-Podstawka A, Czerwonka A, Odrzywolski A, Sahlgren C, Rivero-Müller A. Optogenetic control of NOTCH1 signaling. Cell Commun Signal 2022; 20:67. [PMID: 35585598 PMCID: PMC9118860 DOI: 10.1186/s12964-022-00885-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | | | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093, Lublin, Poland.
| |
Collapse
|
18
|
MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 2022; 201:115094. [PMID: 35588853 DOI: 10.1016/j.bcp.2022.115094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the third most common cancer in young adults after lymphoma and brain cancer. Metastasis, like other cellular events, is dependent on signaling pathways; a series of changes in some proteins and signaling pathways pave the way for OS cells to invade and migrate. Ezrin, TGF-β, Notch, RUNX2, matrix metalloproteinases (MMPs), Wnt/β-catenin, and phosphoinositide 3-kinase (PI3K)/AKT are among the most important of these proteins and signaling pathways. Despite the improvements in treating OS, the overall survival of patients suffering from the metastatic disease has not experienced any significant change after surgical treatments and chemotherapy and 5-years overall survival in patients with metastatic OS is about 20%. Studies have shown that overexpression or inhibition of some microRNAs (miRNAs) has significant effects in limiting the invasion and migration of OS cells. The results of these studies highlight the potential of the clinical application of some miRNA mimics and miRNA inhibitors (antagomiRs) to inhibit OS metastasis in the future. In addition, some studies have shown that miRNAs are associated with the most important drug resistance mechanisms in OS, and some miRNAs are highly effective targets to increase chemosensitivity. The results of these studies suggest that miRNA mimics and antagomiRs may be helpful to increase the efficacy of conventional chemotherapy drugs in the treatment of metastatic OS. In this article, we discussed the role of various signaling pathways and the involved miRNAs in the metastasis of OS, attempting to provide a comprehensive review of the literature on OS metastasis and chemosensitivity.
Collapse
|
19
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
20
|
Reduced chromatin accessibility correlates with resistance to Notch activation. Nat Commun 2022; 13:2210. [PMID: 35468895 PMCID: PMC9039071 DOI: 10.1038/s41467-022-29834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
The Notch signalling pathway is a master regulator of cell fate transitions in development and disease. In the brain, Notch promotes neural stem cell (NSC) proliferation, regulates neuronal migration and maturation and can act as an oncogene or tumour suppressor. How NOTCH and its transcription factor RBPJ activate distinct gene regulatory networks in closely related cell types in vivo remains to be determined. Here we use Targeted DamID (TaDa), requiring only thousands of cells, to identify NOTCH and RBPJ binding in NSCs and their progeny in the mouse embryonic cerebral cortex in vivo. We find that NOTCH and RBPJ associate with a broad network of NSC genes. Repression of NSC-specific Notch target genes in intermediate progenitors and neurons correlates with decreased chromatin accessibility, suggesting that chromatin compaction may contribute to restricting NOTCH-mediated transactivation.
Collapse
|
21
|
Shaffer JM, Greenwald I. SALSA, a genetically encoded biosensor for spatiotemporal quantification of Notch signal transduction in vivo. Dev Cell 2022; 57:930-944.e6. [PMID: 35413239 PMCID: PMC9473748 DOI: 10.1016/j.devcel.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Notch-mediated lateral specification is a fundamental mechanism to resolve stochastic cell fate choices by amplifying initial differences between equivalent cells. To study how stochastic events impact Notch activity, we developed a biosensor, SALSA (sensor able to detect lateral signaling activity), consisting of an amplifying "switch"-Notch tagged with TEV protease-and a "reporter"-GFP fused to a nuclearly localized red fluorescent protein, separated by a TEVp cut site. When ligand activates Notch, TEVp enters the nucleus and releases GFP from its nuclear tether, allowing Notch activation to be quantified based on the changes in GFP subcellular localization. We show that SALSA accurately reports Notch activity in different signaling paradigms in Caenorhabditis elegans and use time-lapse imaging to test hypotheses about how stochastic elements ensure a reproducible and robust outcome in a canonical lin-12/Notch-mediated lateral signaling paradigm. SALSA should be generalizable to other experimental systems and be adaptable to increase options for bespoke "SynNotch" applications.
