1
|
Parenti G, Fecarotta S, Alagia M, Attaianese F, Verde A, Tarallo A, Gragnaniello V, Ziagaki A, Guimaraes MJ, Aguiar P, Hahn A, Azevedo O, Donati MA, Kiec-Wilk B, Scarpa M, van der Beek NAME, Del Toro Riera M, Germain DP, Huidekoper H, van den Hout JMP, van der Ploeg AT. The European reference network for metabolic diseases (MetabERN) clinical pathway recommendations for Pompe disease (acid maltase deficiency, glycogen storage disease type II). Orphanet J Rare Dis 2024; 19:408. [PMID: 39482698 PMCID: PMC11529438 DOI: 10.1186/s13023-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Clinical pathway recommendations (CPR) are based on existing guidelines and deliver a short overview on how to deal with a specific diagnosis, resulting therapy and follow-up. In this paper we propose a methodology for developing CPRs for Pompe disease, a metabolic myopathy caused by deficiency of lysosomal acid alpha-glucosidase. The CPR document was developed within the activities of the MetabERN, a non-profit European Reference Network for Metabolic Diseases established by the European Union. A working group was selected among members of the MetabERN lysosomal storage disease subnetwork, with specific expertise in the care of Pompe disease, and patient support group representatives. The working strategy was based on a systematic literature search to develop a database, followed by quality assessment of the studies selected from the literature, and by the development of the CPR document according to a matrix provided by MetabERN. Quality assessment of the literature and collection of citations was conducted according to the AGREE II criteria and Grading of Recommendations, Assessment, Development and Evaluation methodology. General aspects were addressed in the document, including pathophysiology, genetics, frequency, classification, manifestations and clinical approach, laboratory diagnosis and multidisciplinary evaluation, therapy and supportive measures, follow-up, monitoring, and pregnancy. The CPR document that was developed was intended to be a concise and easy-to-use tool for standardization of care for patients among the healthcare providers that are members of the network or are involved in the care for Pompe disease patients.
Collapse
Affiliation(s)
- Giancarlo Parenti
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy.
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy.
| | - Simona Fecarotta
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Marianna Alagia
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Federica Attaianese
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Alessandra Verde
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Antonietta Tarallo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Vincenza Gragnaniello
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Athanasia Ziagaki
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Endocrinology and Metabolism, Center of Excellence for Rare Metabolic Diseases in Adults, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Jose' Guimaraes
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Pneumology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Patricio Aguiar
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Clinica Universitaria de Medicina I, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Hahn
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Child Neurology, Justus-Liebig University, Giessen, Germany
| | - Olga Azevedo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Alice Donati
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Beata Kiec-Wilk
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Unit of Rare Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- The John Paul II Specjalist Hospital in Kraków, Kraków, Poland
| | - Maurizio Scarpa
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Nadine A M E van der Beek
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mireja Del Toro Riera
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic Unit, Department of Pediatric Neurology, Hospital Universitario Vall d'Hebron Barcelona, Barcelona, Spain
| | - Dominique P Germain
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Division of Medical Genetics, University of Versailles, Montigny, France
| | - Hidde Huidekoper
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
2
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
3
|
Najac C, van der Beek NAME, Boer VO, van Doorn PA, van der Ploeg AT, Ronen I, Kan HE, van den Hout JMP. Brain glycogen build-up measured by magnetic resonance spectroscopy in classic infantile Pompe disease. Brain Commun 2024; 6:fcae303. [PMID: 39309683 PMCID: PMC11416038 DOI: 10.1093/braincomms/fcae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Classic infantile Pompe disease is caused by abnormal lysosomal glycogen accumulation in multiple tissues, including the brain due to a deficit in acid α-glucosidase. Although treatment with recombinant human acid α-glucosidase has dramatically improved survival, recombinant human acid α-glucosidase does not reach the brain, and surviving classic infantile Pompe patients develop progressive cognitive deficits and white matter lesions. We investigated the feasibility of measuring non-invasively glycogen build-up and other metabolic alterations in the brain of classic infantile Pompe patients. Four classic infantile patients (8-16 years old) and 4 age-matched healthy controls were scanned on a 7 T MRI scanner. We used T2-weighted MRI to assess the presence of white matter lesions as well as 1H magnetic resonance spectroscopy and magnetic resonance spectroscopy imaging to obtain the neurochemical profile and its spatial distribution, respectively. All patients had widespread white matter lesions on T2-weighted images. Magnetic resonance spectroscopy data from a single volume of interest positioned in the periventricular white matter showed a clear shift in the neurochemical profile, particularly a significant increase in glycogen (result of acid α-glucosidase deficiency) and decrease in N-acetyl-aspartate (marker of neuronal damage) in patients. Magnetic resonance spectroscopy imaging results were in line and showed a widespread accumulation of glycogen and a significant lower level of N-acetyl-aspartate in patients. Our results illustrate the unique potential of 1H magnetic resonance spectroscopy (imaging) to provide a non-invasive readout of the disease pathology in the brain. Further study will assess its potential to monitor disease progression and the correlation with cognitive decline.
Collapse
Affiliation(s)
- Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Vincent O Boer
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, DK2650 Copenhagen, Denmark
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, East Sussex BN1 9RR, UK
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Duchenne Center Netherlands, 2333 ZA Leiden, The Netherlands
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Kishnani PS, Chien YH, Berger KI, Thibault N, Sparks S. Clinical insight meets scientific innovation to develop a next generation ERT for Pompe disease. Mol Genet Metab 2024; 143:108559. [PMID: 39154400 DOI: 10.1016/j.ymgme.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Years of research into the structure, processing, and function of acid alpha-glucosidase led to the development and 2006 approval of alglucosidase alfa (recombinant human acid alpha-glucosidase, Myozyme®/Lumizyme®), an enzyme replacement therapy and the first approved treatment for Pompe disease. Alglucosidase alfa has been a lifesaving treatment for patients with infantile-onset Pompe disease and radically improved daily life for patients with late-onset Pompe disease; however, long-term experience with alglucosidase alfa unraveled key unmet needs in these populations. Despite treatment, Pompe disease continues to progress, especially from a skeletal muscle perspective, resulting in a multitude of functional limitations. Strong collaboration between the scientific and patient communities led to increased awareness of Pompe disease, a better understanding of disease pathophysiology, knowledge of the clinical course of the disease as patients surpassed the first decade of life, and the strengths and limitations of enzyme replacement therapy. Taken together, these advancements spurred the need for development of a next generation of enzyme replacement therapy and provided a framework for progress toward other novel treatments. This review provides an overview of the development of avalglucosidase alfa as a model to highlight the interaction between clinical experience with existing treatments, the role of the clinician scientist, translational research at both system and cellular levels, and the iterative and collaborative process that optimizes the development of therapeutics.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
5
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Cheng JC, Yang CF, Chou CC, Shu YM, Liu PC, Lo KW, Chen CW. The lived experience of mothers caring for school-age children with Pompe disease: A qualitative study. J Pediatr Nurs 2024; 79:24-31. [PMID: 39190967 DOI: 10.1016/j.pedn.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE To explore the lived experiences of mothers caring for school-age children with Pompe disease. DESIGN AND METHODS A qualitative study using a descriptive phenomenology approach. Semi-structured interviews were conducted from October to December 2022 with 10 mothers of school-age children diagnosed with Pompe disease, which were identified through the Taiwan Pompe Disease Association. Colaizzi's phenomenological method was employed for data analysis. RESULTS The study identified five themes in the caregiving experiences of mothers: 1. unwavering parenting beliefs; 2. child-centric approach; 3. focus on peer relationships and coping strategies; 4. integration of learning, treatment, and rehabilitation; and 5. embracing and navigating life's challenges. Mothers balanced education, treatment, and rehabilitation for their children with Pompe disease, offering perspectives into the caregiving experience. CONCLUSIONS This study highlights the complex experiences of mothers caring for children with Pompe disease, emphasizing the importance of comprehensive support. PRACTICE IMPLICATIONS Insights into the perspectives of mothers can aid health-care professionals in understanding the challenges faced by families with children diagnosed with Pompe disease and can enable the development of strategies for providing comprehensive psychological support to improve mental health outcomes for these children and their families. Increased awareness among health-care professionals and in the society leads to an informed and empathetic approach to addressing the unique challenges faced by children with Pompe disease and their families.
Collapse
Affiliation(s)
- Ju-Chun Cheng
- Department of Nursing, Cathay General Hospital Hsinchu, Hsinchu, Taiwan
| | - Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chen Chou
- Institute of Community Health Care, College of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ying-Mei Shu
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Pei-Ching Liu
- Department of Nursing, College of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Kao-Wen Lo
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Chi-Wen Chen
- Department of Nursing, College of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
van den Dorpel JJA, Mackenbach MJ, Dremmen MHG, van der Vlugt WMC, Rizopoulos D, van Doorn PA, van der Ploeg AT, Muetzel R, van der Beek NAME, van den Hout JMP. Long term survival in patients with classic infantile Pompe disease reveals a spectrum with progressive brain abnormalities and changes in cognitive functioning. J Inherit Metab Dis 2024; 47:716-730. [PMID: 38584574 DOI: 10.1002/jimd.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
The aim of this longitudinal cohort study, is to provide more insight into the pattern of brain abnormalities, and possible consequences for cognitive functioning, in patients with classic infantile Pompe disease. We included 19 classic infantile Pompe patients (median age last assessment 8.9 years, range 1.5-22.5 years; 5/19 CRIM negative), treated with ERT. Using MR imaging of the brain (T1, T2, and FLAIR acquisitions), we classified progression of brain abnormalities on a 12-point rating scale at multiple time points throughout follow-up. Additionally we noted specific white matter patterns and examined atrophy. Cognitive development was studied using Wechsler IQ assessments obtained by certified neuropsychologists. The association between age and cognitive functioning, and MRI ratings and cognitive functioning was assessed by linear regression models. All but one patient developed brain abnormalities. The abnormalities progressed in a similar pattern throughout the brain, with early involvement of periventricular white matter, later followed by subcortical white matter, gray matter structures, and juxtacortical U-fibers. We found a significant decline (p < 0.01), with increasing age for full scale IQ, performance IQ and processing speed, but not for verbal IQ (p = 0.17). Each point increment in the 12-point MRI rating scale was associated with a significant decline (3.1-6.0 points) in all the IQ index scores (p < 0.05). The majority of long-term surviving patients in our cohort develop incremental brain MRI abnormalities and decline in cognitive functioning. This highlights the need for new therapies that can cross the blood-brain barrier in order to treat this CNS phenotype.
Collapse
Affiliation(s)
- J J A van den Dorpel
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - M J Mackenbach
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - M H G Dremmen
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - W M C van der Vlugt
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - D Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - P A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - R Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - N A M E van der Beek
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - J M P van den Hout
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| |
Collapse
|
9
|
Steffens P, Weiss D, Perez A, Appel M, Weber P, Weiss C, Stoltenburg C, Ehinger U, von der Hagen M, Schallner J, Claussen B, Lode I, Hahn A, Schuler R, Ruß L, Ziegler A, Denecke J, Johannsen J. Cognitive function in SMA patients with 2 or 3 SMN2 copies treated with SMN-modifying or gene addition therapy during the first year of life. Eur J Paediatr Neurol 2024; 51:17-23. [PMID: 38772209 DOI: 10.1016/j.ejpn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neuromuscular disease, causing progressive muscle weakness due to loss of lower motoneurons. Since 2017, three therapies, two modifying gene transcription and one adding the defective gene, have been approved with comparable efficacy on motor outcome. Data on cognitive outcomes of treated SMA type 1 patients is limited. The aim of this study was to evaluate cognitive function in symptomatic and presymptomatic SMA type 1 patients with two or three SMN2 copies who received SMN-modifying or gene-addition therapy in the first year of life. METHODS Cognitive testing was performed in 20 patients, including 19 symptomatic SMA type 1 patients with up to three SMN2 copies and 1 pre-symptomatically treated patient. Children were tested using Bayley Scales of Infant Development (BSID-III) at the age of 2 or 3 years or the Wechsler Preschool and Primary Scale of Intelligence (WPSII-IV) at the of age of 5 years. RESULTS 11/20 patients showed subnormal cognitive development. Boys had significantly lower cognitive scores. Patients requiring assisted ventilation or feeding support were more likely to have cognitive deficits. Achieving more motor milestones was associated with a better cognitive outcome. CONCLUSION Treated patients with SMA type 1 have heterogeneous cognitive function with 55 % of patients showing deficits. Risk factors for cognitive impairment in our cohort were male gender and need for assisted ventilation or feeding support. Therefore, cognitive assessment should be included in the standard of care to allow early identification of deficits and potential therapeutic interventions.
Collapse
Affiliation(s)
- Paula Steffens
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany.
| | - Deike Weiss
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| | - Anna Perez
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| | - Manuel Appel
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| | - Philipp Weber
- University Medical Center Hamburg-Eppendorf, Institute of Medical Biometry and Epidemiology, Hamburg, Germany
| | - Claudia Weiss
- Charité Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Corinna Stoltenburg
- Charité Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ute Ehinger
- Charité Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maja von der Hagen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jens Schallner
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Birte Claussen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ilka Lode
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Hahn
- Department of General Pediatrics and Neonatology and Department of Child Neurology, University Hospital, Gießen, Germany
| | - Rahel Schuler
- Department of General Pediatrics and Neonatology and Department of Child Neurology, University Hospital, Gießen, Germany
| | - Lena Ruß
- Department of General Pediatrics and Neonatology and Department of Child Neurology, University Hospital, Gießen, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonas Denecke
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| | - Jessika Johannsen
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| |
Collapse
|
10
|
Schoser B, Raben N, Varfaj F, Walzer M, Toscano A. Acid α-glucosidase (GAA) activity and glycogen content in muscle biopsy specimens of patients with Pompe disease: A systematic review. Mol Genet Metab Rep 2024; 39:101085. [PMID: 38698877 PMCID: PMC11064613 DOI: 10.1016/j.ymgmr.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Pompe disease is a rare genetic disorder characterized by a deficiency of acid α-glucosidase (GAA), leading to the accumulation of glycogen in various tissues, especially in skeletal muscles. The disease manifests as a large spectrum of phenotypes from infantile-onset Pompe disease (IOPD) to late-onset Pompe disease (LOPD), depending on the age of symptoms onset. Quantifying GAA activity and glycogen content in skeletal muscle provides important information about the disease severity. However, the distribution of GAA and glycogen levels in skeletal muscles from healthy individuals and those impacted by Pompe disease remains poorly understood, and there is currently no universally accepted standard assay for GAA activity measurement. This systematic literature review aims to provide an overview of the available information on GAA activity and glycogen content levels in skeletal muscle biopsies from patients with Pompe disease. A structured review of PubMed and Google Scholar literature (with the latter used to check that no additional publications were identified) was conducted to identify peer-reviewed publications on glycogen storage disease type II [MeSH term] + GAA, protein human (supplementary concept), Pompe, muscle; and muscle, acid alpha-glucosidase. A limit of English language was applied. Results were grouped by methodologies used to quantify GAA activity and glycogen content in skeletal muscle. The search and selection strategy were devised and carried out in line with Preferred Reporting of Items in Systematic Reviews and Meta-Analysis guidelines and documented using a flowchart. Bibliographies of papers included in the analysis were reviewed and applicable publications not already identified in the search were included. Of the 158 articles retrieved, 24 (comprising >100 muscle biopsies from >100 patients) were included in the analysis, with four different assays. Analysis revealed that patients with IOPD exhibited markedly lower GAA activity in skeletal muscles than those with LOPD, regardless of the measurement method employed. Additionally, patients with IOPD had notably higher glycogen content levels in skeletal muscles than those with LOPD. In general, however, it was difficult to fully characterize GAA activity because of the different methods used. The findings underscore the challenges in the interpretation and comparison of the results across studies because of the substantial methodological variations. There is a need to establish standardized reference ranges of GAA activity and glycogen content in healthy individuals and in Pompe disease patients based on globally standardized methods to improve comparability and reliability in assessing this rare disease.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians University, Munich, Germany
| | | | | | - Mark Walzer
- Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Antonio Toscano
- ERN-NMD Center of Messina for Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Do H, Meena NK, Raben N. Failure of Autophagy in Pompe Disease. Biomolecules 2024; 14:573. [PMID: 38785980 PMCID: PMC11118179 DOI: 10.3390/biom14050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Nina Raben
- M6P Therapeutics, 20 S. Sarah Street, St. Louis, MO 63108, USA; (H.D.); (N.K.M.)
| |
Collapse
|
12
|
Mochel F. What can pediatricians learn from adult inherited metabolic diseases? J Inherit Metab Dis 2024. [PMID: 38520225 DOI: 10.1002/jimd.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The field of inherited metabolic diseases (IMD) has initially emerged and developed over decades in pediatric departments. Still, today, about 50% of patients with IMD are adults, and adult metabolic medicine (AMM) is getting more structured at national and international levels. There are several domains in which pediatricians can learn from AMM. First, long-term evolution of IMD patients, especially those treated since childhood, is critical to determine nutritional and neuropsychiatric outcomes in adults so that these outcomes can be better monitored, and patient care adjusted as much as possible from childhood. Conversely, the observation of attenuated phenotypes in adults of IMD known to present with severe phenotypes in children calls for caution in the development of newborn screening programs and, more largely, in the interpretation of next-generation sequencing data. Third, it is important for pediatricians to be familiar with adult-onset IMD as they expand our understanding of metabolism, including in children, such as oxysterols and glycogen metabolism. Last, the identification of common molecular and cellular mechanisms in neurodevelopment and neurodegeneration opens the way to synergistic therapeutic developments that will benefit both fields of pediatric and adult medicine. Overall, these observations underline the need of strong interdisciplinarity between pediatricians and adult specialists for the diagnosis and the treatment of IMD well beyond the issues of patient transition from pediatric to adult medicine.