Collapse
Affiliation(s)
- Justin M Shaffer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
22
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
23
|
Modulation of Notch Signaling Pathway by Bioactive Dietary Agents. Int J Mol Sci 2022; 23:ijms23073532. [PMID: 35408894 PMCID: PMC8998406 DOI: 10.3390/ijms23073532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Notch signaling is often aberrantly activated in solid and hematological cancers and regulates cell fate decisions and the maintenance of cancer stem cells. In addition, increased expression of Notch pathway components is clinically associated with poorer prognosis in several types of cancer. Targeting Notch may have chemopreventive and anti-cancer effects, leading to reduced disease incidence and improved survival. While therapeutic agents are currently in development to achieve this goal, several researchers have turned their attention to dietary and natural agents for targeting Notch signaling. Given their natural abundance from food sources, the use of diet-derived agents to target Notch signaling offers the potential advantage of low toxicity to normal tissue. In this review, we discuss several dietary agents including curcumin, EGCG, resveratrol, and isothiocyanates, which modulate Notch pathway components in a context-dependent manner. Dietary agents modulate Notch signaling in several types of cancer and concurrently decrease in vitro cell viability and in vivo tumor growth, suggesting a potential role for their clinical use to target Notch pathway components, either alone or in combination with current therapeutic agents.
Collapse
|
24
|
Engineering tissue morphogenesis: taking it up a Notch. Trends Biotechnol 2022; 40:945-957. [PMID: 35181146 PMCID: PMC7613405 DOI: 10.1016/j.tibtech.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Recreating functional tissues through bioengineering strategies requires steering of complex cell fate decisions. Notch, a juxtacrine signaling pathway, regulates cell fate and controls cellular organization with local precision. The engineering-friendly characteristics of the Notch pathway provide handles for engineering tissue patterning and morphogenesis. We discuss the physiological significance and mechanisms of Notch signaling with an emphasis on its potential use for engineering complex tissues. We highlight the current state of the art of Notch activation and provide a view on the design aspects, opportunities, and challenges in modulating Notch for tissue-engineering strategies. We propose that finely tuned control of Notch contributes to the generation of tissues with accurate form and functionality.
Collapse
|
25
|
Lee C, Lynch T, Crittenden SL, Kimble J. Image-Based Single-Molecule Analysis of Notch-Dependent Transcription in Its Natural Context. Methods Mol Biol 2022; 2472:131-149. [PMID: 35674897 DOI: 10.1007/978-1-0716-2201-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Notch signaling is crucial to animal development and homeostasis. Notch triggers the transcription of its target genes, which produce diverse outcomes depending on context. The high resolution and spatially precise assessment of Notch-dependent transcription is essential for understanding how Notch operates normally in its native context in vivo and how Notch defects lead to pathogenesis. Here we present biological and computational methods to assess Notch-dependent transcriptional activation in stem cells within their niche, focusing on germline stem cells in the nematode Caenorhabditis elegans. Specifically, we describe visualization of single RNAs in fixed gonads using single-molecule RNA fluorescence in situ hybridization (smFISH), live imaging of transcriptional bursting in the intact organism using the MS2 system, and custom-made MATLAB codes, implementing new image processing algorithms to capture the spatiotemporal patterns of Notch-dependent transcriptional activation. These methods allow a powerful analysis of in vivo transcriptional activation and its dynamics in a whole tissue. Our methods can be adapted to essentially any tissue or cell type for any transcript.
Collapse
Affiliation(s)
- ChangHwan Lee
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Tina Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
26
|
Panta M, Kump AJ, Schwab KR, Ahmad SM. Assessing the Roles of Potential Notch Signaling Components in Instructive and Permissive Pathways with Two Drosophila Pericardial Reporters. Methods Mol Biol 2022; 2472:109-130. [PMID: 35674896 DOI: 10.1007/978-1-0716-2201-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The highly conserved Notch signaling pathway brings about the transcriptional activation of target genes via either instructive or permissive mechanisms that depend on the identity of the specific target gene. As additional components of the Notch signaling pathway are identified, assessing whether each of these components are utilized exclusively by one of these mechanisms (and if so, which), or by both, becomes increasingly important. Using RNA interference-mediated knockdowns of the Notch component to be tested, reporters for two Notch-activated pericardial genes in Drosophila melanogaster, immunohistochemistry, and fluorescence microscopy, we describe a method to determine the type of signaling mechanism-instructive, permissive, or both-to which a particular Notch pathway component contributes.