Collapse
Affiliation(s)
- Fanny Mochel
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Medical Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Paris, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris Brain Institute, ICM, Paris, France
| |
Collapse
|
13
|
Kenney-Jung D, Korlimarla A, Spiridigliozzi GA, Wiggins W, Malinzak M, Nichting G, Jung SH, Sun A, Wang RY, Al Shamsi A, Phornphutkul C, Owens J, Provenzale JM, Kishnani PS. Severe CNS involvement in a subset of long-term treated children with infantile-onset Pompe disease. Mol Genet Metab 2024; 141:108119. [PMID: 38184429 PMCID: PMC11080415 DOI: 10.1016/j.ymgme.2023.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION The standard of care for patients with infantile-onset Pompe disease (IOPD) is enzyme replacement therapy (ERT), which does not cross the blood brain barrier. While neuromuscular manifestations of IOPD are well-described, central nervous system (CNS) manifestations of this disorder are far less characterized. Here we describe severe CNS-related neurological manifestations including seizures and encephalopathy in six individuals with IOPD. METHOD We identified six children with IOPD who developed CNS manifestations such as seizures and/or encephalopathy. We studied their brain magnetic resonance imaging scans (MRIs) and graded the severity of white matter hyperintensities (WMHI) using the Fazekas scale scoring system as previously published. Longitudinal cognitive measures were available from 4/6 children. RESULTS All six IOPD patients (4 males/2 females) had been treated with ERT for 12-15 years. Seizures and/or encephalopathy were noted at a median age at onset of 11.9 years (range 9-15 years). All were noted to have extensive WMHI in the brain MRIs and very high Fazekas scores which preceded the onset of neurological symptoms. Longitudinal IQ scores from four of these children suggested developmental plateauing. DISCUSSION Among a subset of IOPD patients on long-term ERT, CNS manifestations including hyperreflexia, encephalopathy and seizures may become prominent, and there is likely an association between these symptoms and significant WMHI on MRI. Further study is needed to identify risk factors for CNS deterioration among children with IOPD and develop interventions to prevent neurological decline.
Collapse
Affiliation(s)
- Daniel Kenney-Jung
- Division of Neurology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Aditi Korlimarla
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Gail A Spiridigliozzi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Walter Wiggins
- Department of Neuroradiology, Duke University Medical Center, Durham, NC, United States of America
| | - Michael Malinzak
- Department of Neuroradiology, Duke University Medical Center, Durham, NC, United States of America
| | - Gretchen Nichting
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Seung-Hye Jung
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Angela Sun
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States of America
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, Orange, CA, United States of America
| | - Aisha Al Shamsi
- Genetic Metabolic Division, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Chanika Phornphutkul
- The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - James Owens
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States of America
| | - James M Provenzale
- Department of Neuroradiology, Duke University Medical Center, Durham, NC, United States of America
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America.
| |
Collapse
|
14
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
15
|
Liang Q, Vlaar EC, Pijnenburg JM, Rijkers E, Demmers JAA, Vulto AG, van der Ploeg AT, van Til NP, Pijnappel WWMP. Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease. J Proteomics 2024; 291:105037. [PMID: 38288553 DOI: 10.1016/j.jprot.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 02/01/2024]
Abstract
Pompe disease is a lysosomal storage disorder caused by deficiency of acid alpha-glucosidase (GAA), resulting in glycogen accumulation with profound pathology in skeletal muscle. We recently developed an optimized form of lentiviral gene therapy for Pompe disease in which a codon-optimized version of the GAA transgene (LV-GAAco) was fused to an insulin-like growth factor 2 (IGF2) peptide (LV-IGF2.GAAco), to promote cellular uptake via the cation-independent mannose-6-phosphate/IGF2 receptor. Lentiviral gene therapy with LV-IGF2.GAAco showed superior efficacy in heart, skeletal muscle, and brain of Gaa -/- mice compared to gene therapy with untagged LV-GAAco. Here, we used quantitative mass spectrometry using TMT labeling to analyze the muscle proteome and the response to gene therapy in Gaa -/- mice. We found that muscle of Gaa -/- mice displayed altered levels of proteins including those with functions in the CLEAR signaling pathway, autophagy, cytoplasmic glycogen metabolism, calcium homeostasis, redox signaling, mitochondrial function, fatty acid transport, muscle contraction, cytoskeletal organization, phagosome maturation, and inflammation. Gene therapy with LV-GAAco resulted in partial correction of the muscle proteome, while gene therapy with LV-IGF2.GAAco resulted in a near-complete restoration to wild type levels without inducing extra proteomic changes, supporting clinical development of lentiviral gene therapy for Pompe disease. SIGNIFICANCE: Lysosomal glycogen accumulation is the primary cause of Pompe disease, and leads to a cascade of pathological events in cardiac and skeletal muscle and in the central nervous system. In this study, we identified the proteomic changes that are caused by Pompe disease in skeletal muscle of a mouse model. We showed that lentiviral gene therapy with LV-IGF2.GAAco nearly completely corrects disease-associated proteomic changes. This study supports the future clinical development of lentiviral gene therapy with LV-IGF2.GAAco as a new treatment option for Pompe disease.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Eva C Vlaar
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Joon M Pijnenburg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Erikjan Rijkers
- Proteomics Center, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Arnold G Vulto
- Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Niek P van Til
- Department of Hematology, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands.
| |
Collapse
|
16
|
Burlina AP, Manara R, Gueraldi D. Lysosomal storage diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:147-172. [PMID: 39322377 DOI: 10.1016/b978-0-323-99209-1.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Lysosomal storage disorders (LSDs) are a group of inherited metabolic diseases caused by dysfunction of the lysosomal system, with subsequent progressive accumulation of macromolecules, activation of inflammatory response, and cell death. Neurologic damage is almost always present, and it is usually degenerative. White matter (WM) involvement may be primary or secondary. Diseases with primary WM involvement are leukodystrophies, demyelinating (Krabbe disease and metachromatic leukodystrophy), and hypomyelinating leukodystrophies (free sialic acid storage disease, fucosidosis, and mucolipidosis type IV). LSDs with secondary WM involvement are classified as leukoencephalopathies and include gangliosidosis, mucopolysaccharidosis (MPS), ceroid neuronal lipofuscinosis, multiple sulfatase deficiency, alpha-mannosidosis, Pompe disease, and Fabry disease. Neurologic manifestations may overlap among LSDs and include developmental delays, motor, cognitive and speech impairments, seizures, visual failure, ataxia, and extrapyramidal signs. Most of LSDs are typically present in early or late infancy, but juvenile and adult forms also exist and are associated with predominantly neuropsychiatric and behavioral symptoms. The outcome of these disorders is generally poor and specific treatments (enzyme replacement therapy, hematopoietic stem cell transplantation, or gene therapy) are only available in a small number of them.
Collapse
Affiliation(s)
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University Hospital of Padova, Padova, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| |
Collapse
|
17
|
Martinez-Marin RJ, Reyes-Leiva D, Nascimento A, Muelas N, Dominguez-González C, Paradas C, Olivé M, García-Romero M, Pascual-Pascual SI, Grau JM, Barba-Romero MA, Gomez-Caravaca MT, de Las Heras J, Casquero P, Mendoza MD, de León JC, Gutierrez A, Morís G, Blanco-Lago R, Ramos-Fransi A, Pintós G, García-Antelo MJ, Rabasa M, Morgado Y, Usón M, Miralles FJ, Bárcena-Llona JE, Gómez-Belda AB, Pedraza-Hueso MI, Hortelano M, Colomé A, Garcia-Martin G, Lopez de Munain A, Jericó I, Galán-Dávila L, Pardo J, Salgueiro-Origlia G, Alonso-Pérez J, Pla-Junca F, Schiava M, Segovia-Simón S, Díaz-Manera J. Description of clinical and genetic features of 122 patients included in the Spanish Pompe registry. Neuromuscul Disord 2024; 34:1-8. [PMID: 38087756 DOI: 10.1016/j.nmd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023]
Abstract
Pompe disease is a rare genetic disorder with an estimated prevalence of 1:60.000. The two main phenotypes are Infantile Onset Pompe Disease (IOPD) and Late Onset Pompe Disease (LOPD). There is no published data from Spain regarding the existing number of cases, regional distribution, clinical features or, access and response to the treatment. We created a registry to collect all these data from patients with Pompe in Spain. Here, we report the data of the 122 patients registered including nine IOPD and 113 LOPD patients. There was a high variability in how the diagnosis was obtained and how the follow-up was performed among different centres. Seven IOPD patients were still alive being all treated with enzymatic replacement therapy (ERT) at last visit. Ninety four of the 113 LOPD patients had muscle weakness of which 81 were receiving ERT. We observed a progressive decline in the results of muscle function tests during follow-up. Overall, the Spanish Pompe Registry is a valuable resource for understanding the demographics, patient's journey and clinical characteristics of patients in Spain. Our data supports the development of agreed guidelines to ensure that the care provided to the patients is standardized across the country.
Collapse
Affiliation(s)
- Rafael Jenaro Martinez-Marin
- NeuService, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital - Universidad Autónoma de Madrid, Madrid, Spain
| | - David Reyes-Leiva
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Andrés Nascimento
- Servicio de Neuropediatría, CIBERER, ERN-NMD, Hospital Sant Joan de Deu, Esplugues de Llobregat, Barcelona, Spain
| | - Nuria Muelas
- CIBERER, Spain; Neurology Service, Hospital La Fe de Valencia, Valencia, Spain
| | - C Dominguez-González
- CIBERER, Spain; Neurology Service, Hospital 12 de Octubre, imas12 Research Institute, ERN-NMD, Madrid, Spain
| | - Carmen Paradas
- Neurology Service, Hospital Virgen del Rocío, Sevilla, Spain
| | - Montse Olivé
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain; Neuromuscular Diseases Unit, Neurology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mar García-Romero
- Neuropaediatrics Service, Hospital Universitario La Paz, Madrid, Spain
| | | | - Josep Maria Grau
- Internal Medicine Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Javier de Las Heras
- Division of Pediatric Metabolism at Cruces University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - Pilar Casquero
- Neurology Service, Hospital Mateu Orfila, Menorca, Spain
| | | | - Juan Carlos de León
- Neurology Service, Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain
| | | | - Germán Morís
- Neurology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Raquel Blanco-Lago
- Paediatrics Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Alba Ramos-Fransi
- Neurology Service, Hospital Universitario Germans Trias i Pujol, Badalona, Spain
| | - Guillem Pintós
- Internal Medicine Service, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - Maria Rabasa
- Neurology Service, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | - Mercedes Usón
- Neurology Service, Hospital Universitario Son Llatzer, Palma de Mallorca, Spain
| | | | | | | | | | - Miryam Hortelano
- Paediatric Service, Hospital Universitario de Segovia, Segovia Spain
| | - Antoni Colomé
- Internal Medicine Service, Hospital de Terrassa, Barcelona, Spain
| | | | - Adolfo Lopez de Munain
- Neurology Service, Instituto Biodonostia-CIBERNED-EHU-UPV, Hospital Universitario Donostia-OSAKIDETZA, Spain
| | - Ivonne Jericó
- Neurology Service, Complejo Hospitalario de Navarra, Spain
| | - Lucía Galán-Dávila
- Neurology Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Julio Pardo
- Neurology Service, Hospital Universitario de Santiago de Compostela, Santiago de Compostela. Spain
| | - Giorgina Salgueiro-Origlia
- Internal Medicine Service, Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid, Spain
| | - Jorge Alonso-Pérez
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Francesc Pla-Junca
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Marianela Schiava
- John Walton Muscular Distrophy Research Center, Newcastle University, UK
| | - Sonia Segovia-Simón
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain
| | - Jordi Díaz-Manera
- Institut de Recerca Biomedica Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERER, Spain; John Walton Muscular Distrophy Research Center, Newcastle University, UK.
| |
Collapse
|
18
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
19
|
Pfrimmer C, Smitka M, Muschol N, Husain RA, Huemer M, Hennermann JB, Schuler R, Hahn A. Long-Term Outcome of Infantile Onset Pompe Disease Patients Treated with Enzyme Replacement Therapy - Data from a German-Austrian Cohort. J Neuromuscul Dis 2024; 11:167-177. [PMID: 38043017 PMCID: PMC10789365 DOI: 10.3233/jnd-230164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Enzyme replacement therapy (ERT) with recombinant human alglucosidase alfa (rhGAA) was approved in Europe in 2006. Nevertheless, data on the long-term outcome of infantile onset Pompe disease (IOPD) patients at school age is still limited. OBJECTIVE We analyzed in detail cardiac, respiratory, motor, and cognitive function of 15 German-speaking patients aged 7 and older who started ERT at a median age of 5 months. RESULTS Starting dose was 20 mg/kg biweekly in 12 patients, 20 mg/kg weekly in 2, and 40 mg/kg weekly in one patient. CRIM-status was positive in 13 patients (86.7%) and negative or unknown in one patient each (6.7%). Three patients (20%) received immunomodulation. Median age at last assessment was 9.1 (7.0-19.5) years. At last follow-up 1 patient (6.7%) had mild cardiac hypertrophy, 6 (42.9%) had cardiac arrhythmias, and 7 (46.7%) required assisted ventilation. Seven patients (46.7%) achieved the ability to walk independently and 5 (33.3%) were still ambulatory at last follow-up. Six patients (40%) were able to sit without support, while the remaining 4 (26.7%) were tetraplegic. Eleven patients underwent cognitive testing (Culture Fair Intelligence Test), while 4 were unable to meet the requirements for cognitive testing. Intelligence quotients (IQs) ranged from normal (IQ 117, 102, 96, 94) in 4 patients (36.4%) to mild developmental delay (IQ 81) in one patient (9.1%) to intellectual disability (IQ 69, 63, 61, 3x <55) in 6 patients (54.5%). White matter abnormalities were present in 10 out of 12 cerebral MRIs from 7 patients. CONCLUSION Substantial motor, cardiac, respiratory, and cognitive deficits are frequent in IOPD long-term survivors who started ERT before 2016. The findings of this study can be valuable as comparative data when evaluating the impact of newer treatment strategies including higher enzyme dosage, immunomodulation, modified enzymes, or early start of treatment following newborn screening.
Collapse
Affiliation(s)
- Charlotte Pfrimmer
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Martin Smitka
- Children’s Hospital, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ralf A. Husain
- Centre for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Martina Huemer
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria and Division of Metabolism, Children’s Research Center and University Children’s Hospital Zurich, Zurich, Switzerland
| | - Julia B. Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Rahel Schuler
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
20
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
21
|
Burban A, Pucyło S, Sikora A, Opolski G, Grabowski M, Kołodzińska A. Hypertrophic Cardiomyopathy versus Storage Diseases with Myocardial Involvement. Int J Mol Sci 2023; 24:13239. [PMID: 37686045 PMCID: PMC10488064 DOI: 10.3390/ijms241713239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
One of the main causes of heart failure is cardiomyopathies. Among them, the most common is hypertrophic cardiomyopathy (HCM), characterized by thickening of the left ventricular muscle. This article focuses on HCM and other cardiomyopathies with myocardial hypertrophy, including Fabry disease, Pompe disease, and Danon disease. The genetics and pathogenesis of these diseases are described, as well as current and experimental treatment options, such as pharmacological intervention and the potential of gene therapies. Although genetic approaches are promising and have the potential to become the best treatments for these diseases, further research is needed to evaluate their efficacy and safety. This article describes current knowledge and advances in the treatment of the aforementioned cardiomyopathies.
Collapse
Affiliation(s)
- Anna Burban
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Szymon Pucyło
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Aleksandra Sikora
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Agnieszka Kołodzińska
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| |
Collapse
|
22
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
23
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
24
|
Meena NK, Randazzo D, Raben N, Puertollano R. AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in Pompe mice. JCI Insight 2023; 8:e170199. [PMID: 37463048 PMCID: PMC10543735 DOI: 10.1172/jci.insight.170199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.
Collapse
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Mackenbach MJ, Willemse EAJ, van den Dorpel JJA, van der Beek NAME, Díaz-Manera J, Rizopoulos D, Teunissen C, van der Ploeg AT, van den Hout JMP. Neurofilament Light and Its Association With CNS Involvement in Patients With Classic Infantile Pompe Disease. Neurology 2023; 101:e594-e601. [PMID: 37336766 PMCID: PMC10424841 DOI: 10.1212/wnl.0000000000207482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/18/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Enzyme replacement therapy (ERT) has substantially improved the outcome of classic infantile Pompe disease, an inheritable muscle disease previously fatal at infancy. However, under treatment, patients develop white matter abnormalities and neurocognitive problems. Therefore, upcoming therapies also target the brain. Currently, biomarkers reflecting CNS involvement are lacking. We aimed to study the association of neurofilament light (NfL) and CNS involvement. METHODS To investigate the potential of NfL, we analyzed serum samples of patients with classic infantile Pompe disease who were treated with ERT. The samples were collected at ages of <1, 5, and 10 years, as well as around MRI scans. We compared the outcomes with levels in age- and sex-matched peers. Control samples were originally collected as part of routine blood work in children who underwent small surgeries and stored in the biobank of the Erasmus MC/Sophia Children's Hospital. RESULTS We analyzed 74 serum samples of 17 patients collected at ages ranging from 22 days to 21.2 years (1-8 samples per patient) and compared these with outcomes of 71 matched peers. In the first year of age, NfL levels in patients and controls were similar (10.3 vs 11.0 pg/mL), but mixed linear model analysis showed a yearly increase of NfL of 6.0% in patients, compared with a decrease of 8.8% in controls (p < 0.001). Higher NfL was associated with lower IQ scores (p = 0.009) and lower processing speed scores (p = 0.001). DISCUSSION We found significant differences in NfL levels between patients and controls and a good association between NfL and cognition. NfL deserves further exploration as a biomarker for CNS involvement in patients with classic infantile Pompe disease.