Collapse
Affiliation(s)
- Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | - Andrew J Kump
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA
| | - Kristopher R Schwab
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA
| | - Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA.
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA.
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
27
|
Zhang Z, Li X, Yan X, Qiu H, Li G, Guo X, Lu Y, Yang J, Jiao M, Chen X, Zhu S, Dang C, Wang W, Chu D. Delta-like ligand 4 level in colorectal cancer is associated with tumor aggressiveness, body mass index and clinical outcome. Cancer Biomark 2021; 33:415-422. [PMID: 34487019 DOI: 10.3233/cbm-200986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The Notch signaling regulates numerous cell growth, differentiation, and death. However, the expression pattern of its ligand Delta-like 4 (DLL4) in tumors is still uncertain. OBJECTIVE In the present study, we examined DLL4 expression in colorectal cancer as well as assessed its role as a prognostic indicator in the present study. METHODS DLL4 expression was examined by immunohistochemistry in 265 surgically resected specimens of colorectal cancer and adjacent normal tissues. The relationship between DLL4 expression and clinicopathological characteristics was analyzed. The association of DLL4 expression with the patients' overall survival rate was assessed by Kaplan-Meier and Cox proportional-hazards regression. RESULTS Increased DLL4 level was detected in colorectal cancer compared with that of normal tissues. Elevated DLL4 level in colorectal cancer was associated with increased body mass index of patients. Moreover, increased DLL4 level was also found to be correlated with tumor invasion, metastases and unfavorable clinical outcom of patients. CONCLUSIONS DLL4 level is increased in colorectal cancer, especially in patients with increased body mass index, indicating potential involvement of obesity-related tumorigenesis and development. It might also serve as a novel molecular marker to predicate outcome of patients.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xueli Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - He Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gai Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingyi Yang
- Information Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Jiao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Weizhong Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Chen W, Liu Y, Chen J, Ma Y, Song Y, Cen Y, You M, Yang G. The Notch signaling pathway regulates macrophage polarization in liver diseases. Int Immunopharmacol 2021; 99:107938. [PMID: 34371331 DOI: 10.1016/j.intimp.2021.107938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
The liver is not only the main metabolic site of exogenous compounds and drugs, but also an important immune organ in the human body. When a large number of nonself substances (such as drugs, alcohol, pathogens, microorganisms and their metabolites) enter the liver, they will cause serious liver diseases, including liver fibrosis, liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Macrophages are the first line of defense against the invasion of exogenous pathogens and significant cellular components of the innate immune system. Macrophages have strong heterogeneity and plasticity. When different pathogens invade the body, they cause different types of polarization of macrophages through different molecular mechanisms. Notch signaling is considered to be the key regulator of the biological function of macrophages. Activating Notch signaling can regulate the differentiation of macrophages into M1 and play a role in promoting inflammation and antitumor activity, while blocking Notch signaling can polarize macrophages to M2, suppressing inflammation and promoting tumor growth. However, there are few studies on regulation of macrophage polarization by the Notch signaling pathway in liver diseases. Therefore, in this review, we will introduce the role of the Notch signaling pathway in regulating macrophage polarization in liver diseases.