Collapse
Affiliation(s)
- Maarten J Mackenbach
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eline A J Willemse
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jan J A van den Dorpel
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nadine A M E van der Beek
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jordi Díaz-Manera
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Charlotte Teunissen
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johanna M P van den Hout
- From the Center for Lysosomal and Metabolic Diseases (M.J.M., J.J.A.v.d.D., A.T.v.d.P., J.M.P.v.d.H.), Department of Paediatrics, Erasmus University Medical Center, Rotterdam; Neurochemistry laboratory (E.A.J.W., C.T.), Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centres, VU University, the Netherlands; Departments of Biomedizin and Neurology (E.A.J.W.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland; Center for Lysosomal and Metabolic Diseases (N.A.M.E.v.d.B.), Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands; John Walton Muscular Dystrophy Research Centre (J.D.-M.), Newcastle University, United Kingdom; Neuromuscular Disorders Laboratory (J.D.-M.), Institut de recerca de l'hospital de la Santa Creu I Sant Pau, Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (J.D.-M.), Madrid, Spain; and Department of Biostatistics & Department of Epidemiology (D.R.), Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
26
|
Chan MY, Jalil JA, Yakob Y, Wahab SAA, Ali EZ, Khalid MKNM, Leong HY, Chew HB, Sivabalakrishnan JB, Ngu LH. Genotype, phenotype and treatment outcomes of 17 Malaysian patients with infantile-onset Pompe disease and the identification of 3 novel GAA variants. Orphanet J Rare Dis 2023; 18:231. [PMID: 37542277 PMCID: PMC10403872 DOI: 10.1186/s13023-023-02848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Pompe disease is a rare glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to glycogen deposition in multiple tissues. Infantile-onset Pompe disease (IOPD) patients present within the first year of life with profound hypotonia and hypertrophic cardiomyopathy. Treatment with enzyme replacement therapy (ERT) has significantly improved survival for this otherwise lethal disorder. This study aims to describe the clinical and molecular spectrum of Malaysian IOPD patients, and to analyze their long term treatment outcomes. METHODS Seventeen patients diagnosed with IOPD between 2000 and 2020 were included in this retrospective cohort study. Clinical and biochemical data were collated and analyzed using descriptive statistics. GAA enzyme levels were performed on dried blood spots. Molecular analysis of the GAA gene was performed by polymerase chain reaction and Sanger sequencing. Structural modelling was used to predict the effect of the novel mutations on enzyme structure. RESULTS Our cohort had a median age of presentation of 3 months and median age of diagnosis of 6 months. Presenting features were hypertrophic cardiomyopathy (100%), respiratory insufficiency (94%), hypotonia (88%), failure to thrive (82%), feeding difficulties (76%), and hepatomegaly (76%). Fourteen different mutations in the GAA gene were identified, with three novel mutations, c.1552-14_1552-1del, exons 2-3 deletion and exons 6-10 deletion. The most common mutation identified was c.1935C > A p.(D645E), with an allele frequency of 33%. Sixteen patients received ERT at the median age of 7 months. Overall survival was 29%. Mean age of death was 17.5 months. Our longest surviving patient has atypical IOPD and is currently 20 years old. CONCLUSIONS This is the first study to analyze the genotype and phenotype of Malaysian IOPD patients, and has identified the c.1935C > A p.(D645E) as the most common mutation. The three novel mutations reported in this study expands the mutation spectrum for IOPD. Our low survival rate underscores the importance of early diagnosis and treatment in achieving better treatment outcomes.
Collapse
Affiliation(s)
- Mei-Yan Chan
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia.
| | - Julaina Abdul Jalil
- Unit of Biochemistry, Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Yusnita Yakob
- Unit of Molecular Diagnostics, Specialised Diagnostics Centre, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Siti Aishah Abdul Wahab
- Unit of Molecular Diagnostics, Specialised Diagnostics Centre, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Ernie Zuraida Ali
- Unit of Inborn Errors of Metabolism and Genetic, Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Khairul Nizam Mohd Khalid
- Unit of Molecular Diagnostics, Specialised Diagnostics Centre, National Institutes of Health, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
| | - Huey-Yin Leong
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia
| | - Hui-Bein Chew
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia
| | | | - Lock-Hock Ngu
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health Malaysia, Jalan Pahang, 50586, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Zhang WC, Mao YY, Chen Q. [Research progress of nervous system damage in Pompe disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:420-424. [PMID: 37073849 PMCID: PMC10120337 DOI: 10.7499/j.issn.1008-8830.2211052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Collapse
Affiliation(s)
- Wen-Chao Zhang
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ying-Ying Mao
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qian Chen
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
28
|
de Moraes MBM, de Souza HMR, de Oliveira MLC, Peake RWA, Scalco FB, Garrett R. Combined targeted and untargeted high-resolution mass spectrometry analyses to investigate metabolic alterations in pompe disease. Metabolomics 2023; 19:29. [PMID: 36988742 DOI: 10.1007/s11306-023-01989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/05/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Pompe disease is a rare, lysosomal disorder, characterized by intra-lysosomal glycogen accumulation due to an impaired function of α-glucosidase enzyme. The laboratory testing for Pompe is usually performed by enzyme activity, genetic test, or urine glucose tetrasaccharide (Glc4) screening by HPLC. Despite being a good preliminary marker, the Glc4 is not specific for Pompe. OBJECTIVE The purpose of the present study was to develop a simple methodology using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for targeted quantitative analysis of Glc4 combined with untargeted metabolic profiling in a single analytical run to search for complementary biomarkers in Pompe disease. METHODS We collected 21 urine specimens from 13 Pompe disease patients and compared their metabolic signatures with 21 control specimens. RESULTS Multivariate statistical analyses on the untargeted profiling data revealed Glc4, creatine, sorbitol/mannitol, L-phenylalanine, N-acetyl-4-aminobutanal, N-acetyl-L-aspartic acid, and 2-aminobenzoic acid as significantly altered in Pompe disease. This panel of metabolites increased sample class prediction (Pompe disease versus control) compared with a single biomarker. CONCLUSION This study has demonstrated the potential of combined acquisition methods in LC-HRMS for Pompe disease investigation, allowing for routine determination of an established biomarker and discovery of complementary candidate biomarkers that may increase diagnostic accuracy, or improve the risk stratification of patients with disparate clinical phenotypes.
Collapse
Affiliation(s)
- Mariana B M de Moraes
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Hygor M R de Souza
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil
- Institute of Chemistry, Fluminense Federal University, Niterói, RJ, Brazil
| | - Maria L C de Oliveira
- Inborn Error of Metabolism Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fernanda B Scalco
- Inborn Error of Metabolism Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil.
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Ngawa M, Dal Farra F, Marinescu AD, Servais L. Longitudinal developmental profile of newborns and toddlers treated for spinal muscular atrophy. Ther Adv Neurol Disord 2023; 16:17562864231154335. [PMID: 36846472 PMCID: PMC9944336 DOI: 10.1177/17562864231154335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Background Spinal muscular atrophy (SMA) results from a loss-of-function mutation in the SMN1 gene. SMA patients suffer progressive motor disability, although no intellectual impairments have been described. Three drugs have been recently approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). These drugs result in longer life expectancy for SMA type 1 (SMA1) patients. Objective The objective of the study was to assess longitudinally the psychomotor development of patients with SMA1 treated after the symptom onset and of patients treated presymptomatically. Design Longitudinal, monocentric, noninterventional, prospective study. Methods Our study included 11 SMA1 patients and seven presymptomatic SMA patients. The SMA1 patients were treated with an approved drug beginning after onset of symptoms; treatment for the presymptomatic patients was begun before symptom onset. They were longitudinally evaluated between September 2018 and January 2022 using the Bayley Scales of Infant and Toddler Development™ - Third Edition. Results At each time point, all patients treated presymptomatically scored above those treated postsymptomatically on the motor scale. The cognitive scores of six of the seven patients treated presymptomatically were average; one patient was in the low average range. In the 11 postsymptomatically treated patients, four scored either in the low average or the abnormal range on the cognitive scale, but a positive trend was observed during the follow-up. Conclusion A significant proportion of patients treated postsymptomatically scored below average on cognitive and communicative scales, with most significant concerns raised about the age of 1 year. Our study indicates that intellectual development should be considered as an important outcome in treated SMA1 patients. Cognitive and communicative evaluations should be performed as part of standard of care, and guidance should be provided to parents for optimal stimulation.
Collapse
Affiliation(s)
- Magali Ngawa
- Neuromuscular Reference Center, Department of
Paediatrics, University Hospital Liège & University of Liège,
Belgium
| | - Fabian Dal Farra
- Division of Child Neurology, Centre de
Références des Maladies Neuromusculaires, Department of Pediatrics,
University Hospital Liège & University of Liège, Liège, Belgium
| | - Andrei-Dan Marinescu
- Division of Child Neurology, Centre de
Références des Maladies Neuromusculaires, Department of Pediatrics,
University Hospital Liège & University of Liège, Liège, Belgium,Department of Pediatric Neurology, ‘Alexandru
Obregia’ Psychiatry Hospital, Bucharest, Romania
| | | |
Collapse
|
30
|
van den Dorpel JJA, Dremmen MHG, van der Beek NAME, Rizopoulos D, van Doorn PA, van der Ploeg AT, Muetzel RL, van den Hout JMP. Diffusion tensor imaging of the brain in Pompe disease. J Neurol 2023; 270:1662-1671. [PMID: 36480052 PMCID: PMC9971081 DOI: 10.1007/s00415-022-11506-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Enzyme replacement therapy has drastically changed prospects of patients with Pompe disease, a progressive metabolic myopathy. As classic infantile patients survive due to treatment, they exhibit progressive white matter abnormalities, while brain involvement in late-onset patients is not fully elucidated. To study the underlying microstructure of white matter, we acquired structural (T1, T2, FLAIR) and diffusion tensor imaging (DTI) of the brain in 12 classic infantile patients (age 5-20 years) and 18 late-onset Pompe patients (age 11-56 years). Structural images were scored according to a rating scale for classic infantile patients. Fractional anisotropy (FA) and mean diffusivity (MD) from classic infantile patients were compared to a reference population, using a Wilcoxon signed-rank, one sample test. Effect sizes (Hedges' G) were used to compare DTI metrics across different tracts. For late-onset patients, results were compared to (reported) tractography data on normal aging. In classic infantile patients, we found a significant lower FA and higher MD (p < 0.01) compared to the reference population. Large-association fibers were most severely affected. Classic infantile patients with advanced white matter abnormalities on structural MRI showed the largest deviations from the reference population. FA and MD were similar for younger and older late-onset patients in large WM-association fibers. We conclude that, while no deviations from typical neurodevelopment were found in late-onset patients, classic infantile Pompe patients showed quantifiable, substantially altered white matter microstructure, which corresponded with disease stage on structural MRI. DTI holds promise to monitor therapy response in future therapies targeting the brain.
Collapse
Affiliation(s)
- Jan J. A. van den Dorpel
- grid.5645.2000000040459992XCenter for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marjolein H. G. Dremmen
- grid.5645.2000000040459992XDepartment of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadine A. M. E. van der Beek
- grid.5645.2000000040459992XCenter for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dimitris Rizopoulos
- grid.5645.2000000040459992XDepartment of Biostatistics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pieter A. van Doorn
- grid.5645.2000000040459992XCenter for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ans T. van der Ploeg
- grid.5645.2000000040459992XCenter for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ryan L. Muetzel
- grid.5645.2000000040459992XDepartment of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna M. P. van den Hout
- grid.5645.2000000040459992XCenter for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
31
|
Hsu YK, Chien YH, Shinn-Forng Peng S, Hwu WL, Lee WT, Lee NC, Po-Yu Huang E, Weng WC. Evaluating brain white matter hyperintensity, IQ scores, and plasma neurofilament light chain concentration in early-treated patients with infantile-onset Pompe disease. Genet Med 2023; 25:27-36. [PMID: 36399131 DOI: 10.1016/j.gim.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The study aimed to describe central nervous system (CNS) progression in patients with infantile-onset Pompe disease (IOPD) and explore the potential clinical impact and predictors. METHODS Patients with IOPD treated with enzyme replacement therapy were longitudinally followed with brain magnetic resonance imaging (MRI) and evaluation for IQ scores from 2004 to 2021. Investigation of CNS involvement focused on white matter (WM) abnormalities and was quantified using a scoring system for metachromatic leukodystrophy. MRI scores were correlated with plasma neurofilament light chain (NfL) concentration and IQ scores. RESULTS A total of 19 patients who started enzyme replacement therapy at a mean age of 26 days were analyzed; the median age at last examination was 12.1 (range = 1.7-19) years. MRI abnormalities were found in all patients, from supratentorial central WM to U-fibers, then to infratentorial WM, and eventually to gray matter. MRI scores progressed (n = 16) at variable rates (range = 0.8-2.7/y) and were positively correlated with age (n = 16) and negatively correlated with IQ scores (n = 8). Plasma NfL concentration was positively correlated with MRI scores (r2 = 0.8569; P < .001; n = 13). CONCLUSION Our results suggest that the progression of CNS involvement in IOPD may be associated with neuroaxonal injury and decreased IQ scores. NfL could serve as a biomarker for CNS involvement in IOPD.
Collapse
Affiliation(s)
- Yu-Kang Hsu
- Department of Pediatrics, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Eric Po-Yu Huang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Bolano-Diaz C, Diaz-Manera J. Therapeutic Options for the Management of Pompe Disease: Current Challenges and Clinical Evidence in Therapeutics and Clinical Risk Management. Ther Clin Risk Manag 2022; 18:1099-1115. [PMID: 36536827 PMCID: PMC9759116 DOI: 10.2147/tcrm.s334232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 08/22/2023] Open
Abstract
Pompe disease is a genetic disorder produced by mutations in the GAA gene leading to absence or reduced expression of acid alpha-glucosidase, an enzyme that metabolizes the breakdown of glycogen into glucose. There are two main phenotypes, the infantile consisting of early onset severe weakness and cardiomyopathy, and the adult which is characterized by slowly progressive skeletal and respiratory muscle weakness. Enzymatic replacement therapy (ERT) has been available for Pompe disease for more than 15 years. Although the treatment has improved many aspects of the disease, such as prolonged survival through improved cardiomyopathy and acquisition of motor milestones in infants and slower progression rate in adults, ERT is far from being a cure as both infantile and adult patients continue to progress. This fact has prompted the development of improved or new enzymes and other treatments such as gene therapy or substrate reduction strategies. Here, we review the data obtained from randomized clinical trials but also from open-label studies published so far that have assessed the advantages and limitations of this therapy. Moreover, we also review the new therapeutic strategies that are under development and provide our opinion on which are the unmet needs for patients with this disease.
Collapse
Affiliation(s)
- Carla Bolano-Diaz
- The John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Jordi Diaz-Manera
- The John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
- Laboratori de Malalties Neuromusculars, Insitut de Recerca de l’Hospital de la Santa Creu i Sant Pau de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
33
|
van der Ploeg AT. Prenatal Enzyme-Replacement Therapy. N Engl J Med 2022; 387:2189-2193. [PMID: 36351269 DOI: 10.1056/nejme2211515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ans T van der Ploeg
- From the Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
34
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
35
|
Mauhin W, Brassier A, London J, Subran B, Zeggane A, Besset Q, Jammal C, Montardi C, Mellot C, Strauss C, Borie R, Lidove O. Manifestations pulmonaires des maladies héréditaires du métabolisme. Rev Mal Respir 2022; 39:758-777. [DOI: 10.1016/j.rmr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
|
36
|
Liang Q, Vlaar EC, Catalano F, Pijnenburg JM, Stok M, van Helsdingen Y, Vulto AG, Unger WW, van der Ploeg AT, Pijnappel WP, van Til NP. Lentiviral gene therapy prevents anti-human acid α-glucosidase antibody formation in murine Pompe disease. Mol Ther Methods Clin Dev 2022; 25:520-532. [PMID: 35662813 PMCID: PMC9127119 DOI: 10.1016/j.omtm.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 01/20/2023]
Abstract
Enzyme replacement therapy (ERT) is the current standard treatment for Pompe disease, a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). ERT has shown to be lifesaving in patients with classic infantile Pompe disease. However, a major drawback is the development of neutralizing antibodies against ERT. Hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) provides a novel, potential lifelong therapy with a single intervention and may induce immune tolerance. Here, we investigated whether ERT can be safely applied as additional or alternative therapy following HSPC-LVGT in a murine model of Pompe disease. We found that lentiviral expression at subtherapeutic dose was sufficient to induce tolerance to the transgene product, as well as to subsequently administered ERT. Immune tolerance was established within 4–6 weeks after gene therapy. The mice tolerated ERT doses up to 100 mg/kg, allowing ERT to eliminate glycogen accumulation in cardiac and skeletal muscle and normalizing locomotor function. The presence of HSPC-derived cells expressing GAA in the thymus suggested the establishment of central immune tolerance. These findings demonstrate that lentiviral gene therapy in murine Pompe disease induced robust and long-term immune tolerance to GAA either expressed by a transgene or supplied as ERT.
Collapse
Affiliation(s)
- Qiushi Liang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eva C. Vlaar
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Fabio Catalano
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Joon M. Pijnenburg
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Merel Stok
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Yvette van Helsdingen
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Arnold G. Vulto
- Hospital Pharmacy, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - Wendy W.J. Unger
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children’s Hospital, 3015GE Rotterdam, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| | - W.W.M. Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
- Corresponding author W.W.M. Pim Pijnappel, PhD, Erasmus University Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Niek P. van Til
- Department of Hematology, Erasmus MC University Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
37
|
Thomas AS, Grewal DS, Toth CA. INTERMEDIATE UVEITIS WITH RETINAL DETACHMENT IN A PATIENT WITH POMPE DISEASE. Retin Cases Brief Rep 2022; 16:293-295. [PMID: 31996560 DOI: 10.1097/icb.0000000000000971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE To describe the ocular findings in a patient with glycogen storage disease II (Pompe disease). METHODS Case report. RESULTS A 14-year-old boy with Pompe disease was referred for evaluation of a retinal detachment in the left eye. Indirect ophthalmoscopy revealed bilateral fibrotic snowbanks and an inferior rhegmatogenous retinal detachment extending into the macula. Fluorescein angiography revealed mild diffuse perivascular leakage in both eyes. The retinal detachment was repaired with scleral buckling and cryotherapy. Workup for the etiology of the intermediate uveitis was unrevealing. CONCLUSION Enzyme replacement therapy has improved the survival of individuals with Pompe disease. With greater patient longevity, new ocular associations may continue to emerge. Whether intermediate uveitis is an ocular association of Pompe disease remains to be determined.