Collapse
Affiliation(s)
- Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yemei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| |
Collapse
|
29
|
Perna A, Marathe S, Dreos R, Falquet L, Akarsu Egger H, Auber LA. Revealing NOTCH-dependencies in synaptic targets associated with Alzheimer's disease. Mol Cell Neurosci 2021; 115:103657. [PMID: 34314836 DOI: 10.1016/j.mcn.2021.103657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies have identified NOTCH signaling as a contributor of neurodegeneration including Alzheimer's disease' (AD) pathophysiology. As part of the efforts to understand molecular mechanisms and players involved in neurodegenerative dementia, we employed transgenic mouse models with Notch1 and Rbpjk loss of function (LOF) mutation in pyramidal neurons of the CA fields. Using RNA-seq, we have investigated the differential expression of NOTCH-dependent genes either upon environmental enrichment (EE) or upon kainic acid (KA) injury. We found a substantial genetic diversity in absence of both NOTCH1 receptor or RBPJK transcriptional activator. Among differentially expressed genes, we observed a significant upregulation of Gabra2a in both knockout models, suggesting a role for NOTCH signaling in the modulation of E/I balance. Upon excitotoxic stimulation, loss of RBPJK results in decreased expression of synaptic proteins with neuroprotective effects. We confirmed Nptx2, Npy, Pdch8, TncC as direct NOTCH1/RBPJK targets and Bdnf and Scg2 as indirect targets. Finally, we translate these findings into human entorhinal cortex containing the hippocampal region from AD patients performing targeted transcripts analysis. We observe an increased trend for RBPJK and the ligand DNER starting in the mild-moderate stage of the disease with no change of NOTCH1 expression. Alongside, expression of the Notch targets Hes5 and Hey1 tend to rise in the intermediate stage of the disease and drop in severe AD. Similarly the newly discovered NOTCH targets, NPTX2, NPY, BDNF show an up-warding tendency during the mild-moderate stage, and decline in the severe phase of the disease. This study identifies NOTCH as a central signaling cascade capable of modulating synaptic transmission in response to excitatory insult through the activation of neuroprotective genes that have been associated to AD.
Collapse
Affiliation(s)
- A Perna
- Section of Medicine, Department NMS, University of Fribourg, Fribourg, Switzerland
| | - S Marathe
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - R Dreos
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - L Falquet
- Biochemistry Unit, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - H Akarsu Egger
- Biochemistry Unit, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - L Alberi Auber
- Section of Medicine, Department NMS, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center for Human Health, Fribourg, Switzerland.
| |
Collapse
|
30
|
Alvarez-Trotta A, Guerrant W, Astudillo L, Lahiry M, Diluvio G, Shersher E, Kaneku H, Robbins DJ, Orton D, Capobianco AJ. Pharmacological Disruption of the Notch1 Transcriptional Complex Inhibits Tumor Growth by Selectively Targeting Cancer Stem Cells. Cancer Res 2021; 81:3347-3357. [PMID: 33820800 PMCID: PMC8655881 DOI: 10.1158/0008-5472.can-20-3611] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
In many human cancers, deregulation of the Notch pathway has been shown to play a role in the initiation and maintenance of the neoplastic phenotype. Aberrant Notch activity also plays a central role in the maintenance and survival of cancer stem cells (CSC), which underlie metastasis and resistance to therapy. For these reasons, inhibition of Notch signaling has become an exceedingly attractive target for cancer therapeutic development. However, attempts to develop Notch pathway-specific drugs have largely failed in the clinic, in part due to intestinal toxicity. Here, we report the discovery of NADI-351, the first specific small-molecule inhibitor of Notch1 transcriptional complexes. NADI-351 selectively disrupted Notch1 transcription complexes and reduced Notch1 recruitment to target genes. NADI-351 demonstrated robust antitumor activity without inducing intestinal toxicity in mouse models, and CSCs were ablated by NADI-351 treatment. Our study demonstrates that NADI-351 is an orally available and potent inhibitor of Notch1-mediated transcription that inhibits tumor growth with low toxicity, providing a potential therapeutic approach for improved cancer treatment. SIGNIFICANCE: This study showcases the first Notch1-selective inhibitor that suppresses tumor growth with limited toxicity by selectively ablating cancer stem cells.
Collapse
Affiliation(s)
- Annamil Alvarez-Trotta
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Luisana Astudillo
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Mohini Lahiry
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Giulia Diluvio
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Elena Shersher
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Hugo Kaneku
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Anthony J Capobianco
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida.
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
31
|
Kostina A, Lobov A, Semenova D, Kiselev A, Klausen P, Malashicheva A. Context-Specific Osteogenic Potential of Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9060673. [PMID: 34204737 PMCID: PMC8231580 DOI: 10.3390/biomedicines9060673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the great progress in the field of bone tissue regeneration, the early initiating mechanisms of osteogenic differentiation are not well understood. Cells capable of osteogenic transformation vary from mesenchymal stem cells of various origins to mural cells of vessels. The mechanisms of pathological calcification are thought to be similar to those of bone formation. Notch signaling has been shown to play an important role in osteogenic differentiation, as well as in pathological calcification. Nevertheless, despite its known tissue- and context-specificity, the information about its role in the osteogenic differentiation of different cells is still limited. We compared mesenchymal stem cells from adipogenic tissue (MSCs) and interstitial cells from the aortic valve (VICs) by their ability to undergo Notch-dependent osteogenic differentiation. We showed differences between the two types of cells in their ability to activate the expression of proosteogenic genes RUNX2, BMP2, BMP4, DLX2, BGLAP, SPRY, IBSP, and SPP1 in response to Notch activation. Untargeted metabolomic profiling also confirms differences between MSCs and VICs in their osteogenic state. Analysis of the activity of RUNX2 and SPP1 promoters shows fine-tuned dose-dependency in response to Notch induction and suggests a direct link between the level of Notch activation, and the proostogenic gene expression and corresponding osteogenic induction. Our data suggest that osteogenic differentiation is a context-dependent process and the outcome of it could be cell-type dependent.
Collapse
|
32
|
Biga V, Hawley J, Soto X, Johns E, Han D, Bennett H, Adamson AD, Kursawe J, Glendinning P, Manning CS, Papalopulu N. A dynamic, spatially periodic, micro-pattern of HES5 underlies neurogenesis in the mouse spinal cord. Mol Syst Biol 2021; 17:e9902. [PMID: 34031978 PMCID: PMC8144840 DOI: 10.15252/msb.20209902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/12/2022] Open
Abstract
Ultradian oscillations of HES Transcription Factors (TFs) at the single-cell level enable cell state transitions. However, the tissue-level organisation of HES5 dynamics in neurogenesis is unknown. Here, we analyse the expression of HES5 ex vivo in the developing mouse ventral spinal cord and identify microclusters of 4-6 cells with positively correlated HES5 level and ultradian dynamics. These microclusters are spatially periodic along the dorsoventral axis and temporally dynamic, alternating between high and low expression with a supra-ultradian persistence time. We show that Notch signalling is required for temporal dynamics but not the spatial periodicity of HES5. Few Neurogenin 2 cells are observed per cluster, irrespective of high or low state, suggesting that the microcluster organisation of HES5 enables the stable selection of differentiating cells. Computational modelling predicts that different cell coupling strengths underlie the HES5 spatial patterns and rate of differentiation, which is consistent with comparison between the motoneuron and interneuron progenitor domains. Our work shows a previously unrecognised spatiotemporal organisation of neurogenesis, emergent at the tissue level from the synthesis of single-cell dynamics.