Collapse
Affiliation(s)
- Akshay S Thomas
- Duke University Eye Center, Durham, North Carolina; and
- Tennessee Retina, Nashville, Tennessee
| | | | | |
Collapse
|
38
|
van den Dorpel JJA, van der Vlugt WMC, Dremmen MHG, Muetzel R, van den Berg E, Hest R, de Kriek J, Brusse E, van Doorn PA, van der Ploeg AT, van den Hout JMP, van der Beek NAME. Is the brain involved in patients with late-onset Pompe disease? J Inherit Metab Dis 2022; 45:493-501. [PMID: 34927739 PMCID: PMC9306606 DOI: 10.1002/jimd.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022]
Abstract
Our objective was to investigate brain structure, cerebral vasculature, and cognitive function in a cohort of patients with late-onset Pompe disease, with particular reference to the differences from those with the classic infantile phenotype, where extensive white-matter abnormalities (WMA) and impaired cognition on long-term enzyme treatment are reported in a subset of patients. Brain imaging (T1, T2, T2 fluid-attenuated inversion recovery, susceptibility-weighted images, and magnetic resonance angiography-time of flight) was combined with extensive cognitive testing of general intelligence (Wechsler IQ Test, Montreal Cognitive Assessment [MoCA]) and specific neuropsychological domains (verbal fluency, cognitive flexibility, attention, memory, and visuospatial abilities). We included 19 patients with late-onset Pompe disease (age range 11-56 years). Two patients showed mild punctate WMA within normal range for age, with a Fazekas score (FS) of 1 to 2. Magnetic resonance angiography revealed a slight vertebrobasilar dolichoectasia in two patients yet did not show any aneurysms or vascular dissections. Most patients had age-adjusted scores within the normal range for the Wechsler index scores (verbal comprehension, perceptual reasoning, working memory, and processing speed) and combined total intelligence (IQ) score (median 101, interquartile range 91-111; one patient had a below-average score for total IQ) as well as for the specific domains verbal fluency, attention, and memory. A subset of patients performed suboptimally on the Rey Complex Figure Test (9/14 patients) or cube-copying/clock-drawing test of the MoCA (8/10 patients). We therefore concluded that our study showed no brain abnormalities, other than minor microvascular lesions considered within normal range for age, nor general cognitive impairment in late-onset Pompe patients. These findings are in sharp contrast with the widespread WMA and cognitive problems found in some classic infantile patients.
Collapse
Affiliation(s)
- Jan J. A. van den Dorpel
- Department of PediatricsErasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic DiseasesRotterdamThe Netherlands
| | | | - Marjolein H. G. Dremmen
- Department of RadiologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Esther van den Berg
- Department of NeurologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Roos Hest
- Department of NeurologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Joni de Kriek
- Department of NeurologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Esther Brusse
- Department of NeurologyErasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic DiseasesRotterdamThe Netherlands
| | - Pieter A. van Doorn
- Department of NeurologyErasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic DiseasesRotterdamThe Netherlands
| | - Ans T. van der Ploeg
- Department of PediatricsErasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic DiseasesRotterdamThe Netherlands
| | - Johanna M. P. van den Hout
- Department of PediatricsErasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic DiseasesRotterdamThe Netherlands
| | - Nadine A. M. E. van der Beek
- Department of NeurologyErasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic DiseasesRotterdamThe Netherlands
| |
Collapse
|
39
|
Enax-Krumova EK, Dahlhaus I, Görlach J, Claeys KG, Montagnese F, Schneider L, Sturm D, Fangerau T, Schlierbach H, Roth A, Wanschitz JV, Löscher WN, Güttsches AK, Vielhaber S, Hasseli R, Zunk L, Krämer HH, Hahn A, Schoser B, Rosenbohm A, Schänzer A. Small fiber involvement is independent from clinical pain in late-onset Pompe disease. Orphanet J Rare Dis 2022; 17:177. [PMID: 35477515 PMCID: PMC9044713 DOI: 10.1186/s13023-022-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain occurs in the majority of patients with late onset Pompe disease (LOPD) and is associated with a reduced quality of life. The aim of this study was to analyse the pain characteristics and its relation to a small nerve fiber involvement in LOPD patients. METHODS In 35 patients with LOPD under enzyme replacement therapy without clinical signs of polyneuropathy (19 females; 51 ± 15 years), pain characteristics as well as depressive and anxiety symptoms were assessed using the PainDetect questionnaire (PDQ) and the hospital anxiety and depression scale (HADS), respectively. Distal skin biopsies were analysed for intraepidermal nerve fiber density (IENFD) and compared to age- and gender-matched reference data. Skin biopsies from 20 healthy subjects served as controls to assure validity of the morphometric analysis. RESULTS Pain was reported in 69% of the patients with an average intensity of 4.1 ± 1.1 on the numeric rating scale (NRS; anchors: 0-10). According to PDQ, neuropathic pain was likely in one patient, possible in 29%, and unlikely in 67%. Relevant depression and anxiety symptoms occurred in 31% and 23%, respectively, and correlated with pain intensity. Distal IENFD (3.98 ± 1.95 fibers/mm) was reduced in 57% of the patients. The degree of IENFD reduction did not correlate with the durations of symptoms to ERT or duration of ERT to biopsy. CONCLUSIONS Pain is a frequent symptom in treated LOPD on ERT, though a screening questionnaire seldom indicated neuropathic pain. The high frequency of small nerve fiber pathology in a treated LOPD cohort was found regardless of the presence of pain or comorbid risk factors for SFN and needs further exploration in terms of clinical context, exact mechanisms and when developing novel therapeutic options for LOPD.
Collapse
Affiliation(s)
- Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Iris Dahlhaus
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Görlach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | - Llka Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, St Georg Hospital, Leipzig, Germany
| | - Dietrich Sturm
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Tanja Fangerau
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Anne-Katrin Güttsches
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany.,Heimer-Institute for Muscle Research, BG University Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Rebecca Hasseli
- Department of Rheumtaology and Clinical Immunology, Campus Kerkhoff, Justus-Liebig University, Giessen, Germany
| | - Lea Zunk
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU University Munich, Munich, Germany
| | | | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Arndstr.16, 35392, Giessen, Germany.
| |
Collapse
|
40
|
Unnisa Z, Yoon JK, Schindler JW, Mason C, van Til NP. Gene Therapy Developments for Pompe Disease. Biomedicines 2022; 10:302. [PMID: 35203513 PMCID: PMC8869611 DOI: 10.3390/biomedicines10020302] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.
Collapse
Affiliation(s)
- Zeenath Unnisa
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | - John K. Yoon
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
41
|
Zeng YT, Liu WY, Torng PC, Hwu WL, Lee NC, Lin CY, Chien YH. A pilot study shows the positive effects of continuous airway pressure for treating hypernasal speech in children with infantile-onset Pompe disease. Sci Rep 2021; 11:18826. [PMID: 34552118 PMCID: PMC8458442 DOI: 10.1038/s41598-021-97877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Children with infantile-onset Pompe disease (IOPD) demonstrate hypernasality. This study aimed to evaluate whether continuous positive airway pressure (CPAP) training may reduce hypernasality in children with IOPD. Five children with IOPD were enrolled in a single-subject experimental design of type A-B-A′. The intervention comprised an 8-week, 6-day-per-week regimen of CPAP training at home. Participants continued traditional speech therapy once per week throughout the 24-week study duration. The outcome measurements included the degree of hypernasality (DH), the percentage of consonants correct (PCC), and the speech intelligibility score (SIS). C-statistic analysis with an α of 0.05 was used along with visual analysis to assess speech changes. Three patients completed the study. During the CPAP training phase, the DH, PCC, and SIS were significantly improved compared with the baseline (p < 0.05). At the follow-up phase, both DH and SIS were improved compared with the baseline (p < 0.05), but the PCC had returned to the baseline level. CPAP training demonstrated effectiveness in reducing nasal sounds in IOPD patients. Further studies training younger children with normal hearing may help elucidate the persistence of the effects in children with IOPD.
Collapse
Affiliation(s)
- Yin-Ting Zeng
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Wen-Yu Liu
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Chuan Torng
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Yi Lin
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
42
|
Neurological Involvement in Glycogen Storage Disease Type IXa due to PHKA2 Mutation. Can J Neurol Sci 2021; 47:400-403. [PMID: 31987065 DOI: 10.1017/cjn.2020.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycogen storage diseases (GSDs) result from the deficiency of enzymes involved in glycogen synthesis and breakdown into glucose. Mutations in the gene PHKA2 encoding phosphorylase kinase regulatory subunit alpha 2 have been linked to GSD type IXa. We describe a family with two adult brothers with neonatal hepatosplenomegaly and later onset of hearing loss, cognitive impairment, and cerebellar involvement. Whole-exome sequencing was performed on both subjects and revealed a shared hemizygous missense variant (c.A1561G; p.T521A) in exon 15 of PHKA2. The phenotype broadens the clinical and magnetic resonance imaging spectrum of GSD type IXa to include later onset neurological manifestations.