Collapse
Affiliation(s)
- Veronica Biga
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Joshua Hawley
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Ximena Soto
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Emma Johns
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Daniel Han
- Department of MathematicsSchool of Natural SciencesFaculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - Hayley Bennett
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Antony D Adamson
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Jochen Kursawe
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Paul Glendinning
- Department of MathematicsSchool of Natural SciencesFaculty of Science and EngineeringThe University of ManchesterManchesterUK
| | - Cerys S Manning
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| | - Nancy Papalopulu
- Faculty of Biology Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
33
|
Zhang J, Li N, Lu S, Chen Y, Shan L, Zhao X, Xu Y. The role of Notch ligand Jagged1 in osteosarcoma proliferation, metastasis, and recurrence. J Orthop Surg Res 2021; 16:226. [PMID: 33781318 PMCID: PMC8006358 DOI: 10.1186/s13018-021-02372-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone cancer occurring in young adults and the 5-year survival rate of patients with metastatic osteosarcoma is less than 30% due to high metastatic recurrence and drug resistance. Notch is a highly conserved cell to cell signaling pathway in evolution, and Jagged1 is an important ligand of Notch. Although some studies have found that Notch receptors and ligands including Jagged1 were highly expressed in osteosarcoma tissues and osteosarcoma cells, the role of Jagged1 in osteosarcoma progression and metastasis are still not clear. METHODS Tumor tissues were collected from 68 patients and immunohistochemical staining was employed to group these patients by expression of Jagged1. Real-time quantitative PCR and Western blotting were used to detect the expression of Jagged1. We used siRNA to knockdown the expression of Jagged1 in F5M2 cells. Colony formation assay and MTT were employed to detect and analyze the proliferation of F5M2 cells with or without knockdown of Jagged1. Transwell assay were used to detect the migration and invasion of F5M2 cells. RESULTS In this study, we found that the high expression of Jagged1 is closely related to the metastasis and recurrence of osteosarcoma in 68 clinical specimens. The expression of Jagged1 in F5M2 cells with high metastasis was significantly higher than that in F4 cells with low metastasis. Knockdown of Jagged1 led to lower ability of proliferation, migration, and invasion in F5M2 cells. CONCLUSION The high expression of Jagged1 is closely related to the metastasis and recurrence of osteosarcoma. Knockdown of Jagged1 significantly reduced the proliferation, migration, and invasion of osteosarcoma cells. Our results suggested that knockdown of Jagged1 may be a potentially effective treatment for metastatic osteosarcoma.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China
| | - Na Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Siyu Lu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China
| | - Yanling Chen
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China
| | - Lequn Shan
- Department of Orthopedic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingcheng Zhao
- School of Aerospace Medicine, Fourth Military Medical University, Changle West Road 169#, Xi'an, 710032, China.
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Daguan Road 212#, Kunming, 650032, China.
| |
Collapse
|
34
|
Analysis of the Conditions That Affect the Selective Processing of Endogenous Notch1 by ADAM10 and ADAM17. Int J Mol Sci 2021; 22:ijms22041846. [PMID: 33673337 PMCID: PMC7918056 DOI: 10.3390/ijms22041846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is critical for controlling a variety of cell fate decisions during metazoan development and homeostasis. This unique, highly conserved signaling pathway relies on cell-to-cell contact, which triggers the proteolytic release of the cytoplasmic domain of the membrane-anchored transcription factor Notch from the membrane. A disintegrin and metalloproteinase (ADAM) proteins are crucial for Notch activation by processing its S2 site. While ADAM10 cleaves Notch1 under physiological, ligand-dependent conditions, ADAM17 mainly cleaves Notch1 under ligand-independent conditions. However, the mechanism(s) that regulate the distinct contributions of these ADAMs in Notch processing remain unclear. Using cell-based assays in mouse embryonic fibroblasts (mEFs) lacking ADAM10 and/or ADAM17, we aimed to clarify what determines the relative contributions of ADAM10 and ADAM17 to ligand-dependent or ligand-independent Notch processing. We found that EDTA-stimulated ADAM17-dependent Notch1 processing is rapid and requires the ADAM17-regulators iRhom1 and iRhom2, whereas the Delta-like 4-induced ligand-dependent Notch1 processing is slower and requires ADAM10. The selectivity of ADAM17 for EDTA-induced Notch1 processing can most likely be explained by a preference for ADAM17 over ADAM10 for the Notch1 cleavage site and by the stronger inhibition of ADAM10 by EDTA. The physiological ADAM10-dependent processing of Notch1 cannot be compensated for by ADAM17 in Adam10-/- mEFs, or by other ADAMs shown here to be able to cleave the Notch1 cleavage site, such as ADAMs9, 12, and 19. Collectively, these results provide new insights into the mechanisms underlying the substrate selectivity of ADAM10 and ADAM17 towards Notch1.
Collapse
|
35
|
Non-Canonical Functions of the ARF Tumor Suppressor in Development and Tumorigenesis. Biomolecules 2021; 11:biom11010086. [PMID: 33445626 PMCID: PMC7827855 DOI: 10.3390/biom11010086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
P14ARF (ARF; Alternative Reading Frame) is an extensively characterized tumor suppressor which, in response to oncogenic stimuli, mediates cell cycle arrest and apoptosis via p53-dependent and independent routes. ARF has been shown to be frequently lost through CpG island promoter methylation in a wide spectrum of human malignancies, such as colorectal, prostate, breast, and gastric cancers, while point mutations and deletions in the p14ARF locus have been linked with various forms of melanomas and glioblastomas. Although ARF has been mostly studied in the context of tumorigenesis, it has been also implicated in purely developmental processes, such as spermatogenesis, and mammary gland and ocular development, while it has been additionally involved in the regulation of angiogenesis. Moreover, ARF has been found to hold important roles in stem cell self-renewal and differentiation. As is often the case with tumor suppressors, ARF functions as a pleiotropic protein regulating a number of different mechanisms at the crossroad of development and tumorigenesis. Here, we provide an overview of the non-canonical functions of ARF in cancer and developmental biology, by dissecting the crosstalk of ARF signaling with key oncogenic and developmental pathways.
Collapse
|
36
|
Kamińska A, Marek S, Pardyak L, Brzoskwinia M, Bilinska B, Hejmej A. Crosstalk between Androgen-ZIP9 Signaling and Notch Pathway in Rodent Sertoli Cells. Int J Mol Sci 2020; 21:ijms21218275. [PMID: 33167316 PMCID: PMC7663815 DOI: 10.3390/ijms21218275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Our recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells. Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC). We found that testosterone (10-8 M-10-6 M) increased the expression of Notch1 receptor, its active form Notch1 intracellular domain (N1ICD) (p < 0.05, p < 0.01, p < 0.001), and the effector genes Hey1 (p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in Sertoli cells. Knockdown of AR or ZIP9 as well as antiandrogen exposure experiments revealed that (i) action of androgens via both AR and ZIP9 controls Notch1/N1ICD expression and transcriptional activity of recombination signal binding protein (RBP-J), (ii) AR-dependent signaling regulates Hey1 expression, (iii) ZIP9-dependent pathway regulates Hes1 expression. Our findings indicate a crosstalk between androgen and Notch signaling in Sertoli cells and point to cooperation of classical and non-classical androgen signaling pathways in controlling Sertoli cell function.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Correspondence:
| |
Collapse
|
37
|
Panta M, Kump AJ, Dalloul JM, Schwab KR, Ahmad SM. Three distinct mechanisms, Notch instructive, permissive, and independent, regulate the expression of two different pericardial genes to specify cardiac cell subtypes. PLoS One 2020; 15:e0241191. [PMID: 33108408 PMCID: PMC7591092 DOI: 10.1371/journal.pone.0241191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
The development of a complex organ involves the specification and differentiation of diverse cell types constituting that organ. Two major cell subtypes, contractile cardial cells (CCs) and nephrocytic pericardial cells (PCs), comprise the Drosophila heart. Binding sites for Suppressor of Hairless [Su(H)], an integral transcription factor in the Notch signaling pathway, are enriched in the enhancers of PC-specific genes. Here we show three distinct mechanisms regulating the expression of two different PC-specific genes, Holes in muscle (Him), and Zn finger homeodomain 1 (zfh1). Him transcription is activated in PCs in a permissive manner by Notch signaling: in the absence of Notch signaling, Su(H) forms a repressor complex with co-repressors and binds to the Him enhancer, repressing its transcription; upon alleviation of this repression by Notch signaling, Him transcription is activated. In contrast, zfh1 is transcribed by a Notch-instructive mechanism in most PCs, where mere alleviation of repression by preventing the binding of Su(H)-co-repressor complex is not sufficient to activate transcription. Our results suggest that upon activation of Notch signaling, the Notch intracellular domain associates with Su(H) to form an activator complex that binds to the zfh1 enhancer, and that this activator complex is necessary for bringing about zfh1 transcription in these PCs. Finally, a third, Notch-independent mechanism activates zfh1 transcription in the remaining, even skipped-expressing, PCs. Collectively, our data show how the same feature, enrichment of Su(H) binding sites in PC-specific gene enhancers, is utilized by two very distinct mechanisms, one permissive, the other instructive, to contribute to the same overall goal: the specification and differentiation of a cardiac cell subtype by activation of the pericardial gene program. Furthermore, our results demonstrate that the zfh1 enhancer drives expression in two different domains using distinct Notch-instructive and Notch-independent mechanisms.