Collapse
|
43
|
Bisciglia M, Froissart R, Bedat-Millet AL, Romero NB, Pettazzoni M, Hogrel JY, Petit FM, Stojkovic T. A novel PHKA1 mutation associating myopathy and cognitive impairment: Expanding the spectrum of phosphorylase kinase b (PhK) deficiency. J Neurol Sci 2021; 424:117391. [PMID: 33799212 DOI: 10.1016/j.jns.2021.117391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Muscle phosphorylase kinase b deficiency (PhK) is a rare disorder of glycogen metabolism characterized by exercise-induced myalgia and cramps, myoglobinuria and progressive muscle weakness. PhK deficiency is due to mutations in the PHKA1 gene inherited in an X-linked manner and is associated to glycogenosis type VIII (GSD VIII also called GSD IXd). PHKA1 gene codes for the αM subunit of the PhK, a multimeric protein complex responsible for the control of glycogen breakdown in muscle. Until now, few patients have been reported with X-linked recessive muscle PhK deficiency due to PHKA1 mutations. All reported patients presented with exercise intolerance and mild myopathy and one of them had cognitive impairment, leading to speculate about a central nervous system involvement in GSD VIII. Here we report in a sibling a novel mutation in the PHKA1 gene associated with a progressive myopathy, exercise intolerance, muscle hypertrophy and cognitive impairment as an associated feature. This report expands the genetic and clinical spectrum of the extremely rare PHKA1-related PhK deficiency and presents new evidences about its involvement in brain development.
Collapse
Affiliation(s)
- Michela Bisciglia
- Centre de Référence Neuromusculaire Erasme-HUDERF, Service de Neurologie, Cliniques Universitaires de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Bruxelles, Belgique..
| | - Roseline Froissart
- Biochemical and Molecular Biology Department, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Anne Laure Bedat-Millet
- Service de Neurologie, Centre Hospitalier de Rouen, Hôpital Charles Nicolle, 76038 Rouen, France.
| | - Norma Beatriz Romero
- APHP-GH Pitié-Salpêtrière, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Myology Institute, Paris, France; APHP-GH Pitié-Salpêtrière, Unité de Morphologie Neuromusculaire « Risler », Myology Institute, Sorbonne Université, INSERM, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Magali Pettazzoni
- Biochemical and Molecular Biology Department, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Jean-Yves Hogrel
- APHP-GH Pitié-Salpêtrière, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Myology Institute, Paris, France.
| | - François M Petit
- AP-HP. Université Paris Saclay, Laboratoire de génétique moléculaire, Hôpital Antoine Béclère, Clamart, France.
| | - Tanya Stojkovic
- APHP-GH Pitié-Salpêtrière, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Myology Institute, Paris, France.
| |
Collapse
|
44
|
van Kooten HA, Roelen CHA, Brusse E, van der Beek NAME, Michels M, van der Ploeg AT, Wagenmakers MAEM, van Doorn PA. Cardiovascular disease in non-classic Pompe disease: A systematic review. Neuromuscul Disord 2021; 31:79-90. [PMID: 33386209 DOI: 10.1016/j.nmd.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
Pompe disease is a rare inherited metabolic and neuromuscular disorder, presenting as a spectrum, with the classic infantile form on one end and the more slowly progressive non-classic form on the other end. While being a hallmark in classic infantile Pompe disease, cardiac involvement in non-classic Pompe disease seems rare. Vascular abnormalities, such as aneurysms and arterial dolichoectasia, likely caused by glycogen accumulation in arterial walls, have been reported in non-classic Pompe patients. With this first systematic review on cardiovascular disease in non-classic Pompe disease, we aim to gain insight in the prevalence and etiology of cardiovascular disease in these patients. Forty-eight studies (eight case-control studies, 15 cohort studies and 25 case reports/series) were included. Fourteen studies reported cardiac findings, 25 studies described vascular findings, and nine studies reported both cardiac and vascular findings. Severe cardiac involvement in non-classic Pompe disease patients has rarely been reported, particularly in adult-onset patients carrying the common IVS1 mutation. There are indications that intracranial dolichoectasia and aneurysms are more prevalent in non-classic Pompe patients compared to the general population. To further investigate the prevalence of cardiovascular disease in non-classic Pompe patients, larger case-control studies that also study established cardiovascular risk factors should be conducted.
Collapse
Affiliation(s)
- H A van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - C H A Roelen
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - E Brusse
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - N A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - M Michels
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| | - M A E M Wagenmakers
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - P A van Doorn
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
45
|
Modeling CNS Involvement in Pompe Disease Using Neural Stem Cells Generated from Patient-Derived Induced Pluripotent Stem Cells. Cells 2020; 10:cells10010008. [PMID: 33375166 PMCID: PMC7822217 DOI: 10.3390/cells10010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene. Acid alpha-glucosidase deficiency leads to abnormal glycogen accumulation in patient cells. Given the increasing evidence of central nervous system (CNS) involvement in classic infantile Pompe disease, we used neural stem cells, differentiated from patient induced pluripotent stem cells, to model the neuronal phenotype of Pompe disease. These Pompe neural stem cells exhibited disease-related phenotypes including glycogen accumulation, increased lysosomal staining, and secondary lipid buildup. These morphological phenotypes in patient neural stem cells provided a tool for drug efficacy evaluation. Two potential therapeutic agents, hydroxypropyl-β-cyclodextrin and δ-tocopherol, were tested along with recombinant human acid alpha-glucosidase (rhGAA) in this cell-based Pompe model. Treatment with rhGAA reduced LysoTracker staining in Pompe neural stem cells, indicating reduced lysosome size. Additionally, treatment of diseased neural stem cells with the combination of hydroxypropyl-β-cyclodextrin and δ-tocopherol significantly reduced the disease phenotypes. These results demonstrated patient-derived Pompe neural stem cells could be used as a model to study disease pathogenesis, to evaluate drug efficacy, and to screen compounds for drug discovery in the context of correcting CNS defects.
Collapse
|
46
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
47
|
Paoletti M, Pichiecchio A, Colafati GS, Conte G, Deodato F, Gasperini S, Menni F, Furlan F, Rubert L, Triulzi FM, Cinnante C. Multicentric Retrospective Evaluation of Five Classic Infantile Pompe Disease Subjects Under Enzyme Replacement Therapy With Early Infratentorial Involvement. Front Neurol 2020; 11:569153. [PMID: 33329311 PMCID: PMC7732650 DOI: 10.3389/fneur.2020.569153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
White matter (WM) abnormalities and ventricular enlargement in brain MRI are well-known features in infantile-onset Pompe disease (IOPD) in the era of enzyme replacement therapy (ERT). In this multicentric observational retrospective study, we report a small cohort of IOPD subjects under ERT treatment (n = 5, median age at MRI = 7.4 years, median period of treatment = 85 months) that showed the classic features of extensive supratentorial WM abnormalities but also unusual findings such as early infratentorial WM abnormalities and late supratentorial U-fiber involvement. Given the recent implementation of ERT and the rarity of the disease, a complete spectrum of presentation and understanding of progressive pathology in the brain of IOPD subjects in treatment remains underacknowledged. The availability of long-term follow-up of IOPD subjects under ERT treatment allows a better insight into the evolution of brain abnormalities in such disease.
Collapse
Affiliation(s)
- Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Imaging Department, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giorgio Conte
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | - Federica Deodato
- Unit of Metabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Serena Gasperini
- Pediatric Rare Diseases Unit, Department of Pediatrics, Fondazione Monza e Brianza per il Bambino e la sua Mamma, San Gerardo Hospital, Monza, Italy
| | - Francesca Menni
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Furlan
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Rubert
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| | - Fabio Maria Triulzi
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| |
Collapse
|
48
|
Ultrastructural and diffusion tensor imaging studies reveal axon abnormalities in Pompe disease mice. Sci Rep 2020; 10:20239. [PMID: 33214573 PMCID: PMC7677380 DOI: 10.1038/s41598-020-77193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Pompe disease (PD) is caused by lysosomal glycogen accumulation in tissues, including muscles and the central nervous system (CNS). The intravenous infusion of recombinant human acid alpha-glucosidase (rhGAA) rescues the muscle pathologies in PD but does not treat the CNS because rhGAA does not cross the blood–brain barrier (BBB). To understand the CNS pathologies in PD, control and PD mice were followed and analyzed at 9 and 18 months with brain structural and ultrastructural studies. T2-weighted brain magnetic resonance imaging studies revealed the progressive dilatation of the lateral ventricles and thinning of the corpus callosum in PD mice. Electron microscopy (EM) studies at the genu of the corpus callosum revealed glycogen accumulation, an increase in nerve fiber size variation, a decrease in the g-ratio (axon diameter/total fiber diameter), and myelin sheath decompaction. The morphology of oligodendrocytes was normal. Diffusion tensor imaging (DTI) studies at the corpus callosum revealed an increase in axial diffusivity (AD) and mean diffusivity (MD) more significantly in 9-month-old PD mice. The current study suggests that axon degeneration and axon loss occur in aged PD mice and are probably caused by glycogen accumulation in neurons. A drug crossing the BBB or a treatment for directly targeting the brain might be necessary in PD.
Collapse
|
49
|
Díaz-Manera J, Walter G, Straub V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2020; 63:640-650. [PMID: 33155691 DOI: 10.1002/mus.27099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Barcelona, Spain
| | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| |
Collapse
|
50
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|