Collapse
Affiliation(s)
- Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - Andrew J. Kump
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - John M. Dalloul
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
- Terre Haute South Vigo High School, Terre Haute, Indiana, United States of America
- Stanford University, Stanford, California, United States of America
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
38
|
McCarter AC, Gatta GD, Melnick A, Kim E, Sha C, Wang Q, Nalamolu JK, Liu Y, Keeley TM, Yan R, Sun M, Kodgule R, Kunnath N, Ambesi-Impiombato A, Kuick R, Rao A, Ryan RJH, Kee BL, Samuelson LC, Ostrowski MC, Ferrando AA, Chiang MY. Combinatorial ETS1-dependent control of oncogenic NOTCH1 enhancers in T-cell leukemia. Blood Cancer Discov 2020; 1:178-197. [PMID: 32924017 DOI: 10.1158/2643-3230.bcd-20-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Notch activation is highly prevalent among cancers, in particular T-cell acute lymphoblastic leukemia (T-ALL). However, the use of pan-Notch inhibitors to treat cancers has been hampered by adverse effects, particularly intestinal toxicities. To circumvent this barrier in T-ALL, we aimed to inhibit ETS1, a developmentally important T-cell transcription factor previously shown to co-bind Notch response elements. Using complementary genetic approaches in mouse models, we show that ablation of Ets1 leads to strong Notch-mediated suppressive effects on T-cell development and leukemogenesis, but milder intestinal effects than pan-Notch inhibitors. Mechanistically, genome-wide chromatin profiling studies demonstrate that Ets1 inactivation impairs recruitment of multiple Notch-associated factors and Notch-dependent activation of transcriptional elements controlling major Notch-driven oncogenic effector pathways. These results uncover previously unrecognized hierarchical heterogeneity of Notch-controlled genes and points to Ets1-mediated enucleation of Notch-Rbpj transcriptional complexes as a target for developing specific anti-Notch therapies in T-ALL that circumvent the barriers of pan-Notch inhibition.
Collapse
Affiliation(s)
- Anna C McCarter
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI.,These authors contributed equally
| | - Giusy Della Gatta
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,These authors contributed equally
| | - Ashley Melnick
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Erin Kim
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Cher Sha
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jahnavi K Nalamolu
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Mengxi Sun
- Department of Pathology, University of Chicago
| | - Rohan Kodgule
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Rork Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | | | - Linda C Samuelson
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY.,Department of Pediatrics, Columbia University Medical Center, New York, NY.,Department of Systems Biology, Columbia University, New York, NY
| | - Mark Y Chiang
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI.,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
39
|
Binary Expression Enhances Reliability of Messaging in Gene Networks. ENTROPY 2020; 22:e22040479. [PMID: 33286254 PMCID: PMC7516962 DOI: 10.3390/e22040479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023]
Abstract
The promoter state of a gene and its expression levels are modulated by the amounts of transcription factors interacting with its regulatory regions. Hence, one may interpret a gene network as a communicating system in which the state of the promoter of a gene (the source) is communicated by the amounts of transcription factors that it expresses (the message) to modulate the state of the promoter and expression levels of another gene (the receptor). The reliability of the gene network dynamics can be quantified by Shannon's entropy of the message and the mutual information between the message and the promoter state. Here we consider a stochastic model for a binary gene and use its exact steady state solutions to calculate the entropy and mutual information. We show that a slow switching promoter with long and equally standing ON and OFF states maximizes the mutual information and reduces entropy. That is a binary gene expression regime generating a high variance message governed by a bimodal probability distribution with peaks of the same height. Our results indicate that Shannon's theory can be a powerful framework for understanding how bursty gene expression conciliates with the striking spatio-temporal precision exhibited in pattern formation of developing organisms.
Collapse
